
Deformation and gluing constructions
for scalar curvature, with applications

Justin Corvino

Lafayette College
Easton, PA, U.S.A.

Geometric Analysis in Geometry and Topology 2014
October 28-October 31, 2014

Justin Corvino (Lafayette) Deformation and Gluing Constructions October 28-October 31, 2014 1 / 67



Outline

Outline

• Lecture I. Survey of scalar curvature

• Lecture II. Localized scalar curvature deformation, and gluing.

• Lecture III. Scalar curvature gluing and applications.

Applications may include a recent resolution of the remaining cases of the
modified Kazdan-Warner problem by S. Matsuo, and constructions of
interesting initial data in general relativity, as time permits.
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Curvature basics

Let (M, g) be Riemannian, with compatible connection ∇ (∇g = 0).
The curvature tensor is defined by

R(X ,Y ,Z ) = ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z .

We use the index conventions (and the Einstein summation convention)

R = R `
ijk

∂

∂x`
⊗ dx i ⊗ dx j ⊗ dxk

and with metric g = 〈·, ·〉, Rijk` = 〈R( ∂
∂x i
, ∂
∂x j
, ∂
∂xk

), ∂
∂x`
〉 = R m

ijk gm`.

Gauss’ Theorema Egregium

If U ⊂ R2, and X : U → Σ = X(U) ⊂ R3 is an embedding, then if ∇Σ is
the compatible connection on Σ in the induced metric,

∇Σ
Xv
∇Σ

Xu
Xu −∇Σ

Xu
∇Σ

Xv
Xu = KΣ (〈Xu,Xu〉Xv − 〈Xu,Xv 〉Xu)
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Curvature basics

Sectional curvature: If Π ⊂ TpM is a two-plane, and if {e1, e2} is any
orthonormal basis of Π, K (Π) := 〈R(e1, e2, e2), e1〉 is independent of
choice of orthonormal basis, and is the sectional curvature.
It is the Gauss curvature of a the geodesic two-surface tangent to Π.

Let {e1, . . . , en} be an orthonormal frame for TpM.

Ricci curvature: Ricg (v , v) =
n∑

j=1
〈R(v , ej , ej), v〉,

or in component form for any basis of TpM, Rjk = R `
`jk .

Scalar curvature: R(g) = g ijRij is the trace of the Ricci tensor, which in

an ON frame is just R(g) =
n∑

i ,j=1
〈R(ei , ej , ej), ei 〉,

the total (average) of Gauss curvatures of geodesic two-surfaces through p.
The scalar curvature R(g) is quasilinear, second-order in the components
of g , second-order terms of the form g ∗ ∂2g .
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Curvature basics

Fundamental question

How to relate the curvatures to the geometry/topology of M.

Sectional and Ricci curvatures have stronger immediate ties to the
geometry and topology of M.

Sectional Curvature

Sectional curvature affects the behavior of geodesics. If J is a variation
field for a family of geodesics, say γs is a geodesic for each s ∈ I , and
J = ∂sγs , then in case of constant sectional curvature K , the ODE
J ′′ + KJ = 0 is satisfied.

This gives the relative spreading of geodesics in negative curvature
(hyperbolic space), and the convergence of geodesics in positive curvature
(sphere).
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Curvature basics

Ricci curvature

The Ricci curvature then controls the geodesic deviation on average, nicely
captured by the expansion of the volume element in normal coordinates:
dvg =

[
1− 1

6Rjkx
jxk + O(|x |3)

]
dvEucl.

In fact recall

Bishop’s Theorem

For κ constant, suppose (Mn, g) has Ric(g) ≥ (n − 1)κg .
Then for any geodesic ball Br (p),

Volg (Br (p)) ≤ Vol(Bκr (O)),

where the volume of the right is taken in the simply connected space form
of curvature κ.
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Curvature basics

We recall one last basic fact before moving to scalar curvature.

Bonnet-Myers

(Mn, g) complete Riemannian. Suppose Ric(g) ≥ n−1
r2
0

g .

Then diam(M, g) ≤ πr0.
Moreover, M is compact, and π1(M) is finite.

Examples

• If N closed, S1 × N admits no metric of Ric(g) > 0.

• S1 × Sn−1 (n ≥ 3) admits metrics with positive scalar curvature
(PSC), e.g. product metric.
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Scalar curvature basics

So, what does scalar curvature measure?
We saw that the Ricci curvature appears in the expansion of the volume
form, so integrating over geodesic balls Br (p), the scalar curvature appears
in the expansion of the volume of geodesic balls:

Volume expansion

Vol(Bp(r)) = VolEucl(Bn(1))rn
[
1− R(g)|p

6(n+2) r
2 + O(r3)

]
.

Remark: This does give a C 0 way to define PSC (positive scalar
curvature).
Flexibility: Scalar curvature should be reasonably flexible—degrees of
freedom: single scalar equation for a metric. Before we focus on flexibility,
let’s note some obstructions.
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Surfaces

It’s unfair to start with surfaces since on a closed, orientable two-surface
(Σ, g), R(g) = 2KΣ, which is tightly controlled by the

Gauss-Bonnet Theorem ∫
Σ
KΣ dAΣ = 2πχ(Σ).

In fact we have a complete solution to which functions are (scalar)
curvatures of Riemannian metrics on Σ.

Kazdan-Warner

Σ2 closed, connected. K ∈ C∞(Σ) is the Gauss curvature of some smooth
metric g on Σ if and only if

• Case (i) χ(Σ) > 0: {K > 0} 6= ∅.
• Case (ii) χ(Σ) = 0: K ≡ 0; or {K > 0} 6= ∅ and {K < 0} 6= ∅
• Case (iii) χ(Σ) < 0: {K < 0} 6= ∅.
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Scalar curvature in higher dimensions

As is expected, scalar curvature is more flexible in dimension three and
higher. However, there are obstructions to manifolds admitting PSC, going
back to Lichnerowicz, then Schoen and Yau (SY), and Gromov and
Lawson (GL).
PSC and GR: There is an interesting connection with PSC and GR. The
next theorem is intimately tied to the Positive Mass Theorem.

Theorem (SY, GL)

Tn does not admit any PSC metric. Any zero scalar curvature metric is
flat.
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Schoen-Yau Theorem

Theorem (SY)

M3 closed, orientable. If π1(M) contains π1(Σ) for Σ orientable surface of
positive genus, then M admits no PSC metric.

The proof involves an insightful rewriting of the second variation of area
for closed oriented minimal hypersurfaces Σ2 ⊂ M3. We review that here.

