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The problem of dark energy and dark matter is an interesting 
intersection between astronomy and physics!	
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Planck constraints on the effective gravitational coupling 
and the gravitational slip parameter (Ade et al, 2015)  
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Weak gravity	
 
The recent observations of redshift-space distortions (RSD) measured the lower growth 
rate of matter perturbations lower than that predicted by the LCDM model.  	
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Tension between 
Planck and RSD data	
 



One possibility for reconciling the discrepancy:
                    Massive neutrinos 	
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Increasing the neutrino mass m⌫ leads to the lower values of �8,

but it also decreases H0.

Tension with the direct measurement of H0

Battye and Moss
(2013)	
 



Another possibility: Interacting dark matter/vacuum energy 	
 
There is an energy transfer between CDM and vacuum: 	
 

⇢̇c + 3H⇢c = �Q V̇ = Q

The coupling Q is usually taken in an ad-hoc way (like Q = �qHV ).
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However there is no concrete Lagrangian explaining the origin of such a coupling.
It is likely that the low growth rate is associated with the appearance of ghosts. 	
 

Lower growth rate

than in LCDM for

Q > 0.



Another possibility: Modified gravity with a concrete Lagrangian
           	
 

In this case we can explicitly derive conditions for the absence of ghosts 
and instabilities.	
 

The question is 	
 

Is it possible to realize the cosmic growth rate lower than 
that in LCDM in modified gravity models, while satisfying 
conditions for the absence of ghosts and instabilities? 	
 	
 

In doing so, we begin with most general second-order 
scalar-tensor theories with single scalar degree of freedom
(Horndeski theories). 



Horndeski theories	
 
Horndeski (1973) 
Deffayet et al (2011)
Charmousis et al (2011)
Kobayashi et al (2011)	
 

 	
 
The Lagrangian of Horndeski theories is constructed to keep the equations of motion 
up to second order, such that the theories are free from the Ostrogradski instability.	
 

Most general scalar-tensor theories 
with second-order equations	
 



Cosmological perturbations in Horndeski theories	
 

The scalar degree of freedom in Horndeski theories can give rise to	
 

l  the late-time cosmic acceleration at the background level	
 

l  interactions with the matter sector (CDM, baryons)	
 

We take into account non-relativistic matter with the energy density	
 

____	
 _______	
 
Background
	
 

Perturbations	
 

The perturbed line element in the longitudinal gauge is 	
 
ds2 = �(1 + 2⇥)dt2 + a2(t)(1 + 2�)�ijdxidxj

The four velocity of non-relativistic matter is	
 



Matter perturbations in the Horndeski theories	
 

�̈m + 2H �̇m +
k2

a2
� = 3

�
Ï + 2Hİ

�
where	
 

The gauge-invariant density contrast
	
 

�̇ is related with v.

In RSD observations, the growth rate of matter perturbations is constrained 
from peculiar velocities of galaxies.  	
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k2

a2
� � �4⇥Ge�⇤m�m

 is related with �m through

the modified Poisson equation:

Ge↵ is the e↵ective gravitational

coupling with matter.



   Effective gravitational coupling in Horndeski theories	
 
For the modes deep inside the Hubble radius (k � aH) we can employ
the quasi-static approximation under which the dominant terms are
those including k2/a2, �m, and M2 � �K,��.

Ge� =
2M2

pl[(B6D9 �B2
7) (k/a)2 �B6M2]

(A2
6B6 + B2

8D9 � 2A6B7B8) (k/a)2 �B2
8M2

G

A6 = �2XG3,X � 4H (G4,X + 2XG4,XX ) �̇ + 2G4,� + 4XG4,�X

+4H (G5,� + XG5,�X) �̇� 2H2X (3G5,X + 2XG5,XX )

D9 = �K,X + derivative terms of G3, G4, G5

In GR, G4 = M2
pl/2, B6 = B8 = 2M2

pl, A6 = B7 = 0, D9 = �K,X Ge� = G

In the massive limit (M2 ��) with B6 � B8 � 2M2
pl we also have Ge� � G

In the massless limit M2 � 0 we have

Ge� =
2M2

pl(B6D9 �B2
7)

A2
6B6 + B2

8D9 � 2A6B7B8
G

The effect of modified gravity
manifests itself.	
 

De Felice, Kobayashi, 
S.T. (2011).	
 

Schematically

	
 
Ge� =

a0(k/a)2 + a1

b0(k/a)2 + b1

M corresponds to the mass of a scalar degree of freedom and

It then follows that



Conditions for the absence of ghosts and instabilities	
 
The second-order action for tensor perturbations �ij is

where	
 

We require qt > 0 and c2t > 0 to avoid ghosts and Laplacian instabilities.

In GR we have qt = M2
pl/8 and c2t = 1.

For scalar perturbations we also have corresponding quantities

qs and c2s which must be positive.



