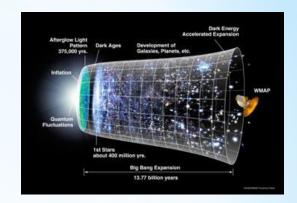
On Acceleration of the Universe

Waseda University Kei-ichi Maeda

Big mystery in cosmology

Acceleration of cosmic expansion

Inflation: early stage of the Universe



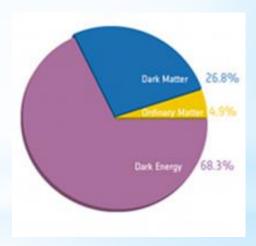
Inflation?

Present Acceleration

cosmological constant

$$\Lambda \sim 10^{-120} m_{PL}^2$$

- Dark Energy
- Modified gravity



Two Comments

[I] Matter couplings

[2] Negative cosmological constant

[I] Matter couplings

When we discuss acceleration by some unknown field (or modification of gravity), we ignore matter fields.

Matter: (1) Particles in Standard Model

(2) Perfect Fluid with $P=w\rho \quad (w\geq 0)$

Its energy density will drop when the Universe expands

However, if there exists some couplings between matter and field (or gravity), dynamics may change.

(1) Coupling with gauge field

What is an inflaton ϕ ?

top-down superstring(or 10D supergravity)

In compactification, we naturally expect a dilaton or moduli coupling.

 $\exp[-\alpha\phi]$

This coupling may spoil the inflationary models unless the moduli is fixed.

Townsend (2003)
$$V = V_0 \exp[-\alpha \phi] \ (V_0 \ge 0)$$

Flux compactification $\alpha \geq \sqrt{6}$

Hyperbolic compactification $\sqrt{2} \le \alpha \le \sqrt{6}$

No accelerated expansion

Note: power-law inflationary solution if $\alpha < \sqrt{2}$

scale factor
$$a=t^p$$
 with $p=\frac{2}{\alpha^2}$

There exists another natural ingredient in the unified theories: gauge fields

Abelian [U(1)] or non-Abelian [e.g. SU(2)] gauge fields

Heterotic string theory $E_8 \times E_8$

Flux compactification U(1) multiplet

In effective 4D action,

moduli coupling may appear: $\frac{1}{4} \exp[\lambda \phi] \mathbf{F}^2$

Hull-Townsend (1995): $\lambda = 0, \sqrt{2/3}, \sqrt{2}, \sqrt{6}$

If VEVs of gauge fields exist, it will change the dynamics of a scalar field.

$$\frac{1}{4}f^2(\phi)\mathbf{F}^2$$

■ U(1) field →

Anisotropic Inflation

Kanno, Soda, Watanabe (2009), Watanabe, Kanno, Soda (2010) $\frac{1}{4} \exp\left[c\phi^2\right] F_{\mu
u}^2$

Kanno. Soda, Watabnabe (2010) $\exp\left[\lambda\phi\right]F_{\mu\nu}^2$

- **U(1) multiplet** with the same gauge-kinetic coupling
- Non-Abelian gauge field

The isotropic inflationary universe is an attractor.

Anisotropic inflation can be possible as a transient state

Inflation with Gauge Fields

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{2} - \frac{1}{2} (\nabla \phi)^2 - V_0 e^{-\alpha \phi} - \frac{1}{4} e^{\lambda \phi} F_{\mu\nu}^{(a)} F^{(a)\mu\nu} \right]$$

$$F_{\mu\nu}^{({
m a})} = \partial_{\mu}A_{
u}^{({
m a})} - \partial_{
u}A_{\mu}^{({
m a})} + g_{YM}\epsilon_{
m abc}A_{\mu}^{({
m b})}A_{
u}^{({
m c})}$$
:SU(2) Yang-Mills field

Isotropic and homogeneous universe

FLRW metric $ds^2 = -dt^2 + a^2(t)dx^2$

YM potential $A_i^{(\mathrm{a})} = A(t)\delta_i^{(\mathrm{a})}$ $A_0^{(\mathrm{a})} = 0$

