
N-TANGENTIAL OR N-NORMAL LINE THEOREMS FOR

N-PARTICLES IN THE RIEMANNIAN SPACE FORMS AND DE

SITTER SPACE.

TETSUYA TANIGUCHI AND SEIICHI UDAGAWA

1. Geometry of linear and angular momenta of N-particles

The N -body problem is

mj q̈j = −∂U
∂qj
, (j = 1, 2, , · · · , N)

where qj = qj(t) = (xj(t), yj(t), zj(t)) ∈ R3 and U = −
X
i<j

mimj

|qi − qj|
is the poten-

tial energy. Denote by K(q̇) the total kinetic energy
1

2

nX
j=1

mj|q̇j|2. Consider the

Lagrangian L(q, q̇) = K(q̇)− U(q). Then, the Euler-Lagrange equation for L
d

dt

µ
∂L

∂q̇j
(q(t), q̇(t))

¶
=

∂L

∂qj
(q(t), q̇(t)), j = 1, 2, · · · , N

is equivalent to the N -body problem. Thus, such q = (q1, q2, · · · , qN ) is a critical
point of the action A(q) =

Z t1

t0

L(q, q̇)dt. Therefore, the variational method seems

to be useful for solving N -body problem.

In [2], Chenciner and Montgomery considered the three body problem for the 3-

particles with equal masses in the plane. In particular, they verified the existence of

a figure-eight solution to the planer equal-masses three-body problem. They call this

solution the figure-eight solution. However, the explicit solution to this problem has

not been discovered yet. It is also unknown even whether the solutions are algebraic

or not. On the other hand, by paying attention to the fact that the figure-eight

solution has zero angular momentum, Fujiwara, Fukuda and Ozaki[3] found that

three tangent lines at the three bodies meet a point at each instant. In fact, this

fact holds in more general situation. Consider the motions of three particles with

equal-masses 1 in the xy-plane. Denote by lk (resp. by nk) the tangential line (resp.

normal line) of the curve of k-th particle at the point (xk(t), yk(t)) for any time t,

where k = 1, 2, 3. Under these situations, Fujiwara et al. implemented a systematic

study and proved the following theorem.

Theorem A([3], [4]) (1) If both the linear momentum and the angular momentum

of 3-particles vanish, then either the three tangential lines l1, l2, l3 meet at a point

or the three tangential lines are parallel each other.

(2) If the moment of inertia is constant and the linear momentum of 3-particles

vanish, then either the three normal lines n1, n2, n3 meet at a point or the three

normal lines are parallel each other.
1
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In particular, the case where all the orbit curves for the motions of the three

particles completely coincide and the three particles are on a closed plane curve is

interesting. Such an example surely exists and the corresponding closed curve can

be described by the Jacobi elliptic functions with some modulus. In fact, in [3] it is

proved that the figure-eight solution which satisfies the assumption (1) of Theorem

A exsists on the lemniscate.

In this paper, we develop the geometry of linear and angular momenta of the

motions of N -particles in various ambient spaces, which generalizes the results of

Fujiwara et al. stated above.

Let M be a Lagrangian submanifold of (R2N ,ω =
PN

i=1 dxi ∧ dyi). Let J be
the almost complex structure on M , that is, J satisfies the relations J( ∂

∂xi
) = ∂

∂yi
,

J( ∂
∂yi
) = − ∂

∂xi
. Let θ and φ be 1-forms on M defined by

θ =

NX
i=1

(xidyi − yidxi), φ =

NX
i=1

(xidxi + yidyi),

respectively. Let L be a J-invariant 2-plane through the origin. For each point p

on M , we define the dimensions dL(p) and eL(p) as follows:

dL(p) = dim{v ∈ TpM
¯̄
θp(v) = 0, v ⊥ L},

eL(p) = dim{v ∈ TpM
¯̄
φp(v) = 0, v ⊥ L}.

We regard TpM as the affine space through p and denote it by H(p). We then have

the following theorem.

