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1．Introduction　!
!

In 1998, the discovery of late-time cosmic acceleration based on Type Ia 
supernovae is reported. The source for this acceleration is named dark energy.!

}  Discovery of late-time cosmic acceleration!

Dark energy problem may imply some !
modification of gravity on large scales.!

w � P/�

Condition for acceleration : !
w < �1/3

The equation of state defined below !
characterizes dark energy.!

・Planck+WP+SNLS!

w = �1.13+0.13
�0.14 (95%CL)

Planck collaboration arXiv:1303.5076 [astro-ph.CO]  

�-CDM!



1．Introduction　!
 }  Several dark energy models!

・Quintessence!

・covariant Galileon!

・Brans-Dicke gravity!

L2 = X ,

L3 = X⇤�/M3 ,

L4 = X
⇥
2(⇤�)2 � 2�;µ⌫�;µ⌫ �X2R/2

⇤
/M6 ,

L5 = X


(⇤�)3 � 3(⇤�)�;µ⌫�;µ⌫ + 2�;µ⌫�

;µ��;⌫
;� +

3

2
X2Gµ⌫�

;µ⌫

�
/(3M9) .

non-minimal coupling!

non-minimal derivative coupling!



1．Introduction　!
! }  Horndeski theories!

Gi,X � �Gi/�X
S =

Z
d

4
x

p
�g

5X

i=2

Li + S

M

L2 = G2(�, X) ,

L3 = G3(�, X)⇤� ,

L4 = G4(�, X)R� 2G4,X(�, X)
⇥
(⇤�)2 � �;µ⌫�;µ⌫

⇤
,

L5 = G5(�, X)Gµ⌫�
;µ⌫ +

1

3
G5,X(�, X)

⇥
(⇤�)3 � 3(⇤�)�;µ⌫�;µ⌫ + 2�;µ⌫�

;µ��;⌫
;�

⇤
.

X = gµ⌫rµ�r⌫�

Horndeski Lagrangians describe the most general scalar-tensor theory	

with second-order equations of motion on the general background. 	


・Quintessence and K-essence!

・covariant Galileon!
・　      and Brans-Dicke gravity!f(R)

G2 = G2(�, X) , G3 = 0 , G4 =
M2

pl

2
, G5 = 0

G2 = c2X , G3 =
c3

M3
, G4 =

M2
pl

2
+

c4

M6
X2 , G5 =

c5

M9
X2

G2 = G2(�, X) , G3 = 0 , G4 = F (�) , G5 = 0



1．Introduction　!
! }  Horndeski theories in an ADM language on FLRW background!

L = A2 +A3K +A4(K
2 � S) +B4R+A5K3 +B5(U �KR/2)

Kµ⌫ :

Rµ⌫ :

extrinsic curvature!
intrinsic curvature!

K ⌘ Kµ
µ , S ⌘ Kµ

⌫K
⌫
µ ,

R ⌘ Rµ
µ , U ⌘ Rµ⌫K

µ⌫ ,

K3 = 3H(2H2 � 2HK +K2 � S)

Horndeski theories satisfy the following relations: 
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L = A2 +A3K +A4(K
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extrinsic curvature!
intrinsic curvature!
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⌫
µ ,

R ⌘ Rµ
µ , U ⌘ Rµ⌫K

µ⌫ ,

K3 = 3H(2H2 � 2HK +K2 � S)

Horndeski theories satisfy the following relations: 

Gleyzes, Langlois, Piazza, and Vernizzi (GLPV) generalized  
Horndeski theory in such a way that the above relations are  
not necessarily satisfied.  

J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, PRL(2015) 	
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! }  Action describing GLPV theories in a covariant form!



1．Introduction　!
! }  Action describing GLPV theories in a covariant form!

In Horndeski theories, they vanish.!

How far can we go beyond Horndeski theories?!



1．Introduction　!
! }  GLPV theories on a spherically symmetric background!

・Kase and Tsujikawa, PRD (2014) 
  On the flat cosmological background, the deviation from  
  Horndeski theories dose not appear at the background level.!

