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Einstein-Hilbert functional

Let M be a compact n-dimensional manifold, n ≥ 3.
The renormalised Einstein-Hilbert functional is

E :M→ R, E(g) :=

∫
M scal g dvg

vol(M,g)(n−2)/n

M := {metrics on M}.
[g] := {u4/(n−2)g |u > 0}.

Stationary points of E : [g]→ R = metrics with constant scalar
curvature

Stationary points of E :M→ R = Einstein metrics



Conformal Yamabe constant

Inside a conformal class

Y (M, [g]) := inf
g̃∈[g]

E(g̃) > −∞.

This is the conformal Yamabe constant.

Y (M, [g]) ≤ Y (Sn)

where Sn is the sphere with the standard structure.

Solution of the Yamabe problem (Trudinger, Aubin, Schoen-Yau)
E : [g]→ R attains its infimum.
Remark Y (M, [g]) > 0 if and only if [g] contains a metric of
positive scalar curvature.



Obata’s theorem

Theorem (Obata)
Assume:

I M is connected and compact
I g0 is an Einstein metric on M
I g = u4/(n−2)g0 with scal g constant
I (M,g0) not conformal to Sn

Then u is constant.

Conclusion
E(g0) = Y (M, [g0])

This conclusion also holds if g0 is a non-Einstein metric with
scal = const ≤ 0 (Maximum principle).
So in these two cases, we have determined Y (M, [g0]).
However in general it is difficult to get explicit “good” lower
bounds for Y (M, [g0]).



On the set of conformal classes

σ(M) := sup
[g]⊂M

Y (M, [g]) ∈ (−∞,Y (Sn)]

The smooth Yamabe invariant.
Introduced by O. Kobayashi and R. Schoen.

Remark σ(M) > 0 if and only if M caries a metric of positive
scalar curvature.
Supremum attained?
Depends on M.



Example CP2

The Fubini-Study gFS metric is Einstein and

53.31... = E(gFS) = Y (CP2, [gFS]) = σ(CP2).

Supremum attained in the Fubini-Study metric.

LeBrun ’97 Seiberg-Witten theory
LeBrun & Gursky ’98 Twisted Dirac operators



Similar examples

I σ(Sn) = n(n − 1)ω
2/n
n .

I Gromov & Lawson, Schoen & Yau ≈′ 83: Tori Rn/Zn.
σ(Rn/Zn) = 0. Enlargeable Manifolds

I LeBrun ′99: All Kähler-Einstein surfaces with non-positive
scalar curvature. Seiberg-Witten methods

I Bray & Neves ’04: RP3. σ(RP3) = 2−2/3σ(S3).
Inverse mean curvature flow

I Perelman, M. Anderson ’06 (sketch), Kleiner-Lott ’08
compact quotients of 3-dimensional hyperbolic space
Ricci flow

Example where supremum is not attained
Schoen: σ(Sn−1 × S1) = σ(Sn).
The supremum is not attained.



Some known values of σ
I All examples above.
I Akutagawa & Neves ’07: Some non-prime 3-manifolds, e.g.

σ(RP3#(S2 × S1)) = σ(RP3).

I Seiberg-Witten methods have been extended to the
Pin−(2)-setting by Ishida, Matsuo and Nakamura ’15

I Compact quotients of nilpotent Lie groups: σ(M) = 0.

Unknown cases
I Nontrivial quotients of spheres, except RP3.
I Sk × Sm, with k ,m ≥ 2.
I No example of dimension ≥ 5 known with σ(M) 6= 0 and
σ(M) 6= σ(Sn).



Positive scalar curvature⇔ psc⇔ σ(M) > 0
Suppose n ≥ 5.

1. σ(M) > 0 is a “bordism invariant”.
2. Bordism classes admitting psc metrics form a subgroup in

the bordism group Ωspin
n (Bπ1).

3. If Pp π→ Bb is a fiber bundle, equipped with a family of
vertical metrics (gp)p∈B with Y (π−1(p), [gp]) > 0, then
σ(P) > 0.