If ν is the oriented unit normal along Σ, and if A is the second fundamental
form of Σ, then we consider the variation field V = ϕν along Σ. The
Jacobi operator LΣ is given by LΣϕ = ∆Σϕ+ (‖A‖2 + Ric(g)(ν, ν))ϕ.
Then if A(t) is the area of Σt , where V = ϕν generates Σt , and if Σ0 = Σ
is minimal, then

A′′(0) = −
∫

Σ
ϕLΣϕ dAΣ =

∫
Σ

(
|∇Σϕ|2 − (‖A‖2 + Ric(g)(ν, ν))ϕ2

)
dAΣ.
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Schoen-Yau Theorem

We want to work in the scalar curvature R(g) into the second variation.
To do this, let E1,E2 be a local orthonormal frame on Σ, let E3 = ν.
Write A = (hij), where hij = 〈∇M

ei
ej , ν〉, and let Kij = K (span(ei , ej)) be a

sectional curvature in (M, g). We collect a few formulas:

• Ric(g)(ν, ν) = K13 + K23

• R(g) = 2(K12 + K13 + K23)

• (Gauss Equation) KΣ = K12 + h11h22 − h2
12.

Now recall h12 = h21. Also, for Σ minimal, h11 + h22 = 0, so that

KΣ = K12 − 1
2

2∑
i ,j=1

h2
ij = K12 − 1

2‖A‖
2.

Thus ‖A‖2 + Ric(g)(ν, ν) = ‖A‖2 + K13 + K23 =
1
2‖A‖

2 − KΣ + K12 + K13 + K23 = 1
2‖A‖

2 + 1
2R(g)− KΣ.
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Schoen-Yau Theorem

Inserting this into the Second Variation, we get

Second Variation Formula

A′′(0) =
∫

Σ

[
|∇Σϕ|2 −

(
1
2‖A‖

2 + 1
2R(g)− KΣ

)
ϕ2
]
dAΣ.

Definition

A minimal Σ is stable if A′′(0) ≥ 0.

Exercise

Let Σ be an oriented, stable minimal two-surface in (M3, g). If R(g) ≥ 0,
then χ(Σ) ≥ 0, and χ(Σ) = 0 implies R(g) ≡ 0 and Σ is totally geodesic.
In case R(g) > 0, then χ(Σ) > 0 (Σ is diffeomorphic to a sphere).

This is fun: use the stability inequality, with ϕ ≡ 1, and Gauss-Bonnet.
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Three-manifolds admitting PSC

Theorem (SY, GL)

If Mn
1 , Mn

2 , n ≥ 3, carry metrics of PSC, so does M1#M2.

Remark: The proof in GL is local to the surgical region.
Along with the resolution of the Poincaré and Spherical Space Form
Conjectures, we have:

Three-manifolds of PSC

M3 closed, orientable. M admits a PSC metric if and only if M is a
connected sum of factors of the form S1 × S2, and S3/Γ (Γ ⊂ SO(4) finite
subgroup).
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Kazdan-Warner classification

Goal: Determine which functions are scalar curvatures for some metric g
on M.

Theorem(KW)

Mn, n ≥ 3, closed and connected. Let M be the space of (smooth)
metrics on M, R :M→ C∞(M) the scalar curvature map. There are
three possibilities for the image R(M):

• Case (i): Any f ∈ C∞(M) can be realized as R(g) = f for some
g ∈M.

• Case (ii) f ∈ C∞(M) ∩ R(M) if and only if either {f < 0} 6= ∅, or
f ≡ 0.

• Case (iii) f ∈ C∞(M) ∩ R(M) if and only if {f < 0} 6= ∅.

Examples

(i) Sn (ii) Tn (iii) Tn#Tn.
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Connection to Relativity

We recall briefly the Einstein constraint equations, which govern the space
of allowable initial data for the Einstein equation in space-time.

Suppose (M3, g) is a totally geodesic space-like hypersurface in a
Lorentzian manifold (S4, ḡ), with unit (time-like) unit normal n.
The Einstein equation is Ric(ḡ)− 1

2R(ḡ)ḡ + Λḡ = κT .

Vacuum case: T = 0. Λ is the cosmological constant.

Hamiltonian Constraint

The Gauss equation then implies the vacuum Hamiltonian constraint
R(g) = 2Λ. (g is CSC.)

Let Λ = 0. If there are matter fields, then R(g) = κρ, where κ > 0 is a
constant, and ρ = T (n, n) is the energy density of matter fields as
measured by observer adapted to M. Thus R(g) ≥ 0 is a natural
assumption for the Positive Mass/Energy Theorem.
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Schwarzschild metric

The following metric is Lorentzian and Ricci-flat:

ḡS = −

(
1− m

2|x |

1 + m
2|x |

)2

dt2 +

(
1 +

m

2|x |

)4

gEucl

gS :=
(

1 + m
2|x |

)4
gEucl is the spatial Schwarzschild metric of mass m.

Since 1
|x | is harmonic on R3 \ {0}, we have R(gS) = 0. It is asymptotically

flat with two ends if m > 0.

Σ = {|x | = m
2 } is a totally geodesic surface. Easy to check (exercise)

|Σ| = 16πm2, i.e. m =
√
|Σ|
16π (equality case of Penrose inequality).
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Schwarzschild metric

Exercise: A simple computation shows

m =
1

16π
lim

r→+∞

∫
|x |=r

3∑
i ,j=1

(gij ,i − gii ,j)ν
j
e dAe

where νe and dAe are the Euclidean outward unit normal and area element
on the spheres {|x | = r}.
The flux integral limit provides the definition of mass/energy for more
general asymptotically flat solutions of the vacuum ECE.
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Conformal Considerations

Conformal techniques give a classical vehicle for deforming/prescribing
scalar curvature and solving the ECE.

Let Mn, n ≥ 3, be smooth and connected. Let M be the space of
(smooth) Riemannian metrics, and M1 ⊂M the unit volume metrics.

For g ∈M, let [g ] = {fg : f > 0, f ∈ C∞(M)} be the conformal class of
g .

Let C be the set of conformal classes.
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Conformal change of scalar curvature

For n ≥ 3, g̃ = u
4

n−2 g for u > 0. Then

R(g̃) = −4(n − 1)

n − 2
u−

n+2
n−2

[
∆gu −

n − 2

4(n − 1)
R(g) u

]
.

Let Lgu = ∆gu − n−2
4(n−1)R(g) u be the conformal Laplacian.

Remark: Finding g̃ ∈ [g ] with CSC is a semi-linear elliptic equation, while
R(g̃) = 0 is a linear elliptic PDE Lgu = 0.

