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Notations:

• W is a compact manifold, dimW = d ,

• R(W ) is the space of all Riemannian metrics,

• if ∂W 6= ∅, we assume that a metric g = h + dt2 near ∂W ;

• Rg is the scalar curvature for a metric g ,

• R+(W ) is the subspace of metrics with Rg > 0;

• if ∂W 6= ∅, and h ∈ R+(∂W ), we denote

R+(W )h := {g ∈ R+(W ) | g = h + dt2 near W }.

• “psc-metric” = “metric with positive scalar curvature”.



Existence Question:

• For which manifolds R+(W ) 6= ∅?

It is well-known that for a closed manifold W ,

R+(W ) 6= ∅ ⇐⇒ Y (W ) > 0.

Yamabe invariant
�
�	

Assume R+(W ) 6= ∅.

More Questions:

• What is the topology of R+(W )?

• In particular, what are the homotopy groups πkR+(W )?



Let (W , g) be a spin manifold. Then there is a canonical real
spinor bundle Sg →W and a Dirac operator Dg acting on the
space L2(W ,Sg ).

Theorem. (Lichnerowicz ’60)
D2
g = ∆s

g + 1
4Rg . In particular, if Rg > 0 then Dg is invertible.

For a manifold W , dimW = d , we obtain a map

(W , g) 7→ Dg√
D2
g + 1

∈ Fredd ,0,

where Fredd ,0 is the space of C`d -linear Fredholm operators.

The space Fredd ,0 also classifies the real K -theory, i.e.,

πqFredd ,0 = KOd+q



It gives the index map

α : (W , g) 7→ ind(Dg ) = [Dg ] ∈ π0Fredd ,0 = KOd .

The index ind(Dg ) does not depend on a metric g .

Magic of Index Theory gives a map:

α : ΩSpin
d −→ KOd .

Thus α(M) := ind(Dg ) gives a topological obstruction to
admitting a psc-metric.

Theorem. (Gromov-Lawson ’80, Stolz ’93) Let W be a spin
simply connected closed manifold with d = dimW ≥ 5. Then
R+(W ) 6= ∅ if and only if α(W ) = 0 in KOd .

Magic of Topology: There are enough examples of
psc-manifolds to generate Ker α ⊂ ΩSpin

d , then we use surgery.



Surgery. Let W be a closed manifold, and Sp × Dq+1 ⊂W .

We denote by W ′ the manifold which is the result of the
surgery along the sphere Sp:

W ′ = (W \ (Sp × Dq+1)) ∪Sp×Sq (Dp+1 × Sq).

Codimension of this surgery is q + 1.

Sp×Dq+1×I1

Sp×Dq+2
+

VV0
W × I0

Dp+1×Dq+1

W ′W

W × I0



Surgery Lemma. (Gromov-Lawson) Let g be a metric on W
with Rg > 0, and W ′ be as above, where the q + 1 ≥ 3.
Then there exists a metric g ′ on W ′ with Rg ′ > 0.

g + dt2

Sp×Dq+2
+

VV0
W × I0

Dp+1×Dq+1

W ′W

W × I0



Surgery Lemma. (Gromov-Lawson) Let g be a metric on W
with Rg > 0, and W ′ be as above, where the q + 1 ≥ 3.
Then there exists a metric g ′ on W ′ with Rg ′ > 0.

standard metric
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Surgery Lemma. (Gromov-Lawson) Let g be a metric on W
with Rg > 0, and W ′ be as above, where the q + 1 ≥ 3.
Then there exists a metric g ′ on W ′ with Rg ′ > 0.
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Surgery Lemma. (Gromov-Lawson) Let g be a metric on W
with Rg > 0, and W ′ be as above, where the q + 1 ≥ 3.
Then there exists a metric g ′ on W ′ with Rg ′ > 0.

VV0
W × I0

Dp+1×Dq+1

(W ′, g ′)

W

W × I0

(W , g)



Conclusion: Let W and W ′ be simply connected cobordant spin
manifolds, dimW = dimW ′ = d ≥ 5. Then

R+(W ) 6= ∅ ⇐⇒ R+(W ′) 6= ∅.

Assume R+(W ) 6= ∅.

Theorem. (Chernysh, Walsh) Let W and W ′ be simply
connected cobordant spin manifolds, dimW = dimW ′ ≥ 5. Then

R+(W ) ∼= R+(W ′).