Theorem 1.1. H(p) and L (resp. J(H(p)) and L) are contained in some (N +2)-

dimensional linear subspace if and only if dL(p) = N − 2 (resp. eL(p) = N − 2).
Choose L in Theorem 1.1 as L0 defined by

L0 =
n
(x1, y1, x2, y2, · · · , xN , yN) ∈ R2N

¯̄̄
x1 = x2 = · · · = xN ,
y1 = y2 = · · · = yN} .

We have an N -tangential or N -normal lines theorem as a corollary of Theorem 1.1.

Corollary 1.2. Consider the motions of N -particles in the xy-plane :

c1(t) = (x1(t), y1(t)), c2(t) = (x2(t), y2(t)), · · · , cN(t) = (xN(t), yN(t)).

Let M be a Lagrangian submanifold of R2N defined by M = c1 × c2 × · · · × cN .
Let p = (c1(t1), c2(t2), · · · , cN(tN )) be any point of M . Then, dL(p) = N − 2 (resp.
eL(p) = N − 2) if and only if either the N -tangential lines (resp. N -normal lines)
at p meet at a point or all the N -tangential lines (resp. N -normal lines) are parallel

each other.

This Corollary implies Theorem A of Fujiwara et al. because the linear momen-

tum(denoted by −→m ), the angular momentum(denoted by ω) and the moment of

inertia(denoted by I) are respectively given by

−→m =

Ã
3X
i=1

dxi

dt
,

3X
i=1

dyi

dt

!
, ω =

3X
i=1

µ
xi
dyi

dt
− yidxi

dt

¶
, I =

3X
i=1

(x2i + y
2
i ).
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We choose a v in Theorem 1.1 by the following v =
P3

i=1
dxi
dt

∂
∂xi
+
P3

i=1
dyi
dt

∂
∂yi
. We

then easily see that v ⊥ L if and only if −→m =
−→
0 , θ(v) = 0 if and only if ω = 0,

and φ(v) = 0 if and only if dI(v) = 0. Therefore, Corollary 1.2 implies the results

of Fujiwara et al.

Let R3N be a 3n-dimensional Euclidean space. We endow it the metric

gc =

NX
j=1

¡
(dxj)

2 + (dyj)
2 + c(dzj)

2
¢
,

where c = 1 or c = −1. Let (e1x, e1y, e1z, e2x, e2y, e2z, · · · , eNx , eNy , eNz ) be an orthonormal
frame field for c = 1. Consider the R3N -valued 1-form eθc and eφ defined by

eθc = NX
j=1

©
(yjdzj − zjdyj)⊗ ejx + (zjdxj − xjdzj)⊗ ejy + c (xjdyj − yjdxj)⊗ ejz

ª
,

eφ = NX
j=1

©
dxj ⊗ ejx + dyj ⊗ ejy + dzj ⊗ ejz

ª
.

Note that dL0(p) = dim{v ∈ TpM | eθc |z=1 (v) = 0} for plane {(x, y, z)|z = 1}.
Let S2 be a 2-sphere of constant curvature 1. Let H2 = K1 ∪K2 be the union of

the hyperboloid of two sheets and the hyperboloid of one sheet, where the former

is 2-dimensional hyperbolic space and the latter is 2-dimensional de Sitter space

with respect to the induced metric for c = −1. Denote by KN the N -product

S2 × · · · × S2| {z }
N-times

of spheres or H2 × · · · ×H2| {z }
N-times

of the union of hyperboloids.

Let M be a N -dimensional submanifold of KN ⊂ R3N . Let L be a 3-dimensional
subspace of R3N . Define the indices dL,c(p) and eL,c(p) by

dL,c(p) = dim
n
v ∈ TpM | eθc(v) ⊥ Lo , eL,c(p) = dim

n
v ∈ TpM | eφ(v) ⊥ Lo ,

where the orthogonality is taken with respect to gc. When we choose a point

p = (a1, b1, c1, a2, b2, c2, · · · , aN , bN , cN ), we denote by Wp an N -dimensional linear

subspace of R3N defined by

Wp = R(a1, b1, c1, 0, · · · , 0)⊕ R(0, 0, 0, a2, b2, c2, 0, · · · , 0)⊕ R(0, · · · , 0, aN , bN , cN ).
The first main result of the paper is then the following theorem.