Scalar field $\phi(t)$

Basic equations:

YM equation
$$\ddot{A} + H\dot{A} + \lambda\dot{\phi}\dot{A} + 2g_{YM}^2\frac{A^3}{a^2} = 0$$

electric component
$$E:=-rac{\dot{A}}{a}$$
 magnetic component $B=g_{YM}rac{A^2}{a^2}$

YM energy density
$$ho_{YM}=
ho_E+
ho_B$$
 $ho_E=rac{3}{2}e^{\lambda\phi}E^2$ $ho_B=rac{3}{2}e^{\lambda\phi}B^2$

$$\dot{\rho}_E = -(4H + \lambda \dot{\phi})\rho_E - 4(\dot{A}/A)\rho_B$$

$$\dot{\rho}_B = -(4H - \lambda \dot{\phi})\rho_B + 4(\dot{A}/A)\rho_B$$

scalar field equation

$$\ddot{\phi} + 3H\dot{\phi} - \alpha V - \lambda \left(\rho_E - \rho_B\right) = 0$$

Einstein equations

$$H^{2} = \frac{1}{3} \left[\frac{1}{2} \dot{\phi}^{2} + V + \rho_{YM} \right] \qquad \dot{H} = -\left[\frac{1}{2} \dot{\phi}^{2} + \frac{2}{3} \rho_{YM} \right]$$

U(1) triplet

no non-linear coupling

$$\dot{\rho}_E = -(4H + \lambda \dot{\phi})\rho_E$$
 $\dot{\rho}_B = -(4H - \lambda \dot{\phi})\rho_B$

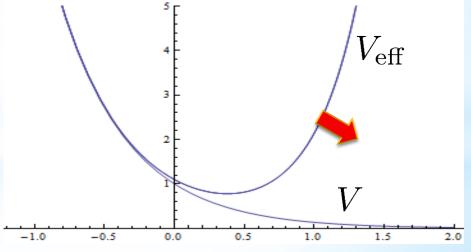
$$\rho_E = \rho_{E0} \frac{e^{-\lambda(\phi - \phi_0)}}{(a/a_0)^4}$$

$$\rho_B = \rho_{B0} \frac{e^{\lambda(\phi - \phi_0)}}{(a/a_0)^4}$$

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V_{\text{eff}}}{\partial \phi} = 0 \quad V_{\text{eff}} = V_0 e^{-\alpha\phi} + \frac{1}{a^4} \left(C_E e^{-\lambda\phi} + C_B e^{\lambda\phi} \right)$$

$$C_E \neq 0 \& \lambda < 0$$

$$C_B \neq 0 \& \lambda > 0$$



power-law solution with larger power exponent

power-law solutions

$$a \propto t^p$$
 $\phi = \frac{2}{\alpha} \ln t + \phi_0$

$$\rho_E = \frac{C_E}{a^4} \exp[-\lambda \phi] \qquad \rho_B = \frac{C_B}{a^4} \exp[\lambda \phi]$$

Inflation

The case with electric field (E_{U1})

$$p = \frac{1}{2} \left(1 - \frac{\lambda}{\alpha} \right)$$

$$C_B = 0$$

$$p = \frac{1}{2} \left(1 - \frac{\lambda}{\alpha} \right)$$
 $C_B = 0$ $\lambda < \alpha - \frac{4}{\alpha} \& \lambda < 0$

$$\lambda < -\alpha$$

The case with magnetic field (B₁₁₁)

$$p = \frac{1}{2} \left(1 + \frac{\lambda}{\alpha} \right)$$

$$C_E = 0$$

$$p = \frac{1}{2} \left(1 + \frac{\lambda}{\alpha} \right)$$
 $C_E = 0$ $\lambda > -\alpha + \frac{4}{\alpha} \& \lambda > 0$

$$\lambda > \alpha$$

■ The scalar field dominance (S_{U1})