Justin Corvino (Lafayette) Deformation and Gluing Constructions October 28-October 31, 2014 20 / 67



Variational characterization of CSC

Einstein-Hilbert action: R(g) =
∫
M

R(g) dvg .

Volume-normalized action: R(g) := R(g)

(Vol(g))
n−2
n

= R((Vol(g))−
2
n g),

where ḡ = (Vol(g))−
2
n g ∈M1.

Critical equations

• g is critical for R iff Ric(g) = 0 (Vacuum Einstein)

• g is critical for R iff Ric(g) = R(g)
n g (Einstein implies CSC),

equivalently g ∈M1 critical for R|M1 iff g ∈M1 is Einstein

• g critical for R|[g ] iff R(g) is constant,
equivalently, g ∈M1 critical for R|M1∩[g ] iff R(g) is constant.
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Yamabe problem

With the latter condition in mind, let g̃ = u
4

n−2 g ∈ [g ], u > 0. Then

dvg̃ = u
2n
n−2 dvg , so that using the formula

R(g̃) = −4(n−1)
n−2 u−

n+2
n−2

[
∆gu − n−2

4(n−1)R(g) u
]
, with 2n

n−2 −
n+2
n−2 = 1, and

integration by parts (easy check!), we get

R(g̃) =
4(n − 1)

n − 2

∫
M

[
|∇u|2 +

n − 2

4(n − 1)
u2R(g)

]
dvg .

R(g̃) =
R(g)

‖u‖2

L
2n
n−2 (dvg )

.
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Yamabe problem

Goal: Look for CSC in [g ].

Let Y (M, [g ]) = inf
g̃∈[g ]

R(g̃) = inf
u>0

R(u
4

n−2 g)
‖u‖2

L
2n
n−2 (dvg )

.

Goal: Look for Einstein metrics: let σ(M) = sup
C

Y (M, C).

Fact: σ(M) ≤ 0 and R(g) = σ(M), then g is Einstein.

Definition

A Yamabe metric is one which realizes the infimum, and thus is a CSC
metric in [g ].

Theorem (Yamabe, Trudinger, Aubin, Schoen)

For any C ∈ C, there is g ∈ C with R(g) = Y (M,C)

(Vol(g))
2
n
.
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Yamabe problem

Before we move on, let’s collect a few facts.

Facts

• If C ∈ C, and g ∈ C , then Y (M, C)(Vol(g))
n−2
n ≤

∫
M R(g) dvg .

• For r < σ(M), there is C ∈ C, Y (M,C ) = r , and thus there is g ∈M1

with R(g) = r < σ(M).

• σ(M) > 0 if and only if M admits PSC.
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Modified Kazdan-Warner problem

Study image R :M1 → C∞(M). Again, Mn, n ≥ 3, closed and connected.

Theorem (O. Kobayashi)

In case σ(M) ≤ 0. Then
(i) If Y (M,C ) = σ(M) for some C ∈ C, then f ∈ R(M1) iff either
min f < σ(M), or f ≡ σ(M).
(ii) If for all C ∈ C, Y (M,C ) < σ(M), then f ∈ R(M1) iff min f < σ(M).

In case σ(M) > 0: f ∈ R(M1) if f is non-constant, or f ≡ c < σ(M).

Remaining cases intriguing: In case σ(M) > 0, and c ∈ [σ(M),+∞). Is
c ∈ R(M1)?
Yes! S. Matsuo ( 2013, Math. Ann., to appear).
Key idea: Any Yamabe metric g isn’t just CSC/critical, but also
minimizing in C , so Y (M,C ) ≤ σ(M). So a Yamabe metric in M1 has
R(g) ≤ σ(M).
S. Matsuo: produce CSC non-Yamabe metrics in M1 by CSC surgery with
volume control (C-Eichmair-Miao), and re-scaling.
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CSC gluing with volume constraint

Theorem (C., Eichmair, Miao)

If (M1, g1) and (M2, g2) are two closed n-manifolds (n ≥ 3) of CSC
R(gi ) = c which are suitably non-degenerate, there is a CSC c metric on
M1#M2 with total volume V (g1) + V (g2), and which equals the original
metrics outside the gluing region.

You can also add a handle this way, preserving total volume.

Remarks: Conformal methods for CSC gluing (Mazzeo-Pollack-Uhlenbeck;
Isenberg-Mazzeo-Pollack; Joyce; etc.) invoke global deformations.

Non-conformal techniques can be used in conjunction with well-established
conformal methods to achieve controlled localized perturbations.

Goal: understand non-degeneracy condition and its role in scalar curvature
deformation. We will explore this in Lecture 2
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Fischer-Marsden Analysis

Fischer and Marsden used Implicit Function Theorem arguments to study
scalar curvature deformation, allowing the metric to move across
conformal classes.

Consider the scalar curvature map g 7→ R(g), which has linearization Lg ,
and formal adjoint L∗g given by

Linearization of scalar curvature

• Lg (h) := d
dt

∣∣∣
t=0

R(g+th) = −∆g (trg (h))+divg (divg (h))−〈h,Ric(g)〉.

• L∗g (f ) = −(∆g f )g + Hessg (f )− f Ric(g).

Convention: ∆g f = trg (∇2f ) = trg (Hessg f ).

Note that the principle part of LgL
∗
g is (n − 1)∆2

g .
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Fischer-Marsden Analysis

L∗g (f ) = −(∆g f )g + Hessg (f )− f Ric(g).

As L∗g is overdetermined-elliptic, it admits a Hodge
decomposition/Fredholm alternative:

Hodge-type Decomposition

On closed manifolds (or non-compact manifolds with asymptotic
conditions, say) the appropriate function spaces (Sobolev, Hölder, possibly
weighted) split as Im(Lg )⊕ ker(L∗g ).

Thus by the IFT, we have

Theorem (FM)

Suppose (Mn, g) closed, and ker(L∗g ) = {0}. Then there are ε > 0 and
C > 0 so that for all S ∈ C∞(M) with ‖S‖k < ε, there is a smooth h with
‖h‖k+2 ≤ C‖S‖k so that g + h is a Riemannian metric with
R(g + h) = R(g) + S .
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Static metrics

From the preceding theorem, we can now focus on the linear obstruction
to local deformation.

Definition

A metric g is called static (vacuum) if it admits a non-trivial solution to
the system L∗g (f ) = −(∆g f )g + Hessg (f )− f Ric(g) = 0.

A solution f is called a static potential.