Theorem 1.3. Let M be an N -dimensional submanifold of KN ⊂ R3N which sat-
isfy the condition eθc(TpM) ⊥ TpM for any point p ∈ M . Then, dL,c(p) = N − 2
(resp. eL,c(p) = N − 2) if and only if TpM ∪ L ∪Wp (resp. eθc(TpM) ∪ L ∪Wp) is

contained in some (2N + 2)-dimensional linear subspace of R3N .

Choosing L in Theorem 1.3 as L0 defined by

L0 =
©
(x1, y1, z1, x2, y2, z2, · · · , xN , yN , zN) ∈ R3N | x1 = x2 = · · · = xN ,

y1 = y2 = · · · = yN , z1 = z2 = · · · = zN} ,
we obtain N -tangential or N -normal line theorems for 2-dimensional non-flat Rie-

mannian space form and de Sitter space as follows.
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Corollary 1.4. Consider the motions of N -particles in S2: c1(t) = (x1(t), y1(t), z1(t)),

c2(t) = (x2(t), y2(t), z2(t)), · · · , cN (t) = (xN(t), yN(t), zN(t)). Let M be an N -

dimensional submanifold of R3N defined by M = c1 × c2 × · · · × cN . Let p =

(c1(t1), c2(t2), · · · , cN(tN )) be any point ofM . Then, dL0(p) = N−2 (resp. eL0(p) =
N − 2) if and only if either the N -geodesics generated by N -tangential lines (resp.
N -normal lines) at p meet at a point each other.

Corollary 1.5. Three geodesics on S2 meet at a point if and only if one of the

following holds :

(1) Three geodesics are generated by the three tangential lines of the orbit curves of

the motions of three particles with the sum of angular momentum being zero.

(2) Three geodesics are generated by the three normal lines of the orbit curves of

the motions of three particles with the sum of linear momentum being zero.

Corollary 1.6. Consider the motions of N -particles inK: c1(t) = (x1(t), y1(t), z1(t)),

c2(t) = (x2(t), y2(t), z2(t)), · · · , cN (t) = (xN(t), yN(t), zN(t)). Let M be an N -

dimensional submanifold of R3N defined by M = c1 × c2 × · · · × cN . Let p be

any point of M . Then, dL0(p) = N − 2 (resp. eL0(p) = N − 2) if and only if either
the N -geodesics generated by N -tangential lines (resp. N -normal lines) at p meet

at a point in K ∪ ∂K each other, where ∂K(∼= S1 ∪ S1) is the ideal boundary of K.
Corollary 1.7. Three geodesics on K ∪ ∂K meet at a point if and only if one of

the following holds :

(1) Three geodesics are generated by the three tangent lines of the orbit curves of

the motions of three particles with the sum of angular momentum being zero.

(2) Three geodesics are generated by the three normal lines of the orbit curves of

the motions of three particles with the sum of linear momentum being zero.

2. Further generalization

Theorem 1.3 holds for more general case where the ambient space R3N is given
non-degenerate quadratic form.

Let ( , ) be a non-degenerate quadratic form on R3N . We use the musical isomor-
phism [ : TpR3N 3 v −→ v[ ∈ T ∗pR3N defined by v[(w) = (v, w) for any w ∈ TpR3N .
For any subspace V in TpR3N we set

V ⊥∗ =
©
f ∈ T ∗pR3N | f(v) = 0 for any v ∈ V

ª
,

V [ =
©
v[ ∈ T ∗pR3N | v ∈ V

ª
.

We then have

Lemma 2.1. For any subspaces V,W in TpR3N we have the following.

V ⊥∗ = (V ⊥)[,(2.2)

where V ⊥ = {v ∈ TpR3N | (v, w) = 0 for any w ∈ V }.
V [ ∩W [ = (V ∩W )[ .(2.3)

Let eθ be an element of the endomorphism bundle End(TR3N ) of TR3N . Let L
and Wp be the linear subspaces in R3N . We regrad L and Wp as a subspace of
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TpR3N . Set

d = dim
neθ(TpM) ∩ L⊥o , e = dim

©
TpM ∩ L⊥

ª
.