Guiding questions of our work, ε > 0

1. Is σ(M) > ε a “bordism invariant”? Yes for 0 < ε < Λn,
Λ5 = 45.1, Λ6 = 49.9, ADH

2. Do σ(M) > ε-classes form a subgroup?
Yes for 0 < ε < Λn, ADH

3. If Pp π→ Bb is a fiber bundle, equipped with a family of
vertical metrics (gp)p∈B with Y (π−1(p), [gp]) > 0,
f = p − b ≥ 3, b = dim B ≥ 3, then

σ(P)p ≥ cb,f

(
min
p∈B

Y (π−1(p), [gp])

)f

.

ADH + M. Streil



Explicit values for Λn

Theorem (ADH)
Let M be a compact simply connected manifold, n = dim M.
Then

n = 5 : Λ5 = 45.1 < σ(M) ≤ σ(S5) = 78.9 . . . .

n = 6 : Λ6 = 49.9 < σ(M) ≤ σ(S6) = 96.2 . . . .



Gap theorems

Theorem (ADH)
Let M is a 2-connected compact manifold of dimension n ≥ 5.
If α(M) 6= 0, then σ(M) = 0.
If α(M) = 0, then

n = 5 6 7 8 9 10 11
σ(M) ≥ 78.9 87.6 74.5 92.2 109.2 97.3 135.9
σ(Sn) = 78.9 96.2 113.5 130.7 147.8 165.0 182.1



Theorem (ADH)
Let Γ be group whose homology is finitely generated in each
degree. In the case n ≥ 5, we know that

{σ(M) |π1(M) = Γ, dim M = n} ∩ [0,Λn]

is a well-ordered set (with respect to the standard order ≤).
In other words: there is no sequence of n-dimensional
manifolds Mi with π1(Mi) = Γ such that σ(Mi) ∈ [0,Λn] and such
that σ(Mi) is strictly decreasing.
On the other hand it is conjectured that

σ(Sn/Γ)→ 0 for #Γ→∞



Techniques

Key ingredients
(1) A monotonicity formula for surgery, ADH
(2) A lower bound for products, ADH

Other techniques
(3a) Rearranging functions on Hr

c × Ss to test functions on
Rr × Ss, ADH

(3b) Conformal Yamabe constants of Y (R2 × Sn−2), Petean-Ruiz
(4) Are Lp-solutions of the Yamabe equation on complete

manifolds already L2? Results by ADH
(5) Obata’s theorem about constant scalar metrics conformal to

Einstein manifolds
(6) Standard bordism techniques: Smale, ..., Gromov-Lawson,

Stolz



(1) A Monotonicity formula for surgery
Let MΦ

k be obtained from M by k -dimensional surgery,
0 ≤ k ≤ n − 3.

Theorem (ADH, # 1)
There is Λn,k > 0 with

σ(MΦ
k ) ≥ min{σ(M),Λn,k}

Furthermore Λn,0 = Y (Sn).
Special cases were already proved by Gromov-Lawson,
Schoen-Yau, Kobayashi, Petean.
Thm # 1 follows directly from Thm # 2.

Theorem (ADH, #2)
For any metric g on M there is a sequence of metrics gi on MΦ

k
such that

lim
i→∞

Y (MΦ
k , [gi ]) = min

{
Y (M, [g]),Λn,k

}
.



Construction of the metrics

Let Φ : Sk × Bn−k ↪→ M be an embedding.
We write close to S := Φ(Sk × {0}), r(x) := d(x ,S)

g ≈ g|S + dr2 + r2gn−k−1
round

where gn−k−1
round is the round metric on Sn−k−1.

t := − log r .
1
r2 g ≈ e2tg|S + dt2 + gn−k−1

round

We define a metric

gi =


g for r > r1
1
r2 g for r ∈ (ρ, r0)

f 2(t)g|S + dt2 + gn−k−1
round for r < ρ

that extends to a metric on MΦ
k .



r1

r0 2ρ ρ

r1

r0

2ρ

ρ

gρ = g gρ = F 2g

Sn−k−1 has constant length



Proof of Theorem #2, continued
Any class [gi ] contains a minimizing metric written as u4/(n−2)

i gi .
We obtain a PDE:

4
n − 1
n − 2

∆gi ui + scal gi ui = λiu
n+2
n−2
i

ui > 0,
∫

u2n/(n−2)
i dvgi = 1, λi = Y ([gi ])

This sequence might:
I Concentrate in at least one point. Then lim infλi ≥ Y (Sn).
I Concentrate on the old part M \ S. Then lim infλi ≥ Y ([g]).
I Concentrate on the new part.