Remarks

• Static metrics are special. For example:

• A static metric has CSC, and in fact the associated (n + 1)-space-time

warped product metric ḡ = −f 2 dt2 + g is Einstein: Ric(ḡ) = R(g)
n−1 ḡ .
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Static metrics

Examples

• Euclidean space with static potentials spanned by the functions 1,
x1, . . . , xn.

• The flat torus Tn with constant static potential.

• The round sphere Sn ⊂ Rn+1, with static potentials given by the span

of the restriction of the coordinate functions x j
∣∣∣
Sn

, j = 1, . . . , n + 1.

• S1 × Sn−1 is static with static potential f (t, ω) = sin(t) for the
product metric, where the S1 factor has metric 1

n−2dt
2 with

t ∈ [0, 2π].
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Static metrics

Example: Schwarzschild

Defined on R3 \ {0}:
gS =

(
1 + m

2|x |

)4
geucl

This metric has zero scalar curvature and is static, with static potential

f (x) =
1− m

2|x|
1+ m

2|x|
.

The warped product ḡS = −f 2dt2 + gS gives the Schwarzschild space-time
satisfying Ric(ḡS) = 0.

The zero set {x : f (x) = 0} = {x : |x | = m
2 } is a minimal (in fact totally

geodesic) sphere.
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A basic connection to the PMT

Proposition (Simple case of PMT rigidity)

If g is a metric on R3 which has R(g) ≥ 0 and for which g = geucl outside
a ball B, then g is flat.

Proof: By forming the torus quotient outside the ball B, g descends to a
metric ĝ on T3 with R(ĝ) ≥ 0. By FM, ĝ must be static, else one may
perturb the scalar curvature up slightly everywhere, which is not allowed
by SY, GL.

So in particular, then, R(ĝ) ≡ 0, and there must be a solution to
0 = L∗ĝ f = −∆ĝ f ĝ + Hessĝ (f )− f Ric(ĝ). Taking the trace and using the
scalar curvature condition we get ∆ĝ f = 0, so that f is a non-zero
constant. From L∗ĝ f = 0, we have Ric(ĝ) = 0.
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Variation of scalar curvature and volume

There are a number of remarks we want to make about static metrics and
potentials. Since there are similar results to be made about the linear
obstruction for specifying deformations of scalar curvature R(g) and
volume V (g) = Vol(g) jointly, we will economize and just make the
comments for the joint problem.

Variation formulae

• The linearization of the volume g 7→ V (g) is
d
dt

∣∣∣
t=0

V (g + th)) =
∫
M

1
2 trg (h) dvg .

• If we let Θ(g) = (R(g),V (g)), and Sg = DΘg , then
S∗g (f , a) = L∗g (f ) + a

2 g . (a is a constant.)
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V -static metrics

Recall Θ(g) = (R(g),V (g)), DΘg =: Sg .

V -static metrics

• A metric g is called V -static if it admits a non-trivial solution to the
system S∗g (f , a) = −(∆g f )g + Hessg (f )− f Ric(g) + a

2 g = 0.

• A V -static metric has CSC: take the divergence of S∗g (f , a) = 0 and
use the Bianchi identity (and that 0 is a regular value for a nontrivial
potential, as we’ll see).

• Static implies V -static: If f were a static potential, then S∗g (f , 0) = 0.

Examples

• If g is Einstein of CSC R(g) = c , then (1, 2c
n ) is in the kernel of S∗g .

• The standard sphere Sn ⊂ Rn+1 has the maximal-dimensional kernel.

Indeed, the coordinate functions x j
∣∣∣
Sn

, j = 1, . . . , n + 1, restrict to

static potentials, and (1, 2(n − 1)) is in the kernel of S∗g .
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Scalar curvature and volume

Volume functional on CSC metrics

For a closed manifold M, we let Mc be the space of metrics with constant
scalar curvature (CSC) R(g) = c , and let volume function restricted to
Mc be Vc :Mc → (0,+∞).

For a compact manifold-with-boundary Ω, if γ is a metric on ∂Ω, then we
let Mc

γ denote the space of metrics g on Ω with CSC R(g) = c , whose

restriction agrees with γ: g
∣∣∣
T (∂Ω)

= γ.

For c 6= 0, critical points of Vc correspond to critical points of the
Einstein-Hilbert actionMc 3 g 7→

∫
M R(g) dvg .

Example

• g is critical for V−1 if and only if g is Einstein of CSC negative.
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Volume criticality

The V -static condition is does not capture volume criticality on the nose.

Example

• S1 × Sn−1 is static with static potential f (t, ω) = sin(t) for the
product metric, where the S1 factor has metric 1

n−2dt
2 with

t ∈ [0, 2π].

• However, this is clearly not volume-critical, by scaling the S1-factor,
which doesn’t change the CSC (n − 1)(n − 2).

We re-write the condition S∗g (f , a) = 0 as L∗g (f ) = κ g , where κ = − a
2 .

Proposition

Metrics in Mc or Mc
γ which are volume-critical are those which admit

solutions to L∗g (f ) = κg , with κ 6= 0, assuming the first eigenvalue of
(n − 1)∆g + c is positive. Dirichlet conditions are used in the boundary
case (Miao-Tam).
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V -static metrics

The equation S∗g (f , a) = 0 reduces to an ODE along geodesics. If γ is a
unit-speed geodesic and h(t) = f (γ(t)), then
h′′(t) = Hessg f (γ′(t), γ′(t)), and so

h′′(t) =
(

Ric(g)(γ′(t), γ′(t))− R(g)

n − 1

)
h(t) +

a/2

n − 1
.

Using this one can show that on a smooth connected domain, the kernel is
at most (n + 2)-dimensional, and the kernel elements extend smoothly to
the boundary, and that zero is a regular value of a non-trivial element in
the kernel.
We remark that no boundary condition has been imposed here.

Letting a = 0, we have a similar statement for static metrics, where the
associated maximal dimension is n + 1.

Remark: One can interpret boundary values of static or V -static
potentials, which by the finite-dimensionality of the space of potentials,
must be special.
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Variational formulation for V -static potential

The next result generalizes work of P. Miao and L.-F. Tam, who
considered the static case κ = 0.

V -static action

For κ a constant, and φ a function, we define

Eκ,φ = κV (g)−
∫
∂Ω

H φ dσ.

