Gravitational Waves from 2nd order perturbations

Sachiko Kuroyanagi (APCTP & Nagoya Univ.)

in collaboration with Jinn-Ouk Gong

Inflation

Leading theory of the early Universe

Predictions

scalar perturbations Φ

→ seed of the large scale structure testable by CMB, galaxy survey, etc.

tensor perturbations h_{ij} testable by CMB B-modes, GW experiments

Inflation

Leading theory of the early Universe

Predictions

scalar perturbations Φ

→ seed of the large scale sti 2nd order testable by CMB, galaxy sur

tensor perturbations h_{ij} MUST exist testable by CMB B-modes, GW experiments

GWs from 2nd order perturbations of Φ Evolution equation for GWs

$$h_{ij}^{\prime\prime} + 2\mathcal{H}h_{ij}^{\prime} - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij}^{lm}\mathcal{S}_{lm}$$

Source term
$$\Phi \equiv \Phi^{(1)}, \ \Psi \equiv \Psi^{(1)}$$

$$\mathcal{S}_{ij} \equiv 2\Phi \partial^i \partial_j \Phi - 2\Psi \partial^i \partial_j \Phi + 4\Psi \partial^i \partial_j \Psi + \partial^i \Phi \partial_j \Phi$$

$$- \partial^i \Phi \partial_j \Psi - \partial^i \Psi \partial_j \Phi + 3\partial^i \Psi \partial_j \Psi$$

$$- \frac{4}{3(1+w)\mathcal{H}^2} \partial_i (\Psi' + \mathcal{H} \Phi) \partial_j (\Psi' + \mathcal{H} \Phi)$$

$$- \frac{2c_s^2}{3w\mathcal{H}^2} [3\mathcal{H} (\mathcal{H} \Phi - \Psi') + \nabla^2 \Psi] \partial_i \partial_j (\Phi - \Psi)$$

$$P^{(1)} \equiv c_s^2 \rho^{(1)}, \quad w \equiv P^{(0)}/\rho^{(0)}$$
 \hat{T}_{ij} Im: projection to the TT gauge $ds^2 = a^2(\eta)[-(1+2\Phi)d^2\eta + [(1-2\Psi)\delta_{ij} + h_{ij}]dx^i dx^j]$

GWs from 2nd order perturbations of Ф Evolution equation for GWs

$$h_{ij}^{"} + 2\mathcal{H}h_{ij}^{"} - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij}^{lm}\mathcal{S}_{lm}$$

Source term
$$\Phi \equiv \Phi^{(1)}, \ \Psi \equiv \Psi^{(1)}$$

$$\to \text{If } \Pi^{(1)} \!\!=\!\! 0, \Phi \!=\! \Psi$$

Evolution equation for Φ

$$\Phi'' + 3\mathcal{H}\Phi' + (2\mathcal{H}' + \mathcal{H}^2)\Phi = 4\pi Ga^2\delta P$$
For kη>I

For kη>I
$$\Phi = \begin{cases} constant (MD) \rightarrow More GWs in \\ \infty a^{-2} (RD) \end{cases}$$
 Matter-dominated phase

GW experiments

- · CMB B-mode polarization: Planck, CMBpol
- · Pulsar timing: SKA (2020-)
- Direct detection

Ground: Advanced-LIGO, KAGRA,

Advanced-Virgo, IndIGO (2017-)

Space: eLISA/NGO (2034), DECIGO/BBO

WMAP Three Year Polarized CMB Sky (http://wmap.gsfc.nasa.gov/)

PTA image (NRAO)

KAGRA image (http://gwcenter.icrr.u-tokyo.ac.jp/)

eLISA image (http://elisa-ngo.org/)

DECIGO image, S. Kawamura et al, J. Phys.: Conf. Ser. 122, 012006 (2006)

Sensitivity curves of GW experiments

on CMB scale

GW amplitude

$$\Omega_{\rm GW} \equiv \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d \ln k}$$

CMB B-mode on CMB scale

GW amplitude

$$\Omega_{\rm GW} \equiv \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d \ln k}$$

on small scales (direct detection experiments)

GWs produced in RD phase (Hz)

on small scales (direct detection experiments)

2nd order GWs in early matter phase

Large GWs are expected on small scales if the Universe has experienced early MD phase

Assadullahi and Wands, PRD 79, 083511 (2009)

2nd order GWs in early matter phase

2nd order GWs in early matter phase

Large GWs are expected on small scales if the Universe has experienced early MD phase

1st order GWs decay more in MD phase

 $T_R = 10^9 GeV$

Shift to lower frequency

 $T_R = 10^5 GeV$

2nd order GWs dominate for T_R<10⁷GeV

My work

Do Ist order GWs affect?

$$h_{ij}^{"(2)} + 2\mathcal{H} h_{ij}^{"(2)} - \nabla^2 h_{ij}^{(2)} = -4\hat{\mathcal{T}}_{ij}^{lm} \mathcal{S}_{lm}$$

Rough picture of evolution

Motivation

Φ is not necessarily larger than h in small scale eg. Even in standard slow-roll prediction

$$P_{\Phi,prim}(k_{CMB}) \sim 2 \times 10^{-9}$$

 $P_{h,prim}(k_{CMB}) \sim 2 \times 10^{-10}$ (for r=0.1)

If one include tilt of the spectrum

```
P_{\Phi,prim}(k_{DECIGO}=0.1Hz) \sim P_{\Phi,prim}(k_{CMB})(k_{DECIGO}/k_{CMB})^{ns-1}
P_{h,prim}(k_{DECIGO}=0.1Hz) \sim P_{h,prim}(k_{CMB})(k_{DECIGO}/k_{CMB})^{nt}
```

$$\begin{cases} n_s\text{-}I = -0.04 \\ n_t = -r/8 = -0.0125 \\ k_{DECIGO}/k_{CMB} \sim 10^{17} \end{cases} P_{\Phi,prim}(k_{DECIGO}) \sim 4 \times 10^{-10}$$

1 difference becomes smaller

Result (Preliminary)

```
P_{\Phi,prim}(k_{DECIGO}) \sim 4 \times 10^{-10}
T_R = 10^5 GeV
                                                              P_{h,prim}(k_{DECIGO}) \sim 1.2 \times 10^{-10}
Hinf=108GeV
                                                     ECIGO
           10^{-9}
                  1st order (r=0.1)
                                                                           \overset{\scriptscriptstyle{(1)}\scriptscriptstyle{(1)}}{\Phi h}
          10^{-21}
                                                                             10^{7}
                                                   0.001
                           10^{-13}
                                                                 100
```

f [Hz] comparable contribution at low frequency

Conclusions

- · 2nd order GWs are robust predictions of inflationary theory, but the amplitude is typically small.
- They are enhanced if the Universe experiences an early matter dominated phase, and become detectable by DECIGO (and complementary with 1st order GWs).
- We have calculated the effect of O(hΦ) contributions.
- Models with small Φ and large h at small scales (eg. large running) would be interesting to investigate in our formulation.