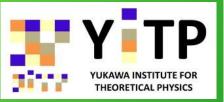
Minimal theory of massive gravity

Antonio De Felice

Yukawa Institute for Theoretical Physics, YITP, Kyoto U.

2-nd APCTP-TUS Workshop
Tokyo, Aug 4, 2015
[with prof. Mukohyama]



Introduction

- dRGT theory: deep insight into massive gravity
 [de Rham, Gabadadze, Tolley: PRL 2011]
- Difficult to find viable phenomenology
- No BD ghost [Boulware, Deser: PRD 1972]
- But other ghost are present in simple/crucial backgrounds
 [ADF, Gumrukcuoglu, Mukohyama: PRL 2012]

Motivation – Key idea

- Is it possible to make the dRGT idea work?
- The theory needs to be changed
- Bigravity, quasidilaton, ...
 [de Rham etal: IJMP '14; D'Amico etal: PRD '13; ADF, Mukohyama: PLB '14]
- What if we make the theory simpler?
- Remove unwanted degrees of freedom
- Massive gravity with less than 5 dof: need to break LI

Breaking Lorentz invariance

- Usual 4D vielbein approach $g_{\mu\nu} = \eta_{AB} e^{A}_{\ \mu} e^{B}_{\ \nu}$
- Invariant under a vielbein local Lorentz transf: $e^{A}_{\mu} \rightarrow \Lambda^{A}_{C} e^{C}_{\mu}$
- Split 4D into 1+ 3, and remove local Lorentz transformation: this fixes a preferred frame
- Introduce the following variables N, N_i, e^{I}_j
- Define 3D metric $\gamma_{ij} = \delta_{MN} e^{M}_{i} e^{N}_{j}$

Initial variables

- We have 9 variables, e^{I}_{j} , 3 shifts: N_{i} , lapse N
- Define $N^i = \gamma^{ij} N_j$, $N^I = e^I_j N^j$
- Build up ADM 4D vielbein $e^{A}_{\mu} = \begin{pmatrix} N & 0^{T} \\ N^{I} & e^{I}_{j} \end{pmatrix}$
- No boost: 13 vars instead of 16 (general 4D vielbein)
- Metric in ADM form: $g_{\mu\nu} = \eta_{AB} e^{A}_{\mu} e^{B}_{\nu}$

Fiducial variables

- Along the same lines fiducial variables M, M_i $E^I_{\ j}$
- 3D fiducial metric $\widetilde{\gamma}_{ij} = \delta_{MN} E^{M}_{i} E^{N}_{j}$
- ADM 4D unboosted fiducial vielbein

$$E^{A}_{\mu} = \begin{pmatrix} M & \overrightarrow{0}^{T} \\ M^{I} & E^{I}_{j} \end{pmatrix}, \qquad M^{I} = E^{I}_{j} \widetilde{\gamma}^{jk} M_{k}$$

Unitary gauge: fixed-dynamics external fields

Precursor Lagrangian

EH term for physical metric

$$\mathcal{L}_{EH} = \sqrt{-g} R(g), \quad M_P^2 = 2$$

Mass term:

$$\mathcal{L}_{0} = \frac{m}{24} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} E^{A}_{\alpha} E^{B}_{\beta} E^{C}_{\gamma} E^{D}_{\delta}$$

ass term:
$$\mathscr{L}_{0} = \frac{m^{2}}{24} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} E^{A}{}_{\alpha} E^{B}{}_{\beta} E^{C}{}_{\gamma} E^{D}{}_{\delta}$$

$$\mathscr{L}_{1} = \frac{m^{2}}{6} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} E^{A}{}_{\alpha} E^{B}{}_{\beta} E^{C}{}_{\gamma} e^{D}{}_{\delta} \qquad \mathscr{L}_{2} = \frac{m^{2}}{4} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} E^{A}{}_{\alpha} E^{B}{}_{\beta} e^{C}{}_{\gamma} e^{D}{}_{\delta}$$

$$\mathcal{L}_{3} = \frac{m^{2}}{6} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} E^{A}_{\alpha} e^{B}_{\beta} e^{C}_{\gamma} e^{D}_{\delta} \qquad \mathcal{L}_{4} = \frac{m^{2}}{24} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} e^{A}_{\alpha} e^{B}_{\beta} e^{C}_{\gamma} e^{D}_{\delta}$$
• Total

$$\mathscr{L}_{\text{TOT}} = \mathscr{L}_{\text{EH}} + \sum_{i=0}^{4} c_i \mathscr{L}_i$$