Proposition (C., Eichmair, Miao)

Let κ be a constant, and let φ be a function so that (φ, κ) is not
identically (0, 0). Suppose g has CSC R(g) = c , and suppose the first
eigenvalue of (n − 1)∆g + c is positive. Then g is critical for Eκ,φ on Mc

γ

if and only if there is a smooth function f so that

L∗g f = κg on Ω, f = φ on ∂Ω
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A volume comparison result

As a last result before we move on to the localized deformation theorem,
we note a volume comparison result first observed by Miao-Tam;
C-Eichmair-Miao removed the spin assumption in higher dimensions, by
avoiding use of the Positive Mass Theorem.

Theorem

Suppose g is a smooth metric of zero scalar curvature on Ω, so that there
is a function f with L∗g f = g on Ω, with f = 0 on ∂Ω. Let γ be the metric
induced on Σ = ∂Ω, which we assume is connected. We furthermore
assume (Σ, γ) can be isometrically embedded to a compact strictly convex
hypersurface Σ0 in Rn. Then V (Ω, g) ≥ V (int(Σ0), geucl), where equality
holds if and only if (Ω, g) is isometric to a standard ball in Rn.
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Localized Deformation Theorem

Now that we’ve analyzed the linear obstruction to local deformations, and
have noted that metrics which for which deformations are possibly
obstructed are quite special. In the case when there is no obstruction, we
have the following theorem.

Theorem (C., Eichmair, Miao)

Let Ω ⊂ (M, g) be a smooth bounded domain. Suppose the kernel of S∗g
is trivial on Ω. For any Ω0 ⊂⊂ Ω, there is an ε0 > 0 and a C > 0 so that
for any σ ∈ C∞c (Ω0) and any τ ∈ R with |τ |+ ‖σ‖C0,α < ε0, there is a
smooth metric g + h so that h is supported in Ω, and
(R(g + h),V (g + h)) = (R(g) + σ,V (g) + τ).
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Localized deformation theorem

Theorem (Localized deformation of scalar curvature), C.

Suppose Ω ⊂ (M, g) is a smooth bounded domain. Suppose that the
kernel of L∗g on Ω is trivial (so (Ω, g) is not static). For Ω0 b Ω, there is
an ε0 > 0 so that for any S ∈ C∞(Ω) with spt(S) ⊂ Ω0 and ‖S‖C0,α < ε0,
there is a smooth metric g + h with spt(h) ⊂ Ω with
R(g + h) = R(g) + S and ‖h‖C2,α ≤ C‖S‖C0,α .

• This is a localized analogue of the Fischer-Marsden theorem.

• This theorem doesn’t help resolve the Min-Oo conjecture on the
hemisphere, since the round sphere is static. Min-Oo conjecture: if g
is a Riemannian metric on Sn+ with R(g) ≥ n(n− 1), so that (∂Sn+, g)
is isometric to the standard unit sphere Sn−1, and so that ∂Sn+ is
totally geodesic, then (Sn+, g) is isometric to the standard unit
hemisphere. Brendle, Marques, Neves had to work harder to provide
counterexamples.
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Localized deformations: scalar curvature melting

Lohkamp proved an interesting result in the late nineties.

Lohkamp Theorem

Let (M, g) be Riemannian, and let U ⊂ M be open. For any ε > 0, and
for any smooth function f with f < R(g) on U, and f = R(g) on M \ U,
there is a smooth metric gε with g = gε on M \ Uε and f − ε ≤ R(gε) ≤ f
on Uε (the ε-neighborhood of U). Moreover, one may choose gε arbitrarily
close to g in C 0.

In general, one cannot keep strong control on the metrics gε. One might
consider whether one can estimate g − gε in terms of f − R(g).
In terms of deforming scalar curvature down through a continuous path,
one might try to specify a continuously varying family of smooth metrics
gt , g0 = g , t ≥ 0, with R(gt) strictly decreasing in t inside some ball B,
say, with gt = g outside B.
Of course, in case the metric g is non-static this follows from work of C.
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Obstruction to locally bumping up scalar curvature

With Lohkamp’s result holding for any metric, one might ask whether we
can still so this melting of scalar curvature at static metrics. For Euclidean
spaces, such metrics have been produced by J. Kim et. al.
Rigidity for the Positive Mass Theorem precludes locally bumping up the
scalar curvature on Euclidean space and on hyperbolic space. It doesn’t
just preclude such deformations near the constant curvature metric, it
precludes existence of other metrics which agree with those outside a
compact set and have at least as much scalar curvature. A similar
statement holds for regions of the Schwarzschild metric away from the
minimal sphere (Penrose Inequality).

Obstruction to bumping up

Forthcoming work of J. Qing and W. Yuan establishes some rigidity and
non-rigidity results at static metrics, and, if I understand correctly, shows
that at any static metric, and any point p, then for small enough balls
around p, one cannot have a different metric near g of scalar curvature at
least as much as R(g), which agrees with g outside the ball.
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Proof of Local Deformation: Basic estimates

Basic estimate

The key to obtaining h compactly supported is the form of the operator
S∗g : S∗g (u, a) = −(∆gu)g + Hessgu − u Ric(g) + a

2 g . One can then get
an immediate a priori estimate of the form

‖(u, a)‖H2(U)×R ≤ C (n, g ,Ω)
(
‖S∗g (u, a)‖L2(U) + ‖(u, a)‖H1(U)×R

)
valid on any U ⊂ Ω.

No boundary condition has been imposed.
Proof : trg (S∗g (u, a)) = −(n − 1)∆gu − uR(g) + na

2 . Thus the full Hessian
of u can be expressed in terms of S∗g (u, a) and lower order terms in (u, a).
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Proof of Local Deformation: Basic estimates

Coercivity estimate

In case Ω is not V -static, then one can use compactness arguments to
prove the following estimate for small ε > 0, where
Ωε = {x ∈ Ω : dist(x , ∂Ω) > ε}:

‖(u, a)‖H2(Ωε)×R ≤ C‖S∗g (u, a)‖L2(Ωε).

Weighted estimates

Let ρ be a smooth, positive function on Ω, which near the boundary is
e−1/d , d(x) = dist(x , ∂Ω).

The preceding estimate can be integrated to obtain the weighted L2

estimates:
‖(u, a)‖H2

ρ(Ω)×R ≤ C‖S∗g (u, a)‖L2
ρ(Ω).
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Proof of Local Deformation: Linearized problem

Under the assumption that S∗g has trivial kernel, solutions to
Sg (h) = (σ, τ) for (σ, τ) ∈ L2

ρ−1(Ω)× R can be obtained from standard

variational arguments. The solution h will be of the form h = ρS∗g (u, a).
The decaying weight ρ will ensure h extends smoothly by zero across ∂Ω.

