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1. Introduction

» Discovery of late-time cosmic acceleration

In 1998, the discovery of late-time cosmic acceleration based on Type la
supernovae is reported. The source for this acceleration is named dark energy.

/ _ _ \ —  Planck+WP+BAO —  Planck+WP+SNLS
The equation of state defined below —  Planck+WP+Union2.1  —  Planck+WP
characterizes dark energy. . . — .
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Condition for acceleration :

\_ w < —1/3 J o i

- Planck+WP+SNLS 027 ] \
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Planck collaboration arXiv:1303.5076 [astro-ph.CO]

Dark energy problem may imply some
modification of gravity on large scales.




1. Introduction

» Several dark energy models

-Quintessence

]\421 1
L = TPR —I— X — V((/b) (X = __gﬂya,uqbavqb)

-Brans-Dicke gravity

2

non-minimal coupling
=

L=[(¢)R+w(@)X —V(o)

-covariant Galileon

Lo=X.
L3:XD¢/M37

M2 5
_ _pl T
L = TR—I— Z;CZLZ

non-minimal derivative coupling

_—

Ly = X [2(06) - 26" 6, — X*R/2] /M°,

3
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Ls = X |(09)* — 3(00) 6" by + 20676, + > XG5 | [(3M?).



1. Introduction

» Horndeski theories

5 [ Gz’,X = aG’i/aX]
- /d4l‘\/—_gz Li+ 8% x _ gov,69,6
i=2

L2 — G2(¢7 X) 3

L3 = Gs(¢, X)Ug,

Ly = G4(¢7 X)R _ 2G4,X (¢7 X) [(D¢)2 - ¢;wj¢;uu} )

L5 — G5(¢7 X)Gw/gb;'uy + éGE’),X (¢7 X) [(D¢)3 o 3(D¢)¢;MV¢;MV + 2¢;uv¢;ua¢;y;a] :

-Quintessence and K-essence G:=G:(¢,X), G3=0, Gi=-2, G5=0

Horndeski Lagrangians describe the most general scalar—tensor theory

with second-order equations of motion on the general background.



1. Introduction
» Horndeski theories in an ADM language on FLRW background

L=Ay+ A3K + Ay(K* — S) + ByR + AsK3 + B5(U — KR /2)

K=K!, S=K!'KY,
R=RI, U=R, K",

K3 =3H((2H? —-2HK + K? - S)

K., : extrinsic curvature

R, : intrinsic curvature

Horndeski theories satisfy the following relations:

Ay =2XByx — By, As=—XBs x/3




1. Introduction
» Horndeski theories in an ADM language on FLRW background

L=Ay+ A3K + Ay(K? — S) + B4R + As K3 + Bs(U — KR /2)

K=K!, S=K!'KY,
R=RI, U=R, K",

K3 =3H((2H? —-2HK + K? - S)

K., : extrinsic curvature

R, : intrinsic curvature

Horndeski theories satisfy the following relations:

Ay =2XByx — By, As=—XDBs x/3

Gleyzes, Langlois, Piazza, and Vernizzi (GLPV) generalized
Horndeski theory in such a way that the above relations are
not necessarily satisfied.

J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, PRL(2015)




1. Introduction

» Action describing GLPV theories in a covariant form

5
S = /d4x\/—gZLi+/d4x\/—ng(gW,\Pm).
i=2

LQ — A2(¢7X) )
Ly =[C3(¢, X) + 2XC3 x (¢, X)|Uo + X35, 4(¢, X),

Li = By(g, )R - 21O ; 400 [@g)2 - 6,

B X)+ A X)—-2XB X . : :
+ 2[ 4(¢7 ) + 4(¢;<2) 2 4,X ((,b7 )] (¢’M¢’V¢;MVD¢ . ¢,u¢;uy¢;a¢,1/0) ,