Same in form as dRGT but asymmetrical ADM vielbein

Precursor Hamiltonian

- Consider 3D vielbein as fundamental variables
- Physical lapse and shift as Lagrange multipliers
- Canonical momentum of 3D vielbein $\pi^{jk} = \Pi^j_I \delta^{IJ} e_J^k$, $e_J^k e_k^I = \delta_J^I$
- Symmetry $P^{[MN]} = e^{M}_{j} \Pi^{j}_{I} \delta^{IN} e^{N}_{j} \Pi^{j}_{I} \delta^{IM} \approx 0$
- Hamiltonian linear in lapse and shift
- Mass term does not include shift variables

Precursor Hamiltonian/constraints

- Primary constraints: $H^{(1)} = \int d^3x [-NR_0 N^iR_i + m^2MH_1 + \alpha_{MN}P^{[MN]}]$
- Time derivative of constraints

$$\widetilde{C}_{\tau}$$
, $\tau = 1,2$, $Y^{[MN]} = \delta^{ML} E_L^{j} e^{N}_{i} - \delta^{NL} E_L^{j} e^{M}_{i}$, $E_L^{j} E^{M}_{i} = \delta_L^{M}$

Precursor Hamiltonian

$$H_{\text{pre}}^{(2)} = \int d^3x \left[-NR_0 - N^i R_i + m^2 M H_1 + \alpha_{MN} P^{[MN]} + \widetilde{\lambda}^{\tau} \widetilde{C}_{\tau} + \beta_{MN} Y^{[MN]} \right]$$

Degrees of freedom for precursor theory

- Phase space variables: $2x9 = 18 \text{ psv: } e^{I}_{j}, \Pi^{j}_{I}$
- All constraints are independent and second-class

$$R_0$$
, R_i , $P^{[MN]}$, $Y^{[MN]}$, \widetilde{C}_{τ} ($\tau = 1,2$)

- Number of dof: (18 1 3 3 3 2)/2 = 3
- Reason: vielbein in ADM form (breaking LI) in mass term
- Still we try to find a theory with 2 dof

Introducing further constraints

- We need to introduce extra constraints
- Without overkilling the modes
- Without killing interesting backgrounds
- Notice that on the constraint surface

$$H_{\text{pre}} \approx \boldsymbol{H}_1 \equiv m^2 \int d^3 x M H_1$$

Constraints

Reconsider the time-evolution of the primary constraints

$$\{R_{0}, H_{\text{pre}}\} \approx 0, \{R_{i}, H_{\text{pre}}\} \approx 0,$$

- But, as seen before, they introduce only 2 secondary constraints
- Then we constrain the model by imposing all 4 derivatives of primary constraints to vanish

$$C_0 \sim \dot{R}_0 \approx 0$$
, $C_i \sim \dot{R}_i \approx 0$,

Hamiltonian of the theory

Define then the 4 constraints (2 only are new)

$$C_0 \equiv \{R_0, \boldsymbol{H}_1\} + \frac{\partial R_0}{\partial t}, \quad C_i \equiv \{R_i, \boldsymbol{H}_1\}$$

Therefore new Hamiltonian

$$H = \int d^{3}x \left[-NR_{0} - N^{i}R_{i} + m^{2}MH_{1} + \alpha_{MN}P^{[MN]} + \beta_{MN}Y^{[MN]} + \lambda C_{0} + \lambda^{i}C_{i} \right]$$

