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Gravitation wave 
detectors 

eLISA(NGO) 
⇒DECIGO/BBO LIGO⇒adv LIGO 

TAMA300,CLIO 
 ⇒KAGRA 



Pulsar : ideal clock 

Test of GR by pulsar binaries   
 

（J.M. Weisberg, Nice and J.H. Taylor, arXiv:1011.0718) 

Periastron advance due to GW emission 
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PSR B1913+16 
Hulse-Taylor binary 
   dPorb/dt=-2.423×10-12  

Test of GW generation 

Agreement with GR 
prediction 
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Is there possibility that graviton disappear during 
its propagation over cosmological distance?  

We know that GWs are emitted from binaries.  

What is the possible big surprise when we 
directly detect GWs?  



Bi-gravity 

Both massive and massless gravitons exist. 
 →n  oscillation-like phenomena?  

First question is whether or not we can 
construct a viable cosmological model.  
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Ghost free bi-gravity 

 g is promoted to a dynamical field. 

Even in this case, it was shown that the model 
remains to be free from ghost.  
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(Hassan, Rosen (2012)) 



FLRW background 
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 branch 1  branch 2  branch 1： 
 Pathological: At the linear perturbation, expected scalar 
and vector perturbations are absent. Strong coupling? 
Unstable for the homogeneous anisotropic mode. 

(Comelli, Crisostomi, Nesti, Pilo  (2012)) 

 branch 2： 
 Healthy: All perturbation modes are equipped.  



Branch 2 background 

 branch 2： 
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   becomes a function of . 

 effective energy density due to mass term  

  → c for  →0. 
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ab



Healthy branch 

Gradient instability 

Higuchi ghost 

JCAP1406 (2014) 037 De Felice, Gumrukcuoglu, Mukohyama, Tanahashi and TT 

Stability of linear perturbation 
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Gravitational potential around a star 

Spherically symmetric static configuration: 

Then, the Vainshtein radius 
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Mpc3001 -ASolar system constraint: 
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

Healthy branch 

Gradient instability 

Meaning of A >>1 
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Gravitational wave propagation 
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c ≠１ is important.  
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mass term is important.  

Eigenmodes are 
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 modified dispersion relation 
due to the effect of mass  

 modified dispersion relation 
due to different light cone  
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Gravitational wave propagation over a long distance D 
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At the GW generation, both    and    are equally excited. 
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 kc 

Only the 
first mode 
is excited 

Only the 
first mode 
is detected 

We can detect only h. 

Only modes with k～kc pick up the non-trivial 
dispersion relation of the second mode. 

X 

X 

If the effect appears ubiquitously, the model 
would be already ruled out. 

 k 

Interference between two modes Graviton oscillations 
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Gravitational wave oscillations 

  2 =0.2  
  2 =1  

  2 =100  B1  

B2  

At high frequencies only 
the first mode is observed. 
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At low frequencies only 
the first mode is excited. 

Detectable range of parameters 
by KAGRA, assuming NS-NS 

binary at 200Mpc. 

(Phys. Rev. D91 (2015) 062007 Narikawa, Tagoshi, TT, Kanda and Nakamura) 



At the GW generation, both    and    are equally excited. 
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Only the 
first mode 
is excited 

Only the 
first mode 
is detected 

We detect both    and    . 

All modes with k > kc pick up the non-trivial 
dispersion relation of the second mode. 
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Interference between two modes Graviton oscillations 
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For detection by aLIGO, aVirgo and KAGRA: 

Window is narrow but open.  

Mpc3001 -CSolar system constraint: 

0.1pc1 -

No Vainshtein effect in the inter-galactic space: Mpc30001 -C
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Can Bigravity with large A be naturally realized as a low 
energy effective theory? 

Higher dimensional model?! 
KK graviton spectrum 
Only first two modes 
remain at low energy 
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Matter on right brane couples to h. 

However, pinched throat configuration looks quite unstable… 



19 

Induced gravity on the branes 

• Induced gravity terms 

play the role of potential 

well.  

• Lowest KK graviton 

mass  

• KK graviton mass  
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to  reproduce 

bigravity. 



 than                      in this model. 

• To construct a viable model,  

    the radion (=brane separation) must be stabilized.  

• Radions can be made as heavy as KK gravitons. 

• However, the energy density cannot be made large.  

(JCAP 1406 (2014) 004 Yamashita and TT) 

Why?  

   We know that self-accelerating branch has a ghost. 
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• Despite the fore-mentioned limitation, it would be interesting to see how 

bigravity derives from brane setup without fine tuning of coupling constants. 

• We neglect radion stabilization, for simplicity. 

• Thus, we consider a system of bigravity with radion 

(Yamashita and TT, in preparation) 
Deriving bigravity without fine tuning 

Gradient expansion 

 with the scaling assumptions: 

Ky 1 K :bulk extrinsic curvature 

y :Brane separation 
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Substituting back the obtained bulk solution into the action, 

we obtain at the quadratic order in perturbation 

 

This looks very complicated but can be recast into the form of 

bigravity + radion, which is coupled to the averaged metric: 
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Summary 
Gravitational wave observations give us a new probe to 
modified gravity. 

Even graviton oscillations are not immediately denied, 
and hence we may find something similar to the case 
of solar neutrino experiment in near future.  

Although natural realization of such a scenario is not 
easy to obtain, there is a possibility that the artificial 
tuning of model parameters can be explained from the 
higher dimensional view.   