Ls = G5(¢, X)G ™ — | X*2 A5(¢, X) [(O¢)* — 3(0) 6™ ¢y + 205,077 91 ]
XB5,X(¢,X) + 3A5(¢,X)
|X|5/2

X | (O0) ub™ b = 260, 6™ Gs 67 = 10 6™ 606 by + 20,67 D761 |

(45 = 21X [*/2Cy x +2V/[X[Buy)




1. Introduction

» Action describing GLPV theories in a covariant form

_|_

_l_

Ly = By(¢, X)R

5
S = /d4x\/—gZLi+/d4x\/—ng(gW,\Pm).
i=2

LQ — A2(¢7X) )
Ly =[C3(¢, X) + 2XC3 x (¢, X)|Uo + X35, 4(¢, X),

. B4(¢7 X) + A4(¢7 X)

2 [By(¢, X) + Ag(¢, X) — 2X By x (¢, X)]

X2

Y [(D¢)2 o gb;'uyqb;uy]

(¢;H¢;V¢;uvm¢ - ¢;M¢;uy¢;a¢w0) ’

Ls = G5(¢, X)G ™ — | X*? A5(¢, X) [(O¢)* — 3(0) 6™ ¢y + 205,007 91 ]

X Bs x (¢, X) + 345(¢, X)

X[5/2 In Horndeski theories, they vanish.

X | (O0) ub™ b = 260, 6™ Gs 67 = 10 6™ 606 by + 20,67 D761 |

How far can we go beyond Horndeski theories?

N




1. Introduction

» GLPV theories on a spherically symmetric background

-Kase and Tsujikawa, PRD (2014)
On the flat cosmological background, the deviation from
Horndeski theories dose not appear at the background level.

-Kobayashi, Watanabe and Yamauchi, PRD (2015)
In GLPV theories, the Vainshtein mechanism tend to be
broken in the high density region.

-Saito, Yamauchi, Mizuno, Gleyzes and Langlois, JCAP (2015)
The breaking of the Vainshtein mechanism affects to
stellar structure.

-Kase et al. PRD (2014)
On the spherically symmetric configuration, the deviation from
Horndeski theories appears explicitly even at the background level.

Local gravity experiments may put constraints on
the deviation from Horndeski theories.
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2. Basic equations
» EOMSs on the spherically background

» Action
5
S = /d4x\/—gZLi—1—/d4a¢\/—ng(gW,\Ifm).
i=2

-Metric
ds? = =2 qt? 1+ 22 dr? 4 r2(dh? + sin? 0 d¢p?),

-In the following we focus on GLPV theories with L5 = 0
since it tends to prevent the success of the screening mechanism.

Kimura et al. PRD (2012),
Koyama et al. PRD (2013),
Kase and Tsujikawa, JCAP (2013).




2. Basic equations
» EOMSs on the spherically background

» e.g., (0,0) component

4e72% A 2A
(6 4—Cl>q),—|—62——4(€_2@—1—04t):—pm,

r

a,=———1  C;: functions of A;
and their derivatives




2. Basic equations
» EOMSs on the spherically background

» e.g., (0,0) component

4e72% A 2A
(6 4—C1)®’+C2——4(e_2¢—1—at):—pm,

r

a, =—— —1| C;: functions of A;
and their derivatives

In the cosmological background this quantity represents
the deviation of the tensor propagation speed from 1.




2. Basic equations
» EOMSs on the spherically background

» e.g., (0,0) component

4e—2% A 24
(e 4—C1><I>’—|—C2——24(e_2@—1—04t):—pm,
T T
In GR, the dominant contributions is of the same order as this term.
B )
a;=——+—1 C;: functions of A;
Ay

and their derivatives




2. Basic equations
» EOMSs on the spherically background

» e.g., (0,0) component These terms should be small in order
to satisfy local gravity constraints.