• Dof: (9x2 - 1 - 3 - 3 - 3 - 4)/2 = 2

Building blocks

We have

$$\begin{split} R_{0} &= R_{0}^{\text{GR}} - m^{2} H_{0}, \\ R_{0}^{\text{GR}} &= \sqrt{\gamma} R[\gamma] - \frac{1}{\sqrt{\gamma}} \left(\gamma_{nl} \gamma_{mk} - \frac{1}{2} \gamma_{nm} \gamma_{kl} \right) \pi^{nm} \pi^{kl}, \\ R_{i} &= R_{i}^{\text{GR}} = 2 \gamma_{ik} D_{j} \pi^{kj}, \\ H_{0} &= \sqrt{\widetilde{\gamma}} \left(c_{1} + c_{2} Y_{I}^{\ I} \right) + \sqrt{\gamma} \left(c_{3} X_{I}^{\ I} + c_{4} \right), \quad X_{I}^{\ J} = e_{I}^{\ I} E_{\ I}^{\ J}, \quad X_{I}^{\ L} Y_{L}^{\ J} = \delta_{I}^{\ J}, \\ H_{1} &= \sqrt{\widetilde{\gamma}} \left[c_{1} Y_{I}^{\ I} + \frac{c_{2}}{2} \left(Y_{I}^{\ I} Y_{J}^{\ J} - Y_{I}^{\ J} Y_{J}^{\ J} \right) \right] + c_{3} \sqrt{\gamma} \end{split}$$

Consequences

- The theory is now given
- 14 second-class independent constraints
- The theory is defined via the Hamiltonian (breaking Lorentz invariance)
- Possible to define a Lagrangian

Cosmology

- Consider a time-dependent diagonal M(t), $E_j^I = \tilde{a}(t) \delta_j^I$
- Symmetry of $Y^{IJ} = \delta^{IM} E_M^{\ l} e^J_{\ l} \rightarrow e^J_{\ l}$ also symmetric
- On the background N(t), $e^{I}_{j} = a(t) \delta^{I}_{j}$
- The constraints $C_i \approx 0$ are trivially satisfied on FLRW
- The constraint $C_0 \approx 0$ equivalent to Bianchi identity

$$(c_3+2c_2X+c_1X^2)(\dot{X}+NHX-MH)=0, X=\tilde{a}/a, H=\dot{a}/(Na)$$

Two branches

- Two branches solutions exist
- Self accelerating branch $X=X_{\pm}=\frac{-c_2\pm\sqrt{c_2^2-c_1c_3}}{c_1}$ X is constant
- Normal branch $\dot{X} + NHX MH = 0$
- For both branches $\lambda = 0$

Friedmann evolution

Friedmann equation

$$3M_P^2H^2 = \frac{m^2M_P^2}{2}(c_4 + 3c_3X + 3c_2X^2 + c_1X^3) + \rho$$

- Same background evolution of dRGT
- Self accelerating branch: effective cosmological constant
- No extra constraint: C₀ reduces to Bianchi identity

Stability of the background

- In dRGT 3 out of 5 dof are non-dynamical
- Ghosts are present (not BD ghost)
- In this theory only 2 dof exist

$$S = \frac{M_P^2}{2} \sum_{\lambda = +, x} \int d^4 x N a^3 \left[\frac{\dot{h}_{\lambda}^2}{N^2} - \frac{(\partial h_{\lambda})^2}{a^2} - \mu^2 h_{\lambda}^2 \right],$$

$$\mu^2 = \frac{1}{2} m^2 X \left[(c_2 X + c_3) + (c_1 X + c_2) \frac{M}{N} \right]$$

Stability of background

- Only two degrees of freedom
- The 2 dof are tensor
- Stable for $\mu^2 > 0$
- Therefore it is possible to have FLRW (even de Sitter)

Phenomenology

- Only tensor modes propagate (besides matter field)
- No extra scalar/vector mode arises from gravity
- No need of screening any extra force
- No need of Vainshtein mechanism [Vainshtein: PLB 1972]
- No Higuchi ghost will be present (only tensor modes)
 [Higuchi: NPB 1987]

Constraints

- The self-accelerating branch induces an effective cosmological constant
- For the normal branch (for non-trivial dynamics of M, \tilde{a}) the background is non-trivial but no scalar dof is present
- Constraint coming from modification of emission rate of Gws from binaries μ <10⁻⁵ Hz [Finn, Sutton: PRD 2002]

Conclusions

- Massive gravity extensions
- Reducing dof to only 2
- Only tensors modes remain
- FLRW becomes stable
- Phenomenology simplifies and constraints get weaker
- Gws are massive: phenomenology (sharp peak in GW spectrum)
 [Gumrukcuoglu, Kuroyanagi, Lin, Mukohyama, Tanahashi: CQG 2012]