We have the following.

Theorem 2.4. LetM be a submanifold of R3N which satisfies the condition eθ(TpM)
= TpM

⊥ ∩W⊥p ( resp. eθ(TpM)⊥ ∩W⊥p = TpM). Then, d = N − 2 (resp. e = N − 2)
if and only if TpM ∪Wp∪L (resp. eθ(TpM)∪Wp∪L) is contained in some (2N+2)-
dimensional linear subspace in R3N .

We endow R3N the metric gc =

NX
j=1

¡
(dxj)

2 + (dyj)
2 + c(dzj)

2
¢
, where c = 1 or

c = −1. Consider eθ in Theorem 2.4 as eθc in §1. In this case, we have
kereθp = Wp := R(x1, y1, z1, 0, · · · , 0)⊕ · · ·⊕ R(0, · · · , 0, xN , yN , zN )(2.5)

under the condtion dimWp = N . Moreover we haveeθ(TpR3N ) ⊂ W⊥p ,(2.6)

where ⊥ is taken with respect to gc.
Corollary 2.7. LetM be an N -dimensional submanifold of R3N which satisfies the
conditions eθ(TpM) ⊂ TpM⊥ and dim eθ(TpM) = dimWp = N . Then, d = N − 2 if
and only if TpM ∪Wp ∪ L is contained in some (2N + 2)-dimensional subspace in

R3N .

Next, consider eφ given in §1.
Corollary 2.8. Let M and G be the N -dimensional submanifolds of R3N which

satisfy the conditions TpM ⊂ TpG⊥, eθ(TpG) = TpM , dimWp = N . Then, e = N−2
if and only if TpG∪Wp ∪L is contained in some (2N +2)-dimensional subspace in
R3N .

3. Applications to Elementary Geometry

3.1. Why do the circumcenter, inner center, centroid, orthocenter and

excenter of triangles exist ? Consider the triangle of the three vertices−→x1 ,−→x2 ,−→x3 .
Without loss of generality, we may assume that −→x3 = −→0 , which is the origin of the
plane. Let J0 be the 2× 2-matrix of rotation by 90◦ in the anti-clockwise direction.
Example 1. Circumcenter. The position vectors −→p1 ,−→p2 ,−→p3 of the middle points

of the three edges are given by

−→p1 = 1

2
−→x1 , −→p2 = 1

2
(−→x1 +−→x2 ) , −→p3 = 1

2
−→x2 .

We take −→v1 = J0−→x1 ,−→v2 = J0 (−→x2 −−→x1 ) ,−→v3 = −J0−→x2 . Set P = (−→p1 −→p2 −→p3 ), V(P) =
(−→v1 −→v2 −→v3 ) and regard them as vectors in R6. We then see that V(P) ⊥ L because
3X
k=1

−→vk = −→0 . The almost complex structure J on R6 is defined by J(−→x ,−→y ,−→z ) =
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(J0
−→x , J0−→y , J0−→z ), where −→x ,−→y ,−→z ∈ R2. It follows that

θ(V(P)) = hP, JV(P)i
= (

1

2
−→x1 ,−−→x1 ) + (1

2
−→x1 + 1

2
−→x2 ,−−→x2 +−→x1 ) + (1

2
−→x2 ,−→x2 ) = 0,

where ( , ) is the standard inner product of R2. Thus, from Corollary 1.2 it follows

that the three tangential lines in the directions −→v1 ,−→v2 ,−→v3 starting from the points−→p1 ,−→p2 ,−→p3 , respectively, meet at a point, which is the circumcenter(the center of the
circumcircle of the triangle).