$$p = \frac{2}{\alpha^2}$$

$$C_E = C_B = 0$$

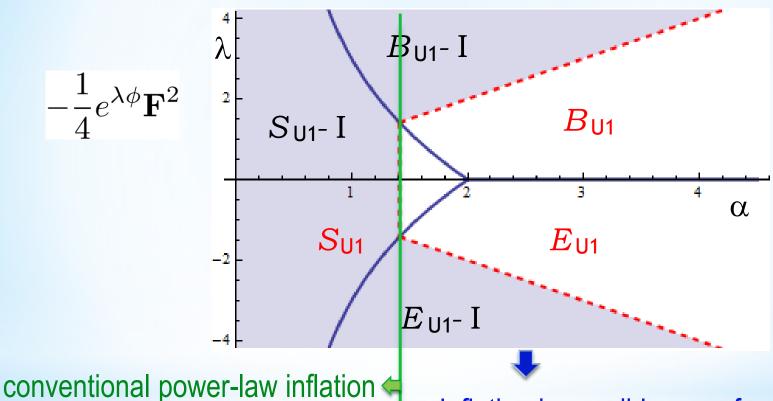
$$p = \frac{2}{\alpha^2}$$
 $C_E = C_B = 0$ $\alpha - \frac{4}{\alpha} < \lambda < -\alpha + \frac{4}{\alpha}$

$$\alpha < \sqrt{2}$$

E-B duality

phase diagram

each phase is an attractor



Inflation is possible even for $\alpha > \sqrt{2}$

$$V = V_0 e^{-\alpha \phi}$$

YM field

Both electric and magnetic components exist Non-linear coupling

There exist the corresponding inflationary phases

The case with dominant electric component (E YM -I)

$$p = \frac{1}{2} \left(1 - \frac{\lambda}{\alpha} \right)$$

$$p = \frac{1}{2} \left(1 - \frac{\lambda}{\alpha} \right) \qquad \lambda < \alpha - \frac{4}{\alpha} \& \lambda < -\alpha$$

The case with dominant magnetic component (B_{yM}-I)

$$p = \frac{1}{2} \left(1 + \frac{\lambda}{\alpha} \right)$$

$$p = \frac{1}{2} \left(1 + \frac{\lambda}{\alpha} \right) \qquad \lambda > -\alpha + \frac{4}{\alpha} \& \lambda > \alpha$$

The scalar field dominance (S_{YM} -I)

$$p = \frac{2}{\alpha^2}$$

$$\alpha - \frac{4}{\alpha} < \lambda < -\alpha + \frac{4}{\alpha} \& \alpha < \sqrt{2}$$

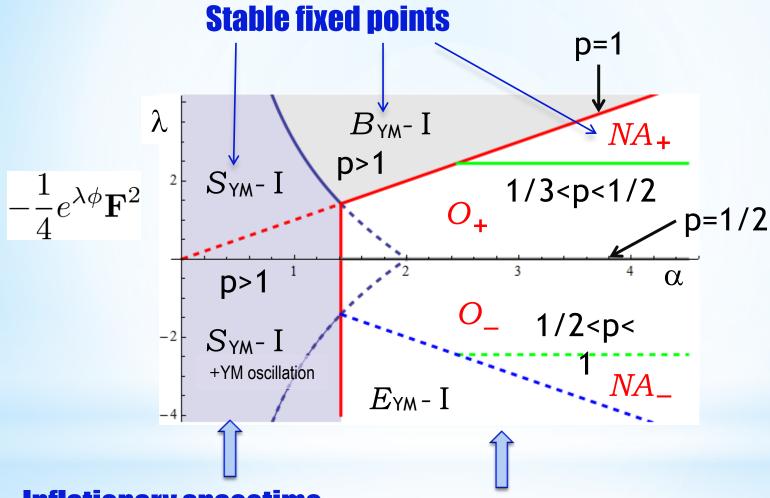
If

$$\rho_B \ll \rho_E$$

$$\rho_B \gg \rho_E$$

$$\rho_B, \rho_E \ll \rho_\phi$$

phase diagram



Inflationary spacetime +YM oscillations

Asymptotic spacetime +YM oscillations

$$V = V_0 e^{-\alpha \phi}$$

The power-law inflation with the gauge field is possible even for a steep potential such as $\alpha > \sqrt{2}$ which is expected in the higher-dimensional unified theories.