Gromov-Hausdorff convergence of pointed spaces.
Limit spaces:

Hk+1
c × Sn−k−1, c ∈ [0,1]

Hk+1
c : simply connected, complete, K = −c2

Then lim infλi ≥ Y (Mc).



The numbers Λn,k

(Disclaimer: Additional conditions for k + 3 = n ≥ 7
See Ammann–Große 2015 for some related questions)

Λn,k := inf
c∈[0,1]

Y (Hk+1
c × Sn−k−1)

Y (N) := inf
u∈C∞c (N)

∫
N 4n−1

n−2 |du|2 + scal u2

(
∫

N up)2/p

Note: Hk+1
1 × Sn−k−1 ∼= Sn \ Sk .

k = 0: Λn,k = Y (R× Sn−1) = Y (Sn)
k = 1, . . . ,n − 3: Λn,k > 0

Λn := min{Λn,2, . . . ,Λn,n−3}



Conjecture #1: Y (Hk+1
c × Sn−k−1) ≥ Y (Rk+1 × Sn−k−1)

Conjecture #2: The infimum in the definition of
Y (Hk+1

c × Sn−k−1) is attained by an O(k + 1)×O(n − k)
invariant function if 0 ≤ c < 1.

O(n − k)-invariance is difficult,
O(k + 1)-invariance follows from standard reflection methods
Comments If we assume Conjecture #2, then Conjecture #1
reduces to an ODE and Y (Hk+1

c × Sn−k−1) can be calculated
numerically. Assuming Conjecture #2, a maple calculation
confirmed Conjecture #1 for all tested n, k and c.
The conjecture would imply:

σ(S2 × S2) ≥ Λ4,1 = 59.4...

Compare this to

Y (S4) = 61.5... Y (S2 × S2) = 50.2... σ(CP2) = 53.31...



Values for Λn,k More values of Λn,k

n k Λn,k ≥ Λn,k = Y (Sn)
known conjectured

3 0 43.8 43.8 43.8

4 0 61.5 61.5 61.5
4 1 38.9 59.4 61.5

5 0 78.9 78.9 78.9
5 1 56.6 78.1 78.9
5 2 45.1 75.3 78.9

6 0 96.2 96.2 96.2
6 1 > 0 95.8 96.2
6 2 54.7 94.7 96.2
6 3 49.9 91.6 96.2

7 0 113.5 113.5 113.5
7 1 > 0 113.2 113.5
7 2 74.5 112.6 113.5
7 3 74.5 111.2 113.5
7 4 > 0 108.1 113.5



(2) A lower bound for products

an := 4(n − 1)/(n − 2)

Theorem (ADH)
Let (V ,g) and (W ,h) be Riemannian manifolds of dimensions
v ,w ≥ 3. Assume that Y (V , [g]) ≥ 0,Y (W , [h]) ≥ 0 and that

Scalg + Scalh

av+w
≥ Scalg

av
+

Scalh

aw
. (1)

Then,

Y (V ×W , [g + h])

(v + w)av+w
≥
(

Y (V , [g])

vav

) v
m
(

Y (W , [h])

waw

)w
m

.

Main technique: Iterated Hölder inequality.



How good is this bound?

If (V ,g) and (W ,h) are compact manifolds with psc and of
dimension at least 3, then

bv ,w ≤
infλ∈(0,∞)Y (V ×W , [g + λh])

(v + w)
(

Y (V ,[g])
v

) v
v+w
(

Y (W ,[h])
w

) w
v+w

≤ 1,

bv ,w :=
av+w

av v/(v+w)aw w/(v+w)
< 1.

bv ,w w=3 w=4 w=5 w=6 w=7
v= 3 0.625 0.7072.. 0.7515.. 0.7817.. 0.8042..

4 0.7072.. 0.7777.. 0.8007.. 0.8367.. 0.8537..
5 0.7515.. 0.8007.. 0.8427.. 0.8631.. 0.8772..
6 0.7817.. 0.8367.. 0.8631.. 0.88 0.8921..
7 0.8042.. 0.8537.. 0.8772.. 0.8921.. 0.9027..