4—2@A 2A
( - 4—cl>q>’+c2——4(e—2¢—1_at):_pm,

r

In GR, the dominant contributions is of the same order as this term.

g =—— — C; : functions of A;
and their derivatives




2. Basic equations
» EOMSs on the spherically background

e.g., (0,0) component These terms should be small in order
to satisfy local gravity constraints.

4e 2% A 2A
(6 4—C1><I>’—|—C2——4(e_2q)—1—ozt):—pm,

r

In GR, the dominant contributions is of the same order as this term.

a,=———1  C;: functions of A;
and their derivatives

In order to confront GLPV theories with solar system constraints, we adopt

« Weak gravitational background (|| <« 1, |[V| <« 1)

« Parameters €; =7Ci /A4, 2 =1r°Co/Ay, ... satisfy |¢;| < 1




2. Basic equations
» EOMSs on the spherically background

Basic equations under the weak field approximation

/ meQ r / 7 49 7 1
(r®) = ="t ag A2~ ¢ (s +2074s x) + == (Aug +207Aa x) | — G,
® 7 2 ¢ Asx ¢ Aix | om
U~ — — — (Ay—2¢°A = |
r 4A4 ( 2 ¢ 2’X) * A4 A4’I“ + 2r ’
(o = papm + s M; : Functions in terms of Ax_4, By

and their derivatives

oy = 2APax =B whichis 0in
Ay Horndeski theories

Solving the third equation and substituting the solution into the first and
second equations, one can estimate the gravitational potentials.




3. Application to specific models

» Simplest model beyond the Horndeski domain

1 1 1
AQ:—§X, C3=0, A4:—§M§1, B4:§M§1FO,

Fy : aconstant representing a deviation from the Horndeski domain

( Fo = 1 in the Horndeski domain)

2 "
U = papm + ps » ¢”+r¢’<1—ZM2>=0
pl




3. Application to specific models

» Simplest model beyond the Horndeski domain

1 1 1
A2:—§X, Cs3 =0, A4:—§M§1, B4:§M§1FO,

Fy : aconstant representing a deviation from the Horndeski domain

( Fo = 1 in the Horndeski domain)

b = pigpom + U ¢/1+2¢/ 1_Pmr2 0
A T r M3

¢'(r) = ,r—gl (r>ry) Tg * Schwarzschild radius

< 2

02 PmT

¢’ (r) = — exp (r < ry, pm = constant).

\ 72 AM?, g

Demanding a regularity condition ¢'(0) = 0 we need to set C, = 0.

Matching the two solutions 7 = 7, it follows that C; = 0.




3. Application to specific models

» Simplest model beyond the Horndeski domain

1 1 1
AQ:—§X, C3=0, A4:—§M§1, B4:§M§1FO,

Fy : aconstant representing a deviation from the Horndeski domain

( Fo = 1 in the Horndeski domain)

2 2 Ad 1 1
/ Pm A 1 [ A o 1/ A \ [ A Lo 1/ A \
(T’(I)) ~ — -+ A3 =M 1A A+ 20 Ag X T —— (Af 4+ 20 Afx]L — 04,
4A4 4A4 r ’ 2
12 12
L2y a2, N O A3 9T Aux | om
U~ — — (Ao —20 A5 x| —F = —+ ,
r 4A4 \ / A4 A4’I“ 2r




3. Application to specific models

» Simplest model beyond the Horndeski domain

1 1 1
AQ:—§X, C3=0, A4:—§M§1, B4:§M§1FO,

Fy : aconstant representing a deviation from the Horndeski domain

( Fo = 1 in the Horndeski domain)




3. Application to specific models

» Simplest model beyond the Horndeski domain

1 1 1

2 2
A2:_§X7 03:(), A4:_§Mpl7 B4:§Mp1FO7
r 1 r .
S U =2 (rg:W/pmfdf“)
2,r 2 27" pl YO
- Post-Newtonian parameter
P r
Y= = 1 — Oy —
v Tg
In order to satisfy solar system constraints |y — 1] < 2.3 x 107",
T
o] = o] < 2.3 x107° 2
r