(2) Coupling with perfect fluid

Modified gravity (e.g. scalar tensor theory)

MODEL
$$S_{J} = \int d^{4}x \sqrt{-g} \left[\frac{\xi}{2} \phi^{2} R(g) - \frac{\epsilon}{2} (\nabla \phi)^{2} - V(\phi) \right] + \int d^{4}x \sqrt{-g} L_{\mathrm{m}}(\psi, g)$$

$$\uparrow \text{conformal transformation}$$

$$\mathbf{g} \rightarrow \mathbf{g} \exp(2\zeta \kappa \sigma)$$

$$\zeta = \sqrt{\xi/(\varepsilon + 6\xi)}$$

Einstein gravity (g) + scalar field σ U=V exp (-4 ζ k σ)

Dynamics without matter is well-known

But, coupling with matter is important

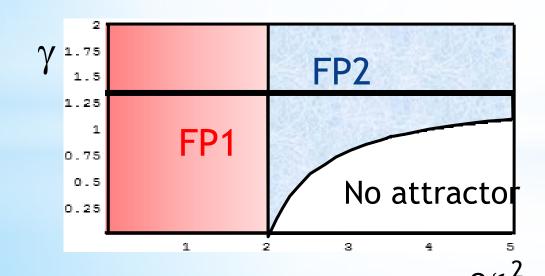
$V = V_0$ (constant)

$$H^{2} + \frac{k}{a^{2}} = \frac{\kappa^{2}}{3} \left[\frac{1}{2} \left(\frac{d\sigma}{dt} \right)^{2} + U + \rho \right]$$

$$\frac{d^2\sigma}{dt^2} + 3H\frac{d\sigma}{dt} + \frac{\partial U}{\partial \sigma} = \zeta\kappa(\rho - 3P)$$

$$\frac{d\rho}{dt} + 3\gamma H\rho = -\zeta \kappa (4 - 3\gamma) \frac{d\sigma}{dt} \rho$$

$$P = (\gamma - 1)\rho$$



Two fixed points

FP1 Scalar field dominant

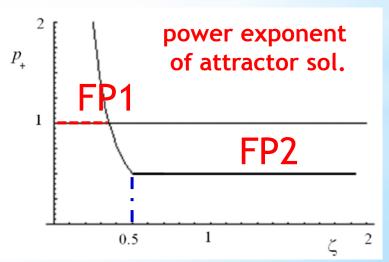
$$a \propto t^{\frac{1}{8\zeta^2}}$$
 $\kappa \sigma = \frac{1}{2\zeta} \ln t + \text{const}$

FP2 Scaling solution

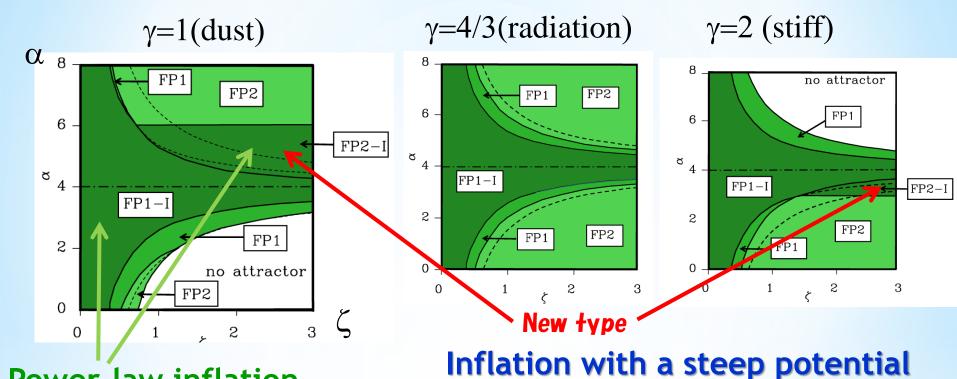
$$\left(\frac{\rho}{V}\right)_2 = \frac{2(4\zeta^2 - 1)}{2 - \gamma - 2(4 - 3\gamma)\zeta^2} \frac{\text{const}}{\text{const}}$$