Example 2. Inner center. In this case, we take −→p1 = −→0 ,−→p2 = −→x1 ,−→p3 = −→x2 .
Moreover, we take

−→v1 = 1

k−→x1k
−→x1 + 1

k−→x2k
−→x2 , −→v2 = − 1

k−→x1k
−→x1 + 1

k−→x2 −−→x1k
(−→x2 −−→x1 ) ,

−→v3 = − 1

k−→x2k
−→x2 + 1

k−→x1 −−→x2k (
−→x1 −−→x2 ) .

We then see that

3X
k=1

−→vk = −→0 , hence V(P) ⊥ L. Moreover, we have

θ(V(P)) =< P, JV(P) >= (−→x1 , J0−→v2 ) + (−→x2 , J0−→v3 ) = det(−→x1 −→v2 ) + det(−→x2 −→v3 ) = 0.
Thus, from Corollary 1.2 it follows that the three tangential lines in the directions−→v1 ,−→v2 ,−→v3 starting from the points −→p1 ,−→p2 ,−→p3 , respectively, meet at a point, which
is the inner center(the center of inscribed circle of the triangle).

Example 3. Centroid. As in Example 2, we take −→p1 = −→0 ,−→p2 = −→x1 ,−→p3 = −→x2 .
Moreover, we take

−→v1 = 1

2
(−→x1 +−→x2 ) , −→v2 = 1

2
−→x2 −−→x1 , −→v3 = 1

2
−→x1 −−→x2 .

We then see that

3X
k=1

−→vk = −→0 , hence V(P) ⊥ L. Moreover, we have

θ(V(P)) =< P, JV(P) >= (−→x1 , 1
2
J0
−→x2 − J0−→x1 ) + (−→x2 , 1

2
J0
−→x1 − J0−→x2 ) = 0.

Thus, from Corollary 1.2 it follows that the three tangential lines in the directions−→v1 ,−→v2 ,−→v3 starting from the points −→p1 ,−→p2 ,−→p3 , respectively, meet at a point, which
is the centroid(the center of the gravity of triangle).

Example 4. Orthocenter. As in Example 2, we take −→p1 = −→0 ,−→p2 = −→x1 ,−→p3 = −→x2 .
Moreover, we take

−→v1 = J0−→x1 − J0−→x2 , −→v2 = J0−→x2 , −→v3 = −J0−→x1 .

We then see that

3X
k=1

−→vk = −→0 , hence V(P) ⊥ L. Moreover, we have

θ(V(P)) =< P, JV(P) >= (−→x1 ,−−→x2 ) + (−→x2 ,−→x1 ) = 0.
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Thus, from Corollary 1.2 it follows that the three tangential lines in the directions−→v1 ,−→v2 ,−→v3 starting from the points −→p1 ,−→p2 ,−→p3 , respectively, meet at a point, which
is the orthocenter of triangle.

Example 5. Excenter. As in Example 2, we take −→p1 = −→0 ,−→p2 = −→x1 ,−→p3 = −→x2 .
Moreover, we take

−→v1 = 1

k−→x1k
−→x1 + 1

k−→x2k
−→x2 , −→v2 = − 1

k−→x1k
−→x1 − 1

k−→x2 −−→x1k
(−→x2 −−→x1 ) ,

−→v3 = − 1

k−→x2k
−→x2 − 1

k−→x1 −−→x2k (
−→x1 −−→x2 ) .

We then see that

3X
k=1

−→vk = −→0 , hence V(P) ⊥ L. Moreover, we have

θ(V(P)) =< P, JV(P) >

= (−→x1 ,−J0
−→x1

k−→x1k
− (J0

−→x2 − J0−→x1 )
k−→x2 −−→x1k

) + (−→x2 ,−J0
−→x2

k−→x2k
− (J0

−→x1 − J0−→x2 )
k−→x1 −−→x2k

)

= − 1

k−→x2 −−→x1k
(−→x1 , J0−→x2 )− 1

k−→x1 −−→x2k
(−→x2 , J0−→x1 ) = 0.

Thus, from Corollary 1.2 it follows that the three tangential lines in the directions−→v1 ,−→v2 ,−→v3 starting from the points −→p1 ,−→p2 ,−→p3 , respectively, meet at a point, which
is the excenter of triangle.