・Kase et al. PRD (2014)!
  On the spherically symmetric configuration, the deviation from !
  Horndeski theories appears explicitly even at the background level. !

Local gravity experiments may put constraints on 
the deviation from Horndeski theories.!

・Kobayashi, Watanabe and Yamauchi, PRD (2015) 
  In GLPV theories, the Vainshtein mechanism tend to be !
  broken in the high density region.!

・Saito, Yamauchi, Mizuno, Gleyzes and Langlois, JCAP (2015)!
  The breaking of the Vainshtein mechanism affects to !
  stellar structure.!



2．Basic equations!
! }  EOMs on the spherically background!

・Action!

・Metric!
ds2 = �e2 (r)dt2 + e2�(r)dr2 + r2(d✓2 + sin2 ✓ d�2) ,

・In the following we focus on GLPV theories with !
  since it tends to prevent the success of the screening mechanism.!

Kimura et al. PRD (2012),!
Koyama et al. PRD (2013),!
Kase and Tsujikawa, JCAP (2013).!
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e.g., (0,0) component!

functions of!
and their derivatives!



2．Basic equations!
! }  EOMs on the spherically background!

e.g., (0,0) component!

functions of!
and their derivatives!

In the cosmological background this quantity represents !
the deviation of the tensor propagation speed from 1.!
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2．Basic equations!
! }  EOMs on the spherically background!

functions of!
and their derivatives!

In GR, the dominant contributions is of the same order as this term.!

These terms should be small in order !
to satisfy local gravity constraints.!

e.g., (0,0) component!

•  Weak gravitational background 

•  Parameters                                               satisfy 

In order to confront GLPV theories with solar system constraints, we adopt!



2．Basic equations!
! }  EOMs on the spherically background!

Basic equations under the weak field approximation!

Functions in terms of !
and their derivatives!

Solving the third equation and substituting the solution into the first and !
second equations, one can estimate the gravitational potentials.!

:which is 0 in !
 Horndeski theories!



3．Application to specific models!
! }  Simplest model beyond the Horndeski domain!

a constant representing a deviation from the Horndeski domain!

( ! !  in the Horndeski domain)!



8
>>><

>>>:

�0
(r) =

C1

r2
(r � rg)

�0
(r) =

C2

r2
exp

 
⇢mr2

4M2
pl

!
(r ⌧ rg , ⇢m = constant) .

3．Application to specific models!
! }  Simplest model beyond the Horndeski domain!

a constant representing a deviation from the Horndeski domain!

( ! !  in the Horndeski domain)!

rg : Schwarzschild radius!

Demanding a regularity condition                  we need to set !
Matching the two solutions             , it follows that !

�0(0) = 0 C2 = 0 .
r = rg C1 = 0 .



3．Application to specific models!
! }  Simplest model beyond the Horndeski domain!

a constant representing a deviation from the Horndeski domain!

( ! !  in the Horndeski domain)!

�0(r) = 0 .



3．Application to specific models!
! }  Simplest model beyond the Horndeski domain!

a constant representing a deviation from the Horndeski domain!

( ! !  in the Horndeski domain)!

�0(r) = 0 .

Even though the field derivative vanishes everywhere, !
the gravitational law still can be different from GR.!

↵H = ↵t = F0 � 1



3．Application to specific models!
! }  Simplest model beyond the Horndeski domain!

� =
rg
2r

� 1

2
↵t ,  = � rg

2r
,

・ Post-Newtonian parameter!

� ⌘ ��
 

= 1� ↵t
r

rg

In order to satisfy solar system constraints !|� � 1| < 2.3⇥ 10�5 ,

|↵H| = |↵t| < 2.3⇥ 10�5 rg
r

Considering the Sun ! ! ! ! and taking the radius !
                                         , we obtain the bound!

(rg = 3⇥ 105cm)

r = 1 Au = 1.5⇥ 1013cm

|↵H| = |F0 � 1| < 5⇥ 10�13

 
rg ⌘ 1

M2
pl

Z r

0
⇢mr̃2dr̃

!