$$a \propto t^{\frac{1}{2}} \quad \kappa\sigma = \frac{1}{2\zeta} \ln t + \text{const}$$

Minkowski in Jordan frame

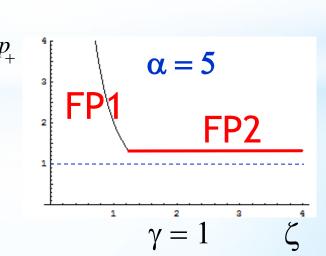


power-law potential $V = (\kappa \phi)^{\alpha} V_{0}$



Power-law inflation

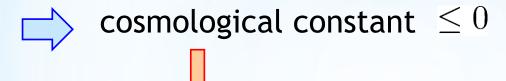
power exponent of attractor sol.



 $a \propto t^p$

[2] Negative cosmological constant

Supergravity (Superstring)



Accelerating universe

effective cosmological constant > 0

- (1) Quantum corrections
- (2) KKLT compactification

Heterotic superstring theory

Quantum corrections

R.R. Metsaev A.A. Tseytlin, ('87)

B. Zwiebach ('85)

Ambiguity in the effective action due to field redefinition

$$S = \frac{1}{2\kappa^2} \int d^{10}x \sqrt{-g} e^{-2\phi} \left[R + 4(\nabla \phi)^2 + \alpha_2 \left(R_{(GB)}^2 - \frac{1}{16} (\nabla \phi)^4 \right) \right]$$

$$S = \frac{1}{2\kappa_D^2} \int d^D x \sqrt{-g} \left[R - 2\Lambda + \alpha_2 R_{\text{(GB)}}^2 \right]$$

$$ds_D^2 = -dt^2 + e^{2u_1}ds_p^2 + e^{2u_2}ds_q^2 \qquad D = 1 + p + q$$

Accelerating universe $u_1 = Ht$, $u_2 = constant$

EH action
$$H = \sqrt{\frac{2\Lambda}{p(p+q-1)}}$$

$$A_q := \sigma_q e^{-2u_2} = \frac{2\Lambda}{(q-1)(p+q-1)}$$

$$\Lambda > 0 \,, \quad \sigma_q > 0$$
 unstable

EH+GB

$$H^{2} = \frac{1}{p_{2}} \left\{ -p[1 - 2(q-1)(p-q+1)A_{q}] + \right.$$

$$\left[p^{2}[1-2(q-1)(p-q+1)A_{q}]^{2}+8p_{2}(q-1)A_{q}[1+2(q-2)_{3}A_{q}]\right]^{1/2}$$

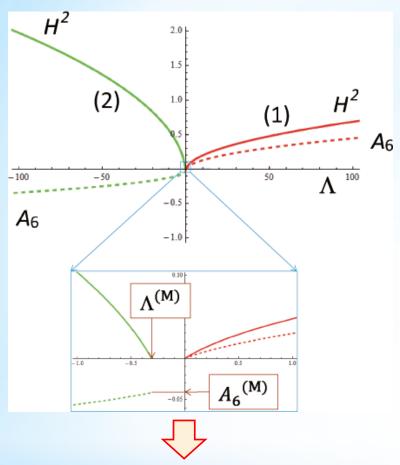
$$p_2 := p(p-1)(p-2)$$

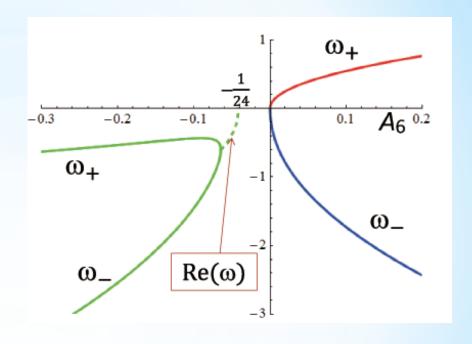
two branches:

$$A_q \ge 0$$
 $\sigma_q \ge 0$ q -sphere

$$A_q \le A_q^{(M)} := -\frac{1}{2(q-2)(q-3)}$$

$$\sigma_q \leq 0$$
 q-hyperbolic space





Branch (2) Branch (1)

 Λ : negative Λ : positive

stable unstable

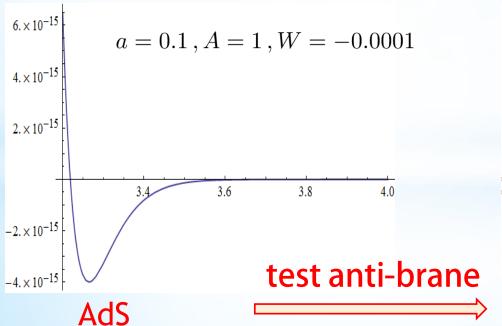
de Sitter solution with GB term is stable if Λ is negative.

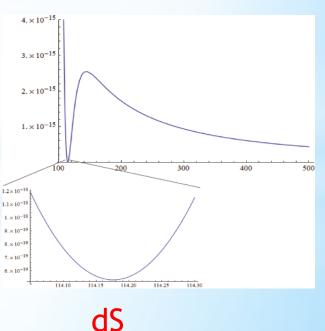
(2) KKLT compactification fixing moduli

$$d\bar{s}_g^2 = S^{-6} ds_g^2(x) + S^2 d\tilde{s}_{\rm CY}^2(y)$$
 CY compactification:

$$S = \exp\left[\frac{1}{4}\sqrt{\frac{2}{3}}\phi_g\right]$$

$$V_g(\phi_g) = \frac{a_g A_g}{2} e^{-2\sqrt{2/3}\phi_g} \exp[-a_g e^{\sqrt{2/3}\phi_g}] \left[W_g + \frac{A_g}{3} \exp[-a_g e^{\sqrt{2/3}\phi_g}] \left(3 + a_g e^{\sqrt{2/3}\phi_g} \right) \right]$$





Two types of strings

g-string & f-string
$$\Longrightarrow$$

bigravity theory in 10-dim

two metrics & twin matter fluid g, f

Interactions?

lacktriangle similar interactions to ghost-free bigravity $\bar{\gamma}^A_B = \left[\sqrt{g^{-1}f}\right]^A_B$

$$S_{\rm I} = \frac{m^{2}}{\bar{\kappa}^{2}} \int d^{D}X \sqrt{-\bar{g}} \left[\frac{b_{0}}{D!} \epsilon_{AB...C} \epsilon^{AB...C} + \frac{b_{1}}{(D-1)!} \epsilon_{AB...C} \epsilon^{PB...C} \bar{\gamma}_{P}^{A} + \cdots \right] + \frac{b_{k}}{k!(D-k)!} \epsilon_{A_{1}A_{2}...A_{k}A_{k+1}...A_{D}} \epsilon^{B_{1}B_{2}...B_{k}A_{k+1}...A_{D}} \bar{\gamma}_{B_{1}}^{A_{1}} \bar{\gamma}_{B_{2}}^{A_{2}} \cdots \bar{\gamma}_{B_{k}}^{A_{k}} + \cdots$$