These are famous properties of triangle, but Corollary 1.2 says more. In fact,

although we didn’t state here, many other examples of the three lines starting from

some points on triangle which meet at a point can be understood from the point of

view of Corollary 1.2.

3.2. Desargues’ Theorem, Pappus’ Theorem and Pascal’s Theorem. For

any point p ∈ S2, we denote by a(p) ∈ S2 the antipodal point of p. Take arbitrary
six points p1, p2, · · · , p6 ∈ S2 which are different from each other. For i 6= j, we

denote by γij the closed geodesic through pi and pj. We also denote by Pij the

linear subspace of R3 spanned by −→pi and −→pj .
Theorem 3.1. (Spherical Desargues’ Theorem) Assume that each of the set of

points {p1, p2, p3} and {p4, p5, p6} does not lie on a single geodesic in S2. Then,
three geodesics γ14, γ25, γ36 meet at a point q (and a(q)) if and only if the intersec-

tion points γ12 ∩ γ45, γ23 ∩ γ56, γ13 ∩ γ46 lie on a single geodesic.
Proof. Three geodesics γ14, γ25, γ36 meet at a point q (and a(q)) if and only if

det (−→p1 ×−→p4 | −→p2 ×−→p5 | −→p3 ×−→p6 ) = 0, which is equivalent to
det (−→p1 | −→p2 | −→p5 ) · det (−→p3 | −→p4 | −→p6 ) = det (−→p2 | −→p4 | −→p5 ) · det (−→p1 | −→p3 | −→p6 ) .(3.2)

On the other hand, γ12∩γ45, γ23∩γ56, γ13∩γ46 lie on a single geodesic if and only if
P12 ∩ P45, P23 ∩ P56, P13 ∩ P46 lie on a certain 2-dimensional subspace if and only if

det ((−→p1 ×−→p2 )× (−→p4 ×−→p5 ) | (−→p2 ×−→p3 )× (−→p5 ×−→p6 ) | (−→p1 ×−→p3 )× (−→p4 ×−→p6 )) = 0.
(3.3)
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By the assumption we have det (−→p1 | −→p2 | −→p3 ) 6= 0, hence (3.3) is equivalent to
det (−→p2 | −→p4 | −→p5 ) · det (−→p3 | −→p5 | −→p6 ) · det (−→p1 | −→p4 | −→p6 )(3.4)

= det (−→p1 | −→p4 | −→p5 ) · det (−→p2 | −→p5 | −→p6 ) · det (−→p3 | −→p4 | −→p6 ) .
Finally, we see that (3.4) is equivalent to (3.2) under the assumption det (−→p4 | −→p5 | −→p6 ) 6=
0.

Considering the case where all the intersection points concerned with are lying

on certain half sphere, identifying each point with its antipodal point, we obtain

the planer Desargues’ Theorem as a corollary of Theorem 3.1.

Corollary 3.5. (Planer Desargues’ Theorem) Consider two triangles ∆ABC and

∆A0B0C0 in the projective plane P 2. Then three lines AA0,BB0,CC0 meet at a point
if and only if three intersection points AB ∩ A0B0,BC ∩ B0C0,CA ∩ C0A0 lie on a
single line.

Theorem 3.6. (Spherical Pappus’ Theorem) Assume that each of the set of points

{p1, p2, p3} and {p4, p5, p6} lie on a single geodesic in S2. Then, three intersection
points γ15 ∩ γ24, γ16 ∩ γ34, γ26 ∩ γ35 lie on a single geodesic.
Proof. We have

det ((−→p1 ×−→p5 )× (−→p2 ×−→p4 ) | (−→p2 ×−→p6 )× (−→p3 ×−→p5 ) | (−→p1 ×−→p6 )× (−→p3 ×−→p4 ))
= det (−→p4 | −→p5 | −→p6 ) · det (−→p1 | −→p3 | −→p5 ) · det (−→p1 | −→p2 | −→p4 ) · det (−→p2 | −→p3 | −→p6 )
− det (−→p1 | −→p2 | −→p3 ) · det (−→p1 | −→p4 | −→p5 ) · det (−→p2 | −→p4 | −→p6 ) · det (−→p3 | −→p5 | −→p6 )

=: F (p1, p2, p3, p4, p5, p6),

from which the result follows.