Proposition

Let Ω ⊂ M be a smooth, bounded domain and assume that S∗g has trivial
kernel in H2

loc(Ω)× R. Let (σ, τ) ∈ L2
ρ−1(Ω)× R. There is a unique

minimizer (u, a) ∈ H2
ρ (Ω)× R of the functional F , defined on H2

ρ (Ω)× R
given by

F(u, a) =

∫
Ω

(
1

2
| S∗g (u, a) |2 ρ− σu

)
dµg − aτ.

The minimizer is a weak solution of the equation Sg (ρS∗g (u, a)) = (σ, τ)
and satisfies ‖(u, a)‖H2

ρ(Ω)×R ≤ C‖(σ, τ)‖L2
ρ−1 (Ω)×R.
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Proof of the Local Deformation: Linearized problem

Proof: We use the injectivity estimate ‖(u, a)‖H2
ρ(Ω)×R ≤ C‖S∗g (u, a)‖L2

ρ(Ω)

to infer that the infimum µ ≤ F((0, 0)) = 0 of the functional

F(u, a) =

∫
Ω

(
1

2
| S∗g (u, a) |2 ρ− σu

)
dµg − aτ

≥ C ′‖(u, a)‖2
H2
ρ(Ω)×R − ‖(u, a)‖H2

ρ(Ω)×R‖(σ, τ)‖L2
ρ−1 (Ω)×R

is finite. Standard functional analysis then gives a minimizer (u, a), which
is the unique global minimizer, since for (û, â) 6= (u, a),
t 7→ F((1− t)(u, a) + t(û, â)) is strictly convex. For the minimizer (u, a),
from µ ≤ 0, we get an estimate

1

2C 2
‖(u, a)‖2

H2
ρ(Ω)×R ≤

∫
Ω

1

2
| S∗g (u, a) |2 ρ dµg = µ+

∫
Ω

σu dµg + aτ

≤ ‖(σ, τ)‖L2
ρ−1 (Ω)×R · ‖(u, a)‖H2

ρ(Ω)×R

This gives us ‖(u, a)‖H2
ρ(Ω)×R . ‖(σ, τ)‖L2

ρ−1 (Ω)×R.

Justin Corvino (Lafayette) Deformation and Gluing Constructions October 28-October 31, 2014 47 / 67



Comments on pointwise estimates

The proof of the Deformation Theorem proceeds through iterated linear
corrections. We need to keep pointwise control during the iteration.

Weighted Schauder Estimates

The operator ρ−1LgρL
∗
g to which we apply these estimates can be

expressed in local coordinates as P = (n − 1)∆2 +
∑
|β|≤3

bβD
β, and

analogously for the quasilinear operator ρ−1(R(g + ρS∗g (u, a))− R(g)). If
we had chosen ρ to decay like a power of the distance d to the boundary,
then the lower order coefficients would go like |bβ| ∼ d−(4−|β|), and a
scale-invariant form of the interior Schauder estimates is standard. In case
the weight ρ decays exponentially, the lower order coefficients can behave
like |bβ| ∼ d−2(4−|β|) near ∂Ω. The best way to handle such behavior is to
choose the right scaling, in order to write interior Schauder estimates on Ω
in terms of interior Schauder estimates on fixed balls.
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CSC gluing with volume constraint

We start with a gluing result for manifolds with boundaries. There are two
non-degeneracy conditions—one for the conformal method, and one for
the localized deformation technique discussed in Lecture 2.

Theorem (C., Eichmair, Miao)

Let (M1, g1) and (M2, g2) be compact manifolds with nonempty
boundaries, and let pi ∈ int(Mi ) be marked points, and let Ui be
neighborhoods of pi which are not V -static. Assume that each metric has
CSC R(gi ) = σn, where σn ∈ {−n(n − 1), 0, n(n − 1)}. In case σn > 0, we
assume that the first Dirichlet eigenvalue of ((n − 1)∆gi + σn) is positive.

Then there are neighborhoods Vi ⊂⊂ Ui of pi , and there is a metric ḡ on
M1#M2 which agrees with gi on each of Mi \ Vi , so that R(ḡ) = σn and
V (ḡ) = V (g1) + V (g2).
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CSC gluing with volume constraint

Sketch of proof: Let g be g1 or g2. R > 0 will be the radius of a
sufficiently small ball around the chosen points. We omit subscripts.
Let g̊ be the round unit metric on Sn−1.

• Conformally blow up neighborhood of each chosen point in
quasi-normal coordinates where gij(x) = δij + Qij(x),
Qij(0) = 0 = ∂Qij(0), to produce an asymptotically cylindrical end:

r−2g = r−2dr2 + g̊ + r−2Q,

where (r , θ) are spherical coordinates based on the x coordinates.

• For T � 1, let s = − log r + logR − T
2 . This rescales r = Re−s−T/2,

with r−2dr2 = ds2. Note that r = R corresponds to s = −T
2 .

Also, let Ψ be defined so that Ψ
4

n−2 is r2 near p, interpolates to 1
between BR(p) and B2R(p).

• Then r−2g = Ψ−
4

n−2 g = ds2 + g̊ + e−T e−2sR2ĥ inside BR(p), i.e.
for s > −T

2 . If g̃c = ds2 + g̊ is the cylindrical metric, then ‖∇̃`ĥ‖ has
T -independent bound.
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CSC gluing with volume constraint

Sketch of proof, continued

• Now transition smoothly from Ψ−
4

n−2 g = ds2 + g̊ + e−T e−2sR2ĥ in
(−T

2 ,−1) to the exact cylindrical metric g̃c = ds2 + g̊ in (−1
2 ,−1).

• Do the same for both ends. One one end, take s to −s, glue together
in the exactly cylindrical part. Get a metric γT on
CT = [−T

2 ,
T
2 ]× Sn−1 of the form γT = ds2 + g̊ + e−T cosh(2s)ĥT ,

where ĥT = 0 on [−1
2 ,

1
2 ]×Sn−1. ‖∇̃`ĥT‖ bounded independent of T .

• Build an approximate solution: Let ψ(t) interpolate from t
n−2

2 for
0 < t < R, to 1 for t > 2R. (ψ is essentially Ψ.) Let χ1,T cut off
from 1 to 0 in the interval [T2 − 1, T2 ], while χ2,T cuts off from 1 to 0

going from −T
2 + 1 down to −T

2 .

• Let ΨT (s, θ) = χ1,T (s)ψ(e−s−
T
2 R) + χ2,T (s)ψ(es−

T
2 R).
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CSC gluing with volume constraint

Sketch of proof, continued: Recall that γT on [−T
2 ,

T
2 ] transitions from

Ψ−
4

n−2 g = r−2g to the cylindrical metric from one manifold, then back
the other way.

