Nonparametric analysis of CMB power spectrum data and consistency test of cosmological models

Amir Aghamousa

Asia Pacific Center for Theoretical Physics, Pohang, South Korea

2nd APCTP-TUS workshop on Dark Energy August 03 ~ 05, 2015, Tokyo University of Science

Bull pictures courtesy of "Pablo Picasso"

All models are false, some are useful. (George E. P. Box)

I will talk about:

 Model-independent estimation of CMB angular power spectrum (with Arman Shafieloo, Mihir Arjunwadkar, Tarun Souradeep).

 Nonparametric test of consistency between cosmological models and CMB data (with Arman Shafieloo).

Model-independent estimation of CMB angular power spectrum

Timeline of the Universe

CMB Anisotropies and the Power Spectrum

Expansion in spherical harmonics

$$\Delta T(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} a_{l,m} Y_{l,m}(\theta,\phi),$$

• $\Delta T(\theta, \phi)$ is a Gaussian random field $\longrightarrow a_{l,m}$ are mean-0 random variables with variance $C_l := E|a_{l,m}|^2$.

$$\tilde{C}_{l} := \frac{1}{2l+1} \sum_{m=-l}^{+l} |a_{l,m}|^{2}$$

WMAP 1/3/5/7: Power Spectrum Data

Regression Problems

Data: $(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$ $Y=f(x)+\epsilon$

Parametric regression

$$Y_i = f(x_i) + \epsilon_i$$

- Assume f(x) = ax + b.
- Assume noise $\epsilon_i \sim N(0, \sigma^2)$ IID.
- Likelihood function

$$L(a, b|\mathsf{data}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(Y_i - (ax_i + b))^2}{2\sigma^2}\right)$$

- To estimate a, b: Maximize L(a, b|data) w.r.t. a, b.
- This is same as linear least-squares regression, under the assumptions made.

Frequentist vs Bayesian

Frequentist

It defines a probability as the limit of its relative frequency in a large number of trials.

Bayesian

It defines a probability as a degree of belief.

How to sample a high dimensional probability distribution?

Markov Chain Monte Carlo (MCMC)

REACT: nonparametric regression

- $Y_i = f(x_i) + \epsilon_i$, with $\epsilon_i \sim N(0, \sigma^2)$ IID, σ^2 known.
- Assume $f \in L_2(a, b)$ and a complete orthonormal basis $\{\phi_j(x)\}$.

$$f(x) = \sum_{j=0}^{\infty} \beta_j \phi_j(x), \ \beta_j = \int_a^b f(x) \phi_j(x) dx$$

• Regression estimator $\hat{f}(x)$:

$$f(x) = \sum_{j=0}^{n-1} \widehat{\beta}_j \phi_j(x) + \text{(some truncation bias)}$$

$$\widehat{eta}_j := \lambda_j Z_j \text{ with } 1 \geq \lambda_0 \geq \ldots \geq \lambda_{n-1} \geq 0.$$
 and $Z_j = \sum_{i=1}^n Y_i \phi_j(x_i)$

Inverse-noise-weighted squared loss function

$$L(\widehat{f},f) = \int \left(\frac{\widehat{f}(x) - f(x)}{\sigma(x)}\right)^2 dx.$$

Risk estimator

$$\widehat{R}(\lambda) = Z^T \overline{D} W \overline{D} Z + \operatorname{tr}(DWDB) - \operatorname{tr}(\overline{D} W \overline{D} B),$$

subject to the constraint $1 \ge \lambda_0 \ge \ldots \ge \lambda_{n-1} \ge 0$.

Planck: Power Spectrum Data

(Aghamousa, Shafieloo, Arjunwadkar and Souradeep, JCAP, 2015)

Planck 2013 power spectrum estimation

(Aghamousa, Shafieloo, Arjunwadkar and Souradeep, JCAP, 2015)

Confidence set in Function space

Picks and dips

(Aghamousa, Shafieloo, Arjunwadkar and Souradeep, JCAP, 2015)

Other results

Nonparametric test of consistency between cosmological models and CMB data

Validating Cosmological Models

Calibrating Confidence distances

Calibrating Confidence distances

Bias control

(Aghamousa, Shafieloo, JCAP, 2015)

Bias control

(Aghamousa, Shafieloo, JCAP, 2015)

Thank you