3．Application to specific models!
! }  GLPV theories with a scalar-matter coupling!

A2 = �1

2
X , C3 = 0 , A4 = �1

2
M2

ple
�2q1�/Mpl , B4 =

1

2
M2

ple
�2q2�/Mpl .

d

dr

�
r2�0� '

✓
�0r

2
+ q2Mpl

◆
⇢mr2

M2
pl

+Mpl�H ,

�H ' 2(q1 � q2) : which is related with!@↵H/@�

8
><

>:

�0(r) =
q2Mplrg

r2
+

�HMpl

r
,

�(r) = �q2Mplrg
r

+ �HMpl ln
r

rc
,

rc : an integration constant!

Integrating the above equation in the regime! ! ! it leads!r � rg
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�0(r) =
q2Mplrg

r2
+

�HMpl

r
,

�(r) = �q2Mplrg
r

+ �HMpl ln
r

rc
,

rc : an integration constant!

Integrating the above equation in the regime! ! ! it leads!r � rg

diverges at !r = 1



3．Application to specific models!
! }  GLPV theories with a scalar-matter coupling!

A2 = �1

2
X , C3 = 0 , A4 = �1

2
M2

ple
�2q1�/Mpl , B4 =

1

2
M2

ple
�2q2�/Mpl .

� � 1 ' �4q22 + 2q2�H
r

rg
ln

r

rc
+ ... .

Considering the solar system ! ! ! and the Schwarzschild 
radius of the Sun ! ! ! , it is at most of the order of 10!
by choosing !

r ⇠ 1012cm
rg ⇠ 105cm

rc = H�1
0 ⇠ 1028cm .

Using these solutions, we finally obtain the following expression !
of the post-Newtonian parameter ( ! ! ! ! !)!|� � 1| < 2.3⇥ 10�5 ,
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Using these solutions, we finally obtain the following expression !
of the post-Newtonian parameter ( ! ! ! ! !)!

� � 1 ' �4q22 + 2q2�H
r

rg
ln

r

rc
+ ... .

|� � 1| < 2.3⇥ 10�5 ,

|q2| . 10�3



3．Application to specific models!
! }  GLPV theories with a scalar-matter coupling!

A2 = �1

2
X , C3 = 0 , A4 = �1

2
M2

ple
�2q1�/Mpl , B4 =

1

2
M2

ple
�2q2�/Mpl .

Using these solutions, we finally obtain the following expression !
of the post-Newtonian parameter ( ! ! ! ! !)!

� � 1 ' �4q22 + 2q2�H
r

rg
ln

r

rc
+ ... .

|� � 1| < 2.3⇥ 10�5 ,

|q2| . 10�3 |�H| . 10�10

Not only the deviation parameter        from Horndeski domain!
but also its variation        is tightly constrained.  !

↵H

�H



3．Application to specific models!
! }  What happens if the Vainshtein mechanism is at work? (in progress)!

r

�0

�0 / r�2
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�0

�0 / r�2

rV

�0 ⇠ constant

}  What happens if the Vainshtein mechanism is at work? (in progress)!



3．Application to specific models!
!

r

�0

�0 / r�2

rV

�0 ⇠ constant

These modifications cannot be screened even if !
the Vainshtein mechanism is at work!!!

}  What happens if the Vainshtein mechanism is at work? (in progress)!



4．Conclusions　 
 
}  We studied local gravity constraints on GLPV theories (in progress). 

 
}  We derived basic equations on the spherically symmetric background 

under the weak field approximation. 
 

}  For the simplest model beyond the Horndeski domain we showed that  
the parameter       , representing the deviation from Horndeski theories,  
is tightly constrained by using the bound of local gravity experiments. 

}  We also considered a simple model with a scalar-matter coupling in  
GLPV theories. In this case we found that the local gravity experiments 
give tight constraints. 

}  Even if the Vainshtein mechanism is at work, the deviation from  
the Horndeski domain should be quite small since there are some terms  
responsible for modification of gravity which is not screened.  


