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We consider Legendrian surfaces in the 5-dimensional Heisenberg group $°. We
obtain a representation formula for Legendrian surfaces in $°, in terms of spinors
[AA]. For especially minimal Legendrian surfaces, such data are holomorphic. In
this note, we give only the formula for minimal Legendrian surfaces in $°. We can
regard this formula as an analogue (in Contact Riemannian Geometry) of Weier-
strass representation for minimal surfaces in R®. Hence for minimal ones in $°,
there are many similar results to those for minimal surfaces in R®. In particular,
we give a Halfspace Theorem for properly immersed minimal Legendrian surfaces in
H°.

The theory of minimal surfaces in the Euclidean 3-space R® is very rich, deep
and beautiful. One of the reasons is that every minimal surface in R? is represented
in terms of holomorphic data, that is, Weierstrass representation. Kenmotsu gener-
alized this representation to that for surfaces with prescribed mean curvature. But
in general, the data appearing there are not holomorphic anymore, including the
case of surfaces with nonzero constant mean curvature. Minimal surfaces are very
special from this viewpoint. In Symplectic Riemannian Geometry, there is a similar
representation to the above. Chen-Morvan proved that there exists an explicit cor-
respondence in the complex 2-space C?> between minimal Lagrangian surfaces and
holomorphic curves (with nondegenerate condition). Indeed, this correspondence
is given by exchanging the orthogonal complex structure in C? to another one on
R* = C2. It can be regarded as a primitive form of Weierstrass representation for
minimal Lagrangian surfaces in C?. More generally, Hélein-Romon and the first au-
thor proved independently that every Lagrangian surface S in C? is represented in
terms of a plus spinor (or a minus spinor) of the spin® bundle (SxC?)® (Kg'® Ks)
satisfying the Dirac equation with potential. Here, K g denotes the canonical com-
plex line bundle of S. Notice that the representation in terms of plus spinors in
['(S x C?) given by the first author is a natural generalization of the one given by
Chen-Morvan.

Let $° be the 5-dimensional Heisenberg group, that is, % is R> = C> xR =
{(z = (21,2%),t) | 2* = 2' + /=1y' € C,t € R} as a C* manifold, and it has the
group structure as (z,t) - (z/,t') = (z+2',t +t' +2Im(z-2')). Here, z, - z> denotes
the standard C-linear quadratic form. It has also a natural right invariant contact
1-form n defined by n = dt — %(x -dy — y - dx), that is, n A (dn)? # 0 everywhere
on $° and (R,)*n = n for p = (z,t) € H°. The contact structure H := Kern is
a codimension one totally non-integrable subbundle of the tangent bundle T$°,
which is spanned by the basis {T; := 0,: — %yiat,T2+i = 0y + %xi&g | i =1,2}.
Associated with 7, there exists a unique vector field ¢ € X($°) with p(¢) = 1 and
dn(&,-) = 0, the so-called Reeb vector field. In this case, ¢ = §;. Then, T$H® has a
natural decomposition

T$H® = H @ RE.
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Let J be the almost complex structure on H defined by J(T;) = Toti, J(Togi) =
—T;. We then get an inner product gy = dno (J ® 1) on H. Since the triple
(n,9m,J) induces the natural Riemannian metric g = g, on H° as

gn = Thgm + 17,

the triple is called a contact Riemannian structure on $°. g, is also called the
standard Sasakian metric (or Webster metric) on $°. Here, 7 : TH® — H is the
natural projection associated with the above decomposition. A surface M of $° is
said to be Legendrian if T,M C H, for any p € M, which is an integral submanifold
of the distribution H with maximal dimension.

With these understandings, the below is the representation formula for minimal
Legendrian surfaces in (%, g,,).

Weierstrass Representation. Let M be a (simply connected) Riemann surface
with an isothermal coordinate w = u++/—1v around each point. Let F = (Fy, Fy) :
M — C? be a holomorphic map satisfying |S1|> +|Sa|? # 0 everywhere on M, where
S1 := (Fy)y and Sy := —(F)y. For a constant B3, set f: M — C> xR as

f= (%e\/*_lﬁﬂ(Fl — -1 E), %e\/f_lﬁh(};é +v=1 ﬁ),t(w)) ,
tw) = —3 Re [“(F1S1 + F»Ss)dw .

Then, f is a minimal Legendrian conformal immersion from M to ($°,g,). The
induced metric ds*> on M by f and its Gauss curvature K are respectively given by

151(S2)w — S2(S1)w|”
(151 +152/*)?

Conversely, every minimal Legendrian immersion f : M — (%, gy) is congruent
with the one constructed as above.

ds® = (|S1]? + |S2|?)|dw]?, K=-2

Remark. For a minimal Legendrian conformal immersion f : M — (9°,g,),
ez o f : M — C? is a minimal Lagrangian immersion, where w2 : C2 x R — C2
denotes the natural projection. In the above representation formula, the constant
[ is the Lagrangian angle of 72 o f. The Gauss map g of mc2 o f is given by

g=[-52;81]=(=52/8): M - CP" =C = §2.

Here, by the identification of $? with S2(1) x {(eY~1%/2,0)} C R* x R?, g can be
regarded as the generalized Gauss map for the Lagrangian surface (mc2 o f)(M) in
R* = C2. Set a holomorphic 1-form hdw := Sidw on M. In terms of the Gauss
data (hdw,g) of M, the induced metric ds®> and the Gauss curvature K can be
rewritten respectively by

2
ds? = |h2(1 + |g]?)|dw?, K:—Q(%) :
(See [AAK] for the precise maximal number of exceptional number the Gauss map
of a complete minimal Lagrangian surface in C2.)

Set 52, ={pe H° [ t(p) >to} and HZ, ={p e H° | t(p) < to} for to € R. The
following is a Legendrian version of the Halfspace Theorem for minimal surfaces in
R3.



Halfspace Theorem. Any properly immersed minimal Legendrian surface in
(9°,9y) contained in an upper half space 555>t0 (or a lower half space .65<t0) s a
Legendrian plane contained in {p € $° | t(p) = t1} = C* x {t,} for some t, € R.
Moreover, it is also a Lagrangian plane in C?> = C? x {t,}.
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