Simple form of the effective gravitational coupling	
 
In the massless limit, the effective gravitational coupling in Horndeski theories reads	
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Tensor 
contribution	
 

Scalar 
contribution	
 

Always positive under the no-ghost 
and no-instability conditions:
	
 

The necessary condition to realize weaker gravity than that in GR is 	
 

The scalar-matter interaction always enhances the effective gravitational coupling.

ST (2015)	
 

Q and ↵W are functions

of Gi and their derivatives.

This correspond to the intrinsic
modification of the gravitational part. 	
 

This is not a su�cient condition

for realizing Ge↵ < G.



                  Examples	
 
(i) f(R) gravity:	
 

Ge↵ =
G

f,R

✓
1 +

1

3

◆

Typically, f,R varies from 1 (matter era) to the value like 0.9 (today),

so the scalar-matter interaction leads to Ge↵ > G.

(ii) Covariant Galileons	
 

f(R) = R� µRc
(R/Rc)2n

(R/Rc)2n + 1

Hu and Sawicki, 
Starobinsky, ST.	
 

G2 = c2X , G3 = c3X , G4 = M2
pl/2 + c4X

2 , G5 = c5X
2

 	
 
For late-time tracking solutions, it is possible to realize M2

plc
2
t/(8qt) < 1

due to the decrease of c2t (< 1), but the scalar-matter interaction

overwhelms this decrease.

Ge↵ > G typically.

Deffayet et al.	
 

De Felice, Kase, ST (2011)	
 



Two crucial quantities for the realization of weak gravity	
 

To recover the GR behavior in regions of the high density,
the dominant contribution to the Horndeski Lagrangian is
the M2

pl/2 term in G4.

qt ' M2
pl/8 and c2t ' 1 during most of the matter era.

The large variations of q2t and c2t from the end of the matter era

to today are required to satisfy the condition

M2
plc

2
t

8qt
< 1.

If we go beyond the Horndeski domain, it is possible to realize
c2t < 1 even in the deep matter era.



 Horndeski Lagrangian in the ADM Language 	
 

Gleyzes et al (2013)	
 

What happens if we do not impose these two conditions ?

Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories
                          (PRL, 2014)

In the ADM formalism, we can construct a number of geometrical scalars: 	
 

K � Kµ
µ , S � Kµ�Kµ� , R � Rµ

µ , Z � Rµ�Rµ� , U � Rµ�Kµ� .

where Kµ⌫ and Rµ⌫ are extrinsic and intrinsic curvatures, respectively.

In the unitary gauge (�� = 0), the Horndeski Lagrangian on the FLRW
background is equivalent to

(Horndeski conditions)	
 



  A simple dark energy model in GLPV theories	
 

where	
 

How about observational signatures in this model ?	
 

De Felice, Koyama, 
and ST(2015)	
 

	
 



          Model of constant tensor propagation speed	
 
For constant F (�), c2t =constant.

If c2t deviates from 1, this leads to the growth of c2s as we go back to

the past. The c2s can remain constant for the scaling dark energy model:

Provided that the oscillating mode of scalar perturbations is initially

suppressed, the e↵ective gravitational coupling Ge↵ and the anisotropy

parameter ⌘ = ��/ are given by

Ge↵

G
= 1 +

1� c2t
c2s

during the scaling 
matter era

In the sub-luminal regime (c2t < 1), the Laplacian instability associated

with negative c2s can be avoided.

⌘ > 1 for c2t away from 1

Ge↵ > G (strong gravity), but the deviation from G is not large.



 The anisotropy parameter 	
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De Felice, Koyama and ST (2015)	
 Planck constraints (2015)  	
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It is possible to realize ⌘ > 1 in this model.



A model realizing weak gravity (class of GLPV theories)	
 
ST (2015), 
PRD to appear	
 

where	
 F (�) = c2tie
�2��/Mpl

� = 0

� = 0.1

The decrease of c2t leads to Ge↵

smaller than G.

In the scaling matter era, 	
 

____

Negative for 	
 

Compared to the LCDM, the model
shows a better fit to the RSD data.	
 

Black points are RSD data.	
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  Summary and outlook 	
 
1. Motivated by the observational tension between CMB and RSD data,

we have studied the possibility of realizing weak gravity for the

growth of matter perturbations.

2. The necessary condition for realizing weak gravity in Horndeski theories

is
M2

plc
2
t

8qt
< 1, but this is not su�cient due to the scalar-matter coupling

(which is always positive under no-ghost and no-instability conditions).

It remains to see whether the signature of weak gravity persists in future 
observations. Even if it does not persist, our theoretical study will be useful 
to distinguish a host of dark energy models.	
 

3. In GLPV theories, c2t can deviate from 1 even during the

matter era. We have constructed a concrete model of

weak gravity in GLPV theories.