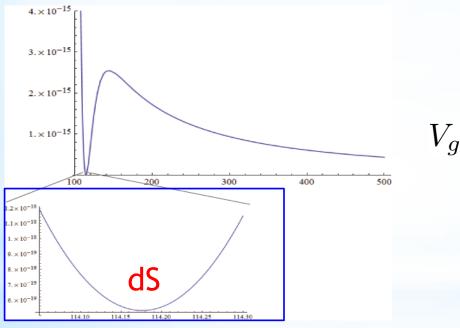
$$+\frac{b_D}{D!}\epsilon_{A_1A_2\cdots A_D}\epsilon^{B_1B_2\cdots B_D}\bar{\gamma}^{A_1}_{B_1}\bar{\gamma}^{A_2}_{B_2}\cdots\bar{\gamma}^{A_D}_{B_D}$$

 b_0,\cdots,b_D : coupling constants

Not need to introduce anti-branes

$$V_{\rm I} = Be^{-\sqrt{\frac{3}{2}}\phi} \qquad B = \frac{m^2}{\kappa^2} (B_0 + 4B_1 + 6B_2 + 4B_3 + B_4)$$

$$B_k = b_k + 6b_{k+1} + 15b_{k+2} + 20b_{k+3} + 15b_{k+4} + 6b_{k+5} + b_{k+6} \quad (k = 0 - 4)$$



$$V_g(\phi_g) + V_I(\phi_g)$$

$$a = 0.1, A = 1, W = -0.0001, B = 4.853 \times 10^{-12}$$

Interactions between three forms

CY \Rightarrow VEV of three forms H_{abc} , F_{def}

$$S_{\rm I} = g_{\rm int} \int d^{10}X \sqrt{-\bar{g}} \bar{\epsilon}_{a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10}} \bar{\epsilon}^{b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_{10}}$$

$$\times \bar{\Gamma}^{a_1 a_2 a_3 a_4}{}_{b_1 b_2 b_3 b_4} H^{(g) \, a_5 a_6 a_7} F^{(g) \, a_8 a_9 a_{10}} H^{(f)}_{b_5 b_6 b_7} F^{(f)}_{b_8 b_9 b_{10}}$$

$$\begin{split} \bar{\Gamma}^{a_1 a_2 a_3 a_4}{}_{b_1 b_2 b_3 b_4} &= \frac{b_0}{4!} \delta^{a_1}{}_{b_1} \delta^{a_2}{}_{b_2} \delta^{a_3}{}_{b_3} \delta^{a_4}{}_{b_4} + \frac{b_1}{3!} \bar{\gamma}^{a_1}{}_{b_1} \delta^{a_2}{}_{b_2} \delta^{a_3}{}_{b_3} \delta^{a_4}{}_{b_4} \\ &+ \frac{b_2}{4} \bar{\gamma}^{a_1}{}_{b_1} \bar{\gamma}^{a_2}{}_{b_2} \delta^{a_3}{}_{b_3} \delta^{a_4}{}_{b_4} + \frac{b_3}{3!} \bar{\gamma}^{a_1}{}_{b_1} \bar{\gamma}^{a_2}{}_{b_2} \bar{\gamma}^{a_3}{}_{b_3} \delta^{a_4}{}_{b_4} \\ &+ \frac{b_4}{4!} \bar{\gamma}^{a_1}{}_{b_1} \bar{\gamma}^{a_2}{}_{b_2} \bar{\gamma}^{a_3}{}_{b_3} \bar{\gamma}^{a_4}{}_{b_4} \end{split}$$

$$V_{\rm I} = \lambda \exp\left[-\sqrt{\frac{3}{2}}\phi_g\right]$$

 $V_{
m I} = \lambda \exp \left[- \sqrt{rac{3}{2}} \phi_g
ight]$ the same as the previous interaction term

$$\lambda = g_{\text{int}} H_g F_g H_f F_f \Big(b_0 + b_1 + b_2 + b_3 + b_4 \Big)$$

Does this explain smallness of the "graviton mass"?

[I] Matter couplings

Matter coupling may change the dynamics

[2] Negative cosmological constant

Two examples to find de Sitter solution

Thank you for your attention