Corollary 3.7. Planer Pappus’ Theorem

Consider the curve defined by F (p1, p2, p3, p4, p5, p) = 0, where p is the parameter.

Then, this defines a quadratic curve C. Clearly, p1, p2, p3, p4, p5 ∈ C. Hence, we may
take p6 as arbitrary point on C which is different from p1, p2, p3, p4, p5. Therefore

we obtain

Corollary 3.8. Planer Pascal’s Theorem

Remark. Using the idea by Arnold([1]), Tomihisa([5]) gave a certain criterion in

terms of the Poisson bracket for those theorems of Desargues’, Pappus’, Pascal’s

and Brianchon’s. This is because the Poisson bracket of two qudratic forms on a R2

corresponds to the vector cross product of the two vectors made by the coefficients

of the quadratic forms in a certain way.

4. Geodesics on Riemann surfaces

4.1. Geodesics on torus. Consider flat torus T = Λ\R2, where Λ is a lattice of
rank 2 in R2. Let l1, l2, · · · , lN be geodesics on the torus T . Denote by el1,el2, · · · ,elN
be arbitrary lifts of l1, l2, · · · , lN , respectively. We may define an action of ΛN on
R2N ×ΛN by (p, τ)η = (η+p, η+ τ) for η ∈ ΛN , (p, τ) ∈ R2N ×ΛN . The equivalence
class of (p, τ) is denoted by [[p, τ ]]. The set of all equivalence classes is denoted by
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IT = ΓN\(R2N × ΓN). We have a natural projection map pr : IT 3 [[p, τ ]] −→
[p] ∈ TN . Note that for any [p] ∈ TN the fiber IT[p] := pr−1([p]) is nothing but
[[p,ΛN ]]. we introduce the equivalence relation (p, u) ∼ (q, v) by p = q + η, u = v

for some η ∈ ΛN . We denote by [p, u] the equivalence class of (p, u). The set of all
equivalence classes is the tangent space T[p]T .

Definition 4.1. Consider submanifold M = c1 × c2 × · · · × cN in TN . For any

p = (p1, p2, · · · , pN) ∈ TN and τ ∈ ΛN , we define an index d[[p,τ ]] by

d[[p,τ ]] = dim

(
[p, v] ∈ T[p]M |

NX
j=1

vj = 0,

NX
j=1

(pj − τj)× vj = 0
)
.

From Corollary 1.2 we have the following.

Corollary 4.2. N -geodesics l1, l2, · · · , lN on the torus T = Λ\R2 meet at a point
or all lsj are parallel if and only if d[[p,τ ]] = N − 2 for some [[p, τ ]] ∈ IT[p].
4.2. Geodesics on Rieman surfaces of hyperbolic type. Let Ko

1 denotes the

connected component of K1, where K1 is the hyperboloid of two sheets as that in

section 1. Note that, for any Riemann surface R, Ko
1 becomes the universal cover

Ko
1

pr→ R of R and R is expressed as R = Γ\Ko
1 , where Γ = π1(R) is the fundamental

group of R.

Let EKo
1
be the tangent bundle TR3 restricted to Ko

1 . We introduce the equiva-

lence relation on EKo
1
by Γ. Two elements (p, u), (q, v) ∈ EKo

1
are equivalent if and

only if q = ηp, v = ηu for some η ∈ Γ. We denote by [p, u] the equivalence class of
(p, u). The set of all equivalence classes is denoted by ER = Γ\EKo

1
. Note that the

tangent bundle TR of Riemann surface R is a subbundle of ER. Set

ENKo
1
= EKo

1
× · · · × EKo

1| {z }
N−times

, ENR = ER × · · · × ER| {z }
N−times

,

TRN = TR × · · · × TR| {z }
N−times

, ΓN = Γ× · · · × Γ| {z }
N−times

.