Considering the Sun (ry = 3 x 10°cm) and taking the radius
r=1Au=1.5 x 10"3cm , we obtain the bound

loan| = |Fo — 1| <5 x 10713

\ RRRRRRE T



3. Application to specific models

» GLPV theories with a scalar-matter coupling

1 1 1
Ap=—cX, C3=0, Aj=—Mje 0 By = Mje 200/t

d

/
% (’I“ ¢ ) (% + q2Mpl> p]n\}Q + MplBH )

Bu =~ 2(q1 — q2) : which is related with Oagz /¢

Integrating the above equation in the regime » > ry it leads

T'c . an integration constant




3. Application to specific models

» GLPV theories with a scalar-matter coupling

1 1 1
Ap=—cX, C3=0, Aj=—Mje 0 By = Mje 200/t

d

/
% (’I“ ¢ ) (% + q2Mpl> p]n\}Q + MplBH )

Bu =~ 2(q1 — q2) : which is related with Oagz /¢

Integrating the above equation in the regime » > ry it leads

@My, N BuM, | diverges at 7 = o0
- r 9 —
r
—,. tBuMpln—,

T'c . an integration constant




3. Application to specific models

» GLPV theories with a scalar-matter coupling

1 1 1
Ap=—cX, C3=0, Aj=—Mje 0 By = Mje 200/t

Using these solutions, we finally obtain the following expression
of the post-Newtonian parameter ( |y — 1] < 2.3 x107°,)

r r
v —1~ —4qg5 4 2¢2Pa— In —|+ ...
Tgl Te

Considering the solar system r ~ 10'?cm and the Schwarzschild
radius of the Sun r, ~ 10°cm , it is at most of the order of 10
by choosing r. = H; ' ~ 10*cm.




3. Application to specific models

» GLPV theories with a scalar-matter coupling

1 1 1
Ap=—cX, C3=0, Aj=—Mje 0 By = Mje 200/t

Using these solutions, we finally obtain the following expression
of the post-Newtonian parameter ( |y — 1] < 2.3 x 107°,)

r r
v —1~ —4q§—|—2q26Hr—ln— + ...

g Tec

2] <1077




3. Application to specific models

» GLPV theories with a scalar-matter coupling

1 1 1
Ap=—cX, C3=0, Aj=—Mje 0 By = Mje 200/t

Using these solutions, we finally obtain the following expression
of the post-Newtonian parameter ( |y — 1] < 2.3 x 107°,)

r r
v —1~ —4q§ + 2¢28g— In — + ...
g Te




3. Application to specific models

» What happens if the Vainshtein mechanism is at work? (in progress)

o




3. Application to specific models

» What happens if the Vainshtein mechanism is at work? (in progress)

o

¢’ ~ constant

¢/ X 7,,—2
5 >
ry r
4¢’ 1
Ay — ¢ (As,¢ +2¢" A3 x) + %5 (Aap +2¢"Asx)| — 5%

L Asx ¢TAux o
A4 A4T 27“’




3. Application to specific models

» What happens if the Vainshtein mechanism is at work? (in progress)

o

These modifications cannot be screened even if
the Vainshtein mechanism is at work!!




4. Conclusions

» We studied local gravity constraints on GLPV theories (in progress).

» We derived basic equations on the spherically symmetric background
under the weak field approximation.

» For the simplest model beyond the Horndeski domain we showed that
the parameter op, representing the deviation from Horndeski theories,
is tightly constrained by using the bound of local gravity experiments.

» We also considered a simple model with a scalar-matter coupling in
GLPV theories. In this case we found that the local gravity experiments
give tight constraints.

» Even if the Vainshtein mechanism is at work, the deviation from
the Horndeski domain should be quite small since there are some terms
responsible for modification of gravity which is not screened.