• Approximate solution: Ψ
4

n−2

T γT .

• R(Ψ
4

n−2

T γT ) = 4(n−1)
n−2 Ψ

− n+2
n−2

T

[
−∆γT ΨT + n−2

4(n−1)R(γT )ΨT

]
.

• On [−T
2 + 1, T2 − 1]× Sn−1, ΨT (s, θ) = 2R

n−2
2 e−

n−2
4

T cosh
(
n−2

2 s
)
.

On [−1
2 ,

1
2 ]× Sn−1, the metric γT = ds2 + g̊ , so that

R(γT ) = (n − 1)(n − 2), while ∆γT ΨT =
(
n−2

2

)2
ΨT . Thus

R(Ψ
4

n−2

T γT ) = 0 on [−1
2 ,

1
2 ]× Sn−1.

• The approximate solution is thus the two given manifolds joined by

Schwarzschild neck of mass mT = 2R2e−
(n−2)T

2 . The volume is
approximately V (g1) + V (g2).
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CSC gluing with volume constraint

Sketch of proof, continued

• Goal: Solve for conformal factor to return to CSC: solve
NT (ΨT + ηT ) = 0 for small ηT , where

NT (f ) = −∆γT f + n−2
4(n−1)R(γT )f − n−2

4(n−1)σnf
n+2
n−2 .

• NT (ΨT ) is exponentially small in T . A contraction mapping
argument will give the solution, once the linearized operator

LT = DNT

∣∣∣
ΨT

is analyzed.

•
LT (f ) = −∆γT f + n−2

4(n−1)R(γT )f − n−2
4(n−1)σn

n+2
n−2 Ψ

4
(n−2)

T f .

• The operators LT converge locally on punctured M1 or M2 to L,

obtained by replacing γT by g̃ = Ψ−
4

n−2 g and ΨT by Ψ.
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CSC gluing with volume constraint

Sketch of proof, continued

• L = −∆g̃ + n−2
4(n−1)R(g̃)− n−2

4(n−1)σn
n+2
n−2 Ψ

4
n−2 .

• By conformal invariance, since R(g) = σn, we have

(−∆g̃ + n−2
4(n−1)R(g̃))η = Ψ

n+2
n−2 (−∆g + n−2

4(n−1)σn)(Ψ−1η).

• Lη = 0 implies, with a little arithmetic,
(

∆g + σn
n−1

)
(Ψ−1η) = 0.

• The linearized operator has no kernel for large T , by contradiction. If
there were elements ηj of maximum value 1 in the kernel of LTj

for
Tj → +∞, then there are two cases to consider.

• Case (i): For infinitely many j , max |ηj | is uniformly bounded away
from zero outside the neck, so that a subsequence will determine a
nontrivial solution η̂ = Ψ−1η of (∆g + σn

n−1 )η̂ = 0 (Dirichlet), which
cannot exist (by assumption in case σn > 0).
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CSC gluing with volume constraint

Sketch of proof, continued

• LT = −∆γT + n−2
4(n−1)R(γT )− n−2

4(n−1)σn
n+2
n−2 Ψ

4
(n−2)

T converges locally

uniformly on the neck to −∆g̃c + n−2
4(n−1)R(g̃c) = −∆g̃c + (n−2)2

4 .

• Case (ii): If ηj instead go to zero locally uniformly on the punctured
manifolds, then a subsequence converges to a bounded solution of

(∆g̃c −
(n−2)2

4 )η = 0 on the cylinder, which cannot exist.

• A similar argument shows that the inverse GT is bounded independent
of T .

• We can estimate the solution, in order to estimate the resulting
volume, close to V (g1) + V (g2).

• We have a family of metrics parametrized by T , with CSC σn, with
volume approaching V (g1) + V (g2) and which outside the gluing
region approach g1 t g2.

• We now want a localized deformation procedure to get the original
metrics back outside the gluing region, and to correct the volume.
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CSC gluing with volume constraint

• Now, find annuli around each pi which are not V -static. If there were
no such annulus, get a sequence Ai of annuli, increasing to the
punctured manifolds, each with non-trivial V -static potentials. The
kernels of L∗gi decrease—but by finite dimensionality, then, they must
stabilize. From this, we get a nontrivial solution with an isolated
singularity. The ODE argument recalled in Lecture 2 shows that such
a potential extends smoothly to pi , which contradicts the assumption
that the original manifolds are not V -static.

• For large T , the CSC metric obtained above is close to gi on each
respective annulus, and the volume approaches V (g1) + V (g2).

• Now glue back in the original metrics gi in the non-static annuli. Use
the localized perturbation result to adjust scalar curvature and
volume.
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CSC gluing with volume constraint

As a corollary we obtain the following.

Corollary (C., Eichmair, Miao)

If (M1, g1) and (M2, g2) are two n-manifolds of CSC σn which are not
V -static, there is a family of CSC σn metrics γT on M1#M2 which have
total volume V (g1) + V (g2), and which are equal to the original metrics
outside the gluing region.

To see this: pick small neighborhoods for which ((n − 1)∆gi + σn) has
positive first Dirichlet eigenvalue.

You can also add a handle this way, preserving total volume.
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Application: Matsuo’s resolution of Modified KW problem

• We now return to a problem introduced the first lecture, the modified
Kazdan-Warner problem, to determine the range of the scalar
curvature mapping on unit volume metrics, as studied by O.
Kobayashi.

• We had discussed that the remaining cases were the cases
R(g) = c ≥ σ(M) > 0.

• S. Matsuo recently resolved these cases, by finding CPSC
non-Yamabe metrics through gluing. We outline the proof here.

• We first note the following corollary of the gluing result.
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Application: Matsuo’s resolution of Modified KW problem

Corollary

If (M1, g1) and (M2, g2) are two n-manifolds of CPSC, with unit volume,
and which are not V -static, there is a CPSC metric g on M1#M2 which
has (R(g))

n
2 = (R(g1))

n
2 + (R(g2))

n
2 and total volume V (g) = 1, and

which is equal to the original metrics outside the gluing region.

Proof: Let ρj = R(gj) > 0, and ĝj = ρjgj . Then R(ĝj) = 1, V (gj) = ρ
n
2
j .

By C-E-M, there is a a metric ĝ with R(ĝ) = 1, V (ĝ) = ρ
n
2
1 + ρ

n
2
2 . Then

g = (V (ĝ))−
2
n ĝ satisfies the requirements.
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Application: Matsuo’s resolution of Modified KW problem

Matsuo notes the following criterion for non-degeneracy in his paper. The
goal then is to arrange so that the condition holds.