For p = (p1, p2 · · · , pN ) ∈ KoN
1 and u = (u1, u2, · · · , uN) ∈ ENKo

1
, we write [p, u] =

([p1, u1], [p2, u2], · · · , [pN , uN ]) ∈ ENR . For τ = (τ1, · · · , τN ) ∈ ΓN , define Lτ by

Lτ := τL0 = R
NX
j=1

τje
j
x ⊕ R

NX
j=1

τje
j
y ⊕ R

NX
j=1

τje
j
z.

We regard Lτ as a 3-plane of E
N
p , which is the fiber of E

N
Ko
1
at p ∈ Ko

1 . Then, we

may regard [p, Lτ ] as a 3-plane of E
N
[p], which is the fiber of E

N
R at [p] ∈ R. Recalleθ−1 used in section 1. Since ³eθ−1´

τp
(τv) = τ

³eθ−1´
p
(v) for τ ∈ ΓN , v ∈ ENKo

1
, we

give the following definition.

Definition 4.3. For p = (p1, p2, · · · , pN) ∈ KoN
1 , we define eθR byeθR([p, v]) = hp,³eθ−1´

p
(v)
i
,(4.4)

where [p, u] ∈ TRN . We call eθR the angular momentum for RN .
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We say that [p, u] is perpendicular to [p, v] if gL(u, v) = 0. In this case, we also
write [p, u] ⊥ [p, v].
Definition 4.5. Let M = c1 × c2 × · · · × cN be an N -dimensional submanifold of
RN , where each cj is a smooth curve in R. We define the index dLτ ([p]) by

dLτ ([p]) = dim
n
[p, v] ∈ T[p]M | eθR([p, v]) ⊥ [p, Lτ ]o .

We have easily the following.

dLτ ([p]) = dim

(
[p, v] ∈ T[p]M |

NX
j=1

τ−1j θpj (vj) = 0

)
,(4.6)

where θ is given by

θ =

NX
j=1

(yjdzj − zjdyj, zjdxj − xjdzj, xjdyj − yjdxj) .

Let l1, l2, · · · , lN be geodesics on R given by the initial condition l(0) = cj(tj), l̇(0) =
ċj(tj) for j = 1, 2, · · · , N , where pj = cj(tj). Denote by el1,el2, · · · ,elN arbitrary lifts
of l1, l2, · · · , lN to Ko

1 , respectively. We also denote by P1, P2, · · · , PN ∈ G2(R3) the
2-dimensional linear subspaces corresponding to el1,el2, · · · ,elN , respectively.
Lemma 4.7. Set H = P1×P2×· · ·×PN . Choose some element τ = (τ1, τ2, · · · , τN) ∈
ΓN . Then, τ−11 el1, τ−12 el2, · · · , τ−1N elN meet at a point in K∪∂K if and only if dim{H⊥∩
L⊥τ } = N − 2.
We here give the following definition.

Definition 4.8. We say that l1, l2, · · · , lN are parallel if the intersection point x of
the above lifts lies in ∂K ∪K2.

Now, we have the following.

Theorem 4.9. Let l1, l2, · · · , lN be N -geodesics on Riemann surface R. Then,

dLτ ([p]) = N − 2 for some [p, Lτ ] ∈ G3(EN[p]) if and only if l1, l2, · · · , lN meet at

a point in R each other or all the l0js are parallel.

Next, we define another index tr. For any point r = (r1, r2, · · · , rN ) of l1×· · ·×lN ,
we define the index tr,τ by

tr = Max
τ∈ΓN

dim
©
S | S is a subspace of < TpKoN

1 ∪Wp > ∩Lτ , (s, s) < 0,∀s( 6= 0) ∈ S
ª
.

We easily see that tr does not depend on the choice of the lifts.

Theorem 4.10. Let l1, l2, · · · , lN be N -geodesics on R and r = (r1, r2, · · · , rN) any
point of l1×· · ·× lN . Then, dLτ ([p]) = N − 2 for some [p, Lτ ] ∈ G3(EN[p]) and tr = 1
if and only if l1, l2, · · · , lN meet at a point in R each other.
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