Application to Λn,k

Hk+1
c conformal to a subset of Sk+1

⇒ Y (Hk+1
c ) = Y (Sk+1)

Thus for 2 ≤ k ≤ n − k − 4:

Λn,k = inf
c∈[0,1]

Y (Hk+1
c × Sn−k−1)

≥ n bk+1,n−k−1

(
Y (Sk+1)

k + 1

)(k+1)/n (Y (Sn−k−1)

n − k − 1

)(n−k−1)/n



Application to fiber bundles

Assume F f → Pn → Bb is a fiber bundle, σ(F ) > 0,
f = dim F ≥ 3.

Shrink a psc metric gF on F .

We see: σ(P) ≥ Y ((F ,gF )× Rb) (M. Streil, in preparation).
For b ≥ 3:

Y ((F ,gF )× Rb) ≥ n bf ,b

(
Y (F , [gF ])

f

)f/n (Y (Sb)

b

)b/n

If gF carries an Einstein metric, then Petean-Ruiz can provide
lower bounds for Y (F × R, [gF + dt2]) and
Y (F × R2, [gF + dt2 + ds2]).



Important building blocks

For the following manifolds we have lower bounds on the
smooth Yamabe invariant and the conformal Yamabe constant.

I Smooth Yamabe invariant of total spaces of bundles with
fiber CP2. These total spaces generate the oriented
bordism classes.

I Smooth Yamabe invariant of total spaces of bundles with
fiber HP2. These total spaces generate the kernel of
α : Ωspin

n → KOn

I Conformal Yamabe constant of Einstein manifolds:
SU(3)/SO(3), CP2, HP2

I HP2 × R, HP2 × R2, CP2 × R, CP2 × R Petean-Ruiz
I Conformal Yamabe constant of R2 × Sn−2. Particularly

important for n = 4,5,9,10. Petean-Ruiz
I Conformal Yamabe constant of R3 × S2. Petean-Ruiz



Thanks for your attention!
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Possible application to CP3

Lemma
Assume that the surgery monotoncity formula holds for the
conjectured values

Λ6.2 = 94.7... Λ6.3 = 91.6...

Then σ(CP3) ≥ min{Λ6.2,Λ6.3} ≥ 91.6....

Compare to the Fubini-Study metric gFS
µ(CP3, [gFS]) = 82.9864 . . ..

Proof.
CP3 is spin-bordant to S6. Find such a bordism W such that
that W is 2-connected. Then one can obtain CP3 by surgeries
of dimension 2 and 3 out of S6.



Application to connected sums

Assume that M is compact, connected of dimension at least 5
with 0 < σ(M) < min{Λn,1, . . .Λn,n−3} =: Λ̂n. Let p,q ∈ N be
relatively prime. Then

σ(M# · · ·#M︸ ︷︷ ︸
p times

) = σ(M)

or
σ(M# · · ·#M︸ ︷︷ ︸

q times

) = σ(M).

Are there such manifolds M?
Schoen conjectured: σ(Sn/Γ) = σ(Sn)/(#Γ)2/n∈ (0, Λ̂n)
for #Γ large.



Application to connected sums M#N

Assume that M and N are compact, connected of dimension at
least 5 with

0 < σ(N) > σ(M) < Λ̂n.

Then
σ(M) = σ(M#N).



More values of Λn,k

Back

n k Λn,k ≥ Λn,k = Y (Sn)
known conjectured

8 0 130.7 130.7 130.7
8 1 > 0 130.5 130.7
8 2 92.2 130.1 130.7
8 3 95.7 129.3 130.7
8 4 92.2 127.9 130.7
8 5 > 0 124.7 130.7

9 0 147.8 147.8 147.8
9 1 109.2 147.7 147.8
9 2 109.4 147.4 147.8
9 3 114.3 146.9 147.8
9 4 114.3 146.1 147.8
9 5 109.4 144.6 147.8
9 6 > 0 141.4 147.8



Back

n k Λn,k ≥ Λn,k = Y (Sn)
known conjectured

10 0 165.0 165.02
10 1 102.6 165.02
10 2 126.4 165.02
10 3 132.0 165.02
10 4 133.3 165.02
10 5 132.0 165.02
10 6 126.4 165.02
10 7 > 0 165.02

11 0 182.1 182.1
11 1 > 0 182.1
11 2 143.3 182.1
11 3 149.4 182.1
11 4 151.3 182.1
11 5 151.3 182.1
11 6 149.4 182.1
11 7 143.3 182.1
11 8 > 0 182.1
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