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1 クロネッカーのデルタ
便利なものとして，次で定義されるクロネッカーのデルタ δij を導入する。

δij =

{
1 (i = j)

0 (i ̸= j)
. (1)

デカルト座標では基底ベクトルの内積は全部書くと、

ex · ex = 1, ex · ey = 0, ex · ez = 0, (2)

ey · ex = 0, ey · ey = 1, ey · ez = 0, (3)

ez · ex = 0, ez · ey = 0, ez · ez = 1, , (4)

であるが，クロネッカーのデルタを使うとまとめて書くことができて、

ei · ej = δij , (5)

となる。
ベクトルの内積は，クロネッカーのデルタを使えば次のように計算できる。

A ·B =(
∑
j

Ajej) · (
∑
k

Bkek)

=
∑
j,k

AjBk(ej · ek)

=
∑
j,k

AjBkδjk

=
∑
j

AjBj , (6)

最後の等式は，k について和を取ると，クロネッカーのデルタのために，k = j となるところ
しか残らないことをつかった。

2 ナブラ演算子

∂x =
∂

∂x
, ∂y =

∂

∂y
, ∂z =

∂

∂z
, (7)

と書くことにして

∇ =
∑
j

ej∂j , (8)

と書く。
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3 ϵijk

講義では扱わない発展した内容として，レビ・チビタの記号 ϵijk について説明する。ただ
し，講義では扱わないだけで，いつの間にかこれくらい知っていることが前提となる*1*2。

3.1 定義

３つ添字のある完全反対称テンソル ϵijk を用意する。完全反対称とは、３つある添字のうち
任意の２つの入れ替えたときに (−1)倍されるということである。例えば、ϵijk = −ϵjik など
である（iと j を入れ替えた）。入れ替える添字の選び方は３通りあるので，全部書くと以下の
ようになる。

ϵijk =− ϵjik, （左辺に比べて iと j を入れ替わった） (9)

=− ϵikj , （左辺に比べて j と k が入れ替わった） (10)

=− ϵkji. （左辺に比べて iと k が入れ替わった） (11)

これより、同じ添字のところは０になることがわかる。例えば，式 (9)で i = j とすると，

ϵiik =− ϵiik, （式 (9)で j = iを代入） (12)

2ϵiik =0, （移項した） (13)

ϵiik =0, （整理した） (14)

となり，ϵiik = 0 となる。同様にして ϵiji = 0, ϵijj = 0も示すことができる。これより添字は
すべて異なるものでなければ 0になることがわかる。
ゼロでない成分は，どれか１つ決めると，完全反対称性より全て決まる。慣習に従い，

ϵxyz = +1, (15)

と定義する。これを使うと 0でない成分は 1もしくは −1になることが，添字の完全反対称性
よりわかる。0でない成分をすべて書き下すと，

1 =ϵxyz = ϵyzx = ϵzxy, (16)

−1 =ϵzyx = ϵyxz = ϵxzy, (17)

となる。
添字を２回入れ替えると符号が２回ひっくり返ってもとに戻るので，

ϵijk = ϵjki = ϵkij , (18)

などが成り立つ。つまり３つの添字をサイクリックに動かしても良いということである。

*1 量子力学で角運動量演算子の交換関係を学ぶところで出てくる可能性がある。知らなくても学べるが，知って
おいたほうがよい。

*2 ϵijk に限らず，講義で扱ってないのにいつの間にか知っていることが前提になる事柄はある。もちろん講義で
扱った内容は当然身についていることが前提とされる。教科書も読むなどして自学自習しましょう。
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3.2 対称 vs 反対称

添字を２つもった量 Aij と Sij があり，2つの添字の入れ替えに対して Aは反対称，S は対
称だとする。すなわち，

Aji = −Aij , (19)

Sji = Sij , (20)

とする。このとき ∑
ij

AijSij = 0, (21)

がなりたつ。

∑
i,j

AijSij =
∑
j,i

AjiSji （ダミーの添字なので，iと j，j を iと書くことにした） (22)

=
∑
j,i

(−Aij)Sij （Aji = −Aij , Sji = Sij） (23)

=−
∑
j,i

AijSij , (24)

となるが，最後の式は，最左辺の (−1) 倍である。(−1) 倍して自分自身になる数は 0 しかな
い。よって，

∑
ij AijSij = 0である。

同様にすれば， ∑
i,j

ϵijkaiaj = 0, (25)

がわかる。

3.3 完全反対称テンソルを使った外積の表現

デカルト座標の基底ベクトル同士の外積は

ex × ex =0, ex × ey = ez, ex × ez = −ey, (26)

ey × ex =− ez, ey × ey = 0, ey × ez = ex, (27)

ez × ex =ey, ez × ey = −ex, ez × ez = 0, (28)

となる。これは完全反対称テンソルを使うと、

ei × ej =
∑
k

ϵijkek (29)
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とかける。両辺の iと j に x,y,または z を適当に入れては確かめよ。全部で９パターンある。
たとえば，i = x, j = y のときは，

式 (29)の右辺 =
∑
k

ϵxykek

= ϵxyx︸︷︷︸
=0

ex + ϵxyy︸︷︷︸
=0

ey + ϵxyz︸︷︷︸
=1

ez

=ez, (30)