Lemma

Suppose (M, g) has CSC. If g is not Einstein and if R(g)
n−1 /∈ spec(∆g ), then

g is not V -static.

Proof: If 0 = S∗g (f , a) = −(∆g f )g + Hessg f − f Ric(g) + a
2g , then tracing

we get

∆g f = −R(g)

n − 1

(
f − na

2

)
.

Thus
(
f − na

2

)
must be zero, else it would be an eigenfunction. Thus f

must be constant, and by the equation S∗g (f , a) = 0, we see g is Einstein,
unless a = 0, in which case f = 0 too.
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Application: Matsuo’s resolution of Modified KW problem

We now turn to the Main Existence Result, giving building blocks for the
final construction.

Proposition

Mn closed, n ≥ 3, σ(M) > 0. There exists ρ > 0 so that for all r ∈ (0, ρ],
there is a g ∈M1, R(g) = r , and g is not V -static.

Proof: Since σ(M) > 0, there is a metric of PSC on M. There are always
metrics of negative scalar curvature, and consider a path g̃t between one
of each of these metrics. The first eigenvalue of the conformal Laplacian
Lt = ∆g̃t − n−2

4(n−1)R(g̃t) is continuous in t, and goes from positive to
negative. There is thus a t0 and u > 0 so that Lt0u = 0. Thus

gt0 := u
4

n−2 g̃t0 has zero scalar curvature.
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Application: Matsuo’s resolution of Modified KW problem

Proof, continued: Apply Koiso’s Local Yamabe Theorem (1979) to obtain
gt ∈ [g̃t ] ∩M1, each with CSC. We arrange parameter so that R(g0) = 0
and R(gt) > 0 for t > 0.
Since the first positive eigenvalue of the Laplacian is also continuous in t,
we may assume for small t > 0, R(gt)

n−1 is not in the spectrum of ∆gt , one of
the conditions required.
If g0 were not Einstein, then gt is not Einstein for small t. From here we
can conclude.
If g0 is Einstein, we apply another result of Koiso (1983): there is an
infinite-dimensional connected slice Σg0 in the space of unit volume
metrics around g0, transverse to the action of Diff(M), and a
finite-dimensional real analytic submanifold of Σg0 that contains all the
Einstein metrics in Σg0 . As there are non-Einstein PSC and NSC metrics
in Σg0 , there is a path of non-Einstein metrics a PSC to a NSC metric.
From here the above applies.
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Application: Matsuo’s resolution of Modified KW problem

Now that the gluing construction can be applied, we arrive at the final
step in the proof.

• Let r1 > 0 be small enough that for M and Sn, there are non-Einstein

metrics of CSC ρ ∈ (0, r1]. Given r > 0, we write r
n
2 = r

n
2

0 + (k
2
n r1)

n
2 ,

for r0 ∈ (0, r1) and k ∈ Z+ ∪ {0}. Let gr0 be a metric on M with
R(gr0) = r0 and V (gr0) = 1. Let gr1 be a metric on Sn with
R(gr1) = r1 and V (gr1) = 1.

• In case k ∈ Z+ (else done), let (M2, g2) be the C-E-M connect sum

of the disjoint union of k spheres, each with metric k−
2
n gr1 . Then

(R(g2))
n
2 = kr

n
2

1 and V (g2) = 1. Apply the Corollary of C-E-M to
M#M2

∼= M to get a metric g with

(R(g))
n
2 = (R(gr0))

n
2 + (R(g2))

n
2 = r

n
2

0 + kr
n
2

1 = r
n
2 and V (g) = 1.

• So R(g) = r , V (g) = 1. But r > 0 was arbitrary!
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Other applications

Other applications of the gluing include applications to constructing
interesting solutions of the Einstein constraint equations, and constructing
more complicated counterexamples to the Min-Oo conjecture. Given the
time, let’s focus on the Min-Oo examples.
Recall the Min-Oo conjecture: if g is a Riemannian metric on Sn+, or more
generally on M with R(g) ≥ n(n − 1), so that (∂M, g) is isometric to the
standard unit sphere Sn−1, and so that ∂M is totally geodesic, then (M, g)
is isometric to the standard unit hemisphere. Brendle, Marques, Neves
provide counterexamples on Sn+ that are identical to the standard sphere
metric in a neighborhood of the equator, and for which
{R(g) > n(n − 1)} 6= ∅.
We remark that a number of rigidity results hold, such as on Sn+ in case
the scalar curvature bound is replaced by Ricci curvature (Hang-Wang),
and in case g is near the round metric g̊ and V (g) ≥ V (g̊) (Miao-Tam).
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Other applications

In light of the previous comment, the following corollary might be
interesting.

Corollary

There exists counterexamples to the Min-Oo conjecture with arbitrarily
large volume.

Proof: Any counterexample which is the round sphere metric near the
equation cannot be V -static (e.g. analyticity). One can then choose a
small geodesic ball B(p, ρ) ⊂ Sn+ on which the scalar curvature is n(n− 1),
and for which the exterior of B(p, ρ2 ) is not V -static, and for which the
first Dirichlet eigenvalue of ∆g + n is positive. One can glue two copies
together, using the C-E-M CSC gluing resulting in a metric with scalar
curvature at least n(n − 1), with double the total volume of the single
counterexample. Since the metrics agree with the round metric near the
equator, one end can be capped off smoothly. This construction can be
repeated.
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Other applications

Remark: One could also apply Gromov-Lawson technique to
Brendle-Marques-Neves examples, where the scalar curvature is strictly
bigger than n(n − 1). Remark: K. Akutagawa notes that results of O.
Kobayashi can also be used.

Corollary

There exists counterexamples to the Min-Oo conjecture with non-trivial
topology.

Proof: Take a counterexample of Min-Oo as above, and add a CSC
handle. Or, consider metrics on S1 × Sn−1 or Sn/Γ, with scalar curvature
at least n(n − 1), with constant scalar curvature n(n − 1) in an open
subset. Such metrics exists by Kazdan-Warner, and can be chosen to be
non V -static (e.g. non-CSC).
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Open problems

A couple open problems came up in discussions with Eichmair and Miao:

• Are there any CSC counterexamples to the Min-Oo conjecture?

• Are there static counterexamples to the Min-Oo conjecture?

THANK YOU: A big thank you to the organizers, for the invitation and
gracious hospitality in Tokyo.
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