となるが，これは ex × ey であり，式 (29)は確かに成り立っている。残り 8通りは各自で確
かめよ。
完全反対称テンソルを使うと，２つのベクトルの外積は

A×B =
∑
i,j

(Aiei)× (Bjej) =
∑
i,j

AiBjei × ej =
∑
i,j,k

AiBjϵijkek, (31)

となる。成分は、

(A×B)k =
∑
i,j,k

ϵijkAiBj (32)

とかける。式 (25)を使えば，

(A×A)k =
∑
i,j,k

ϵijkAiAj = 0, (33)

という，自分自身との外積が 0という式もすぐわかる。
式 (31)を展開すればよく知っている

A×B =(AyBz −AzBy) ex + (AzBx −AxBz) ey + (AxBy −AyBz) ez, (34)

となることは各自で確認されたし。

3.4 内積と外積の組み合わせ

A · (B ×C) はスカラーになるが、これは３つのベクトルで作られる立体の体積になる。

A · (B ×C) =
∑
i

Ai(B ×C)i =
∑
i,j,k

ϵijkAiBjCk. (35)

最右辺の表式をみると，一次独立なベクトルを３つ持ってきて，それらの成分を完全反対称
テンソルを使って掛け合わせると体積になるということがわかる。これは何次元になっても
同じ。

5



3.5 完全反対称テンソルの公式

しばしば２つ以上の完全反対称テンソルが出てくることがある。その際以下の公式を使うと
計算は簡単になる。

ϵijkϵabc =

∣∣∣∣∣∣
δia δib δic
δja δjb δjc
δka δkb δkc

∣∣∣∣∣∣ . (36)

ベクトル解析ではどれかの添字について和をとったものを使う場合が多いのでそれも書いてお
くと、 ∑

k

ϵijkϵabk =δiaδjb − δibδja, (37)∑
j,k

ϵijkϵajk =2δia, (38)

∑
i,j,k

ϵijkϵijk =6. (39)

これらを示したければ、全ての組み合わせを試してみれば良い。3× 3× 3 = 27通りある。

3.6 外積２つと完全反対称テンソルの公式の有用性

外積１つでもややこしく感じるかもしれないが、A×B ×C のように２つ連続して外積を
取ることがあるこれはベクトルになる。外積を２回計算するのはしんどいが，実はこれは内積
を使って計算できるという公式がある。

A× (B ×C) = B(A ·C)−C(A ·B). (40)

内積のほうが外積を直接計算するよりも楽なので，この公式は便利そうである。ではこの公式
はどう証明するか。もちろん真面目に成分ごとに計算しても良いが、完全反対称テンソルを使
うと楽である。

A× (B ×C) =
∑
i,j,k

ϵijkeiAj(B ×C)k

=
∑

i,j,k,ℓ,m

ϵijkeiAjϵkℓmBℓCm

=
∑

i,j,k,ℓ,m

ϵijkϵkℓmeiAjBℓCm

=
∑

i,j,ℓ,m

(δiℓδjm − δimδjℓ)eiAjBℓCm

=
∑
i,j

(eiAjBiCj − eiAjBjCi)

=B(A ·C)−C(A ·B). (41)
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公式を覚えるが苦手な人には，このように完全反対称テンソルを使ってその場で公式を作るの
が実用的である。

3.7 ベクトル解析の公式は ϵijk をつかえば簡単に求められる

さまざまな公式は完全反対称テンソルを使うとすぐ導ける。なので覚えるのではなくその場
で導くことが可能になる。もちろん重要な式は覚えておくべきであるが，係数があやふやに
なったときにはその場で確認したほうが良い。

3.7.1 ∇ · (∇×A) = 0

∇ · (∇×A) =
∑
j

∂j(∇×A)j

=
∑
j

∂j

∑
k,l

ϵjkl∂kAl


=
∑
j,k,l

ϵjkl∂j∂kAl, (42)

ここで，ϵjkl は k と l について反対称，∂j∂k は微分の順番は変えて良いので，k と l につい
て対称，である。対称な添字と反対称な添字の和は 0 になるから，これは 0 となる。よって
∇ · (∇×A) = 0が示せた。

3.7.2 ∇×∇ϕ = 0

∇×∇ϕ =
∑
i,j,k

ϵijkei∂j(∇ϕ)k

=
∑
i,j,k

ϵijkei∂j∂kϕ

=0. (43)

ここで，∂j∂k は j と kの入れ替えについて対称，ϵijk は j と kの入れ替えについて反対称，し
たがって j, k について和を取ると 0，ということを使った。よって，∇×∇ϕ = 0が示せた。
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3.7.3 ∇× (∇×A) = ∇(∇ ·A)−∇2A

これは Maxwell 方程式から，電磁波の式を導くときなどに使う。これを覚えるのは大変な
ので，こんな感じで毎回求めるのがよい。ただし素早く求められないなら覚えたほうがよい。

∇× (∇×A) =
∑
i,j,k

ϵijkei∂j(∇×A)k

=
∑
i,j,k

ϵijkei∂j
∑
l,m

ϵklm∂lAm

=
∑

i,j,k,l,m

ϵijkϵklmei∂j∂lAm

=
∑

i,j,l,m

(δilδjm − δimδjl) ei∂j∂lAm

=
∑
i,j

(ei∂i∂jAj − ∂j∂jeiAi)

=∇(∇ ·A)−∇2A. (44)
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