Let ∂W = ∂W ′ 6= ∅, and h ∈ R+(∂W ), then

R+(W )h ∼= R+(W ′)h.

Questions:

• What is the topology of R+(W )?

• In particular, what are the homotopy groups πkR+(W )?



Example. Let us show that Z ⊂ π0R+(S7).

Let B be a Bott manifold, i.e. B is a simply connected spin
manifold, dimB = 8, with α(B8) = Â(B) = 1.

Let B̄ := B \ (D8
1 t D8

2 ):

B̄(S7, g0)
(S7, g1)

Thus Z ⊂ π0R+(S7).



Index-difference construction (N.Hitchin):

Let g0 ∈ R+(W ) 6= ∅ be a base point, and g ∈ R+(W ).
Let gt = (1− t)g0 + tg .

g

g0

R(W )

R+(W )

Fredd,0

(Fredd,0)+
invertibe operators

@R

Fact: The space (Fredd ,0)+ is contractible.

The index-difference map: Ag0 : R+(W ) −→ ΩFredd ,0.
We obtain a homomorphism:

Ag0 : πkR+(W ) −→ πkΩFredd ,0 = KOk+d+1
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There is different way to construct the index-difference map.

Let g0 ∈ R+(W ) 6= ∅ be a base point, and g ∈ R+(W ), and

gt = (1− t)g0 + tg .

Then we have a cylinder W × I with the metric ḡ = gt + dt2:

g0 gḡ = gt + dt2

W × I

It gives the Dirac operator Dḡ with the Atyiah-Singer-Patodi
boundary condition. We obtain the second map

indg0 : R+(W ) −→ ΩFredd ,0, g 7→ Dḡ√
D2

ḡ+1
∈ Fredd+1,0 ∼ ΩFredd ,0.

Magic of the Index Theory: indg0 ∼ Ag0 .



The classifying space BDiff∂(W ). Let W be a connected spin
manifold with boundary ∂W 6= ∅. Fix a collar
∂W × (−ε0, 0] ↪→W . Let

Diff∂(W ) := {ϕ ∈ Diff(W ) | ϕ = Id near ∂W }.

We fix an embedding ι∂ : ∂W × (−ε0, 0] ↪→ Rm and consider the
space of embeddings

Emb∂(W ,Rm+∞) = {ι : W ↪→ Rm+∞ | ι|∂W×(−ε0,0] = ι∂ }

The group Diff∂(W ) acts freely on Emb∂(W ,Rm+∞) by

re-parametrization: (ϕ, ι) 7→ (W
ϕ→W

ι
↪→ Rm+∞). Then

BDiff∂(W ) = Emb∂(W ,Rm+∞)/Diff∂(W ).

The space BDiff∂(W ) classifies smooth fibre bundles with the
fibre W .
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?
W E (W ) = Emb∂(W ,Rm+∞)×Diff∂(W ) W



The classifying space BDiff∂(W ). Let W be a connected spin
manifold with boundary ∂W 6= ∅. Fix a collar
∂W × (−ε0, 0] ↪→W . Let
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ι
↪→ Rm+∞).

E E (W )

B BDiff∂(W )
?
W

-f̂

?
W

-f



Moduli spaces of metrics. Let W be a connected spin manifold
with boundary ∂W 6= ∅, h0 ∈ R+(∂W ). Recall:

R(W )h0 := {g ∈ R(W ) | g = h0 + dt2 near ∂W },

Diff∂(W ) := {ϕ ∈ Diff(W ) | ϕ = Id near ∂W }.

The group Diff∂(W ) acts freely on R(W )h0 and R+(W )h0 :

M(W )h0 = R(W )h0/Diff∂(W ) = BDiff∂(W ),

M+(W )h0 = R+(W )h0/Diff∂(W ).

Consider the map M+(W )h0 → BDiff∂(W ) as a fibre bundle:

R+(W )h0 →M
+(W )h0 → BDiff∂(W )



Let g0 ∈ R+(W )h0 be a “base point”.

We have the fibre bundle:

Let ϕ : I → BDiff∂(W ) be a loop

with ϕ(0) = ϕ(1) = g0, and

ϕ̃ : I →M+(W )h0 its lift.

M+(W )h0

BDiff∂(W )

?
R+(W )h0

g0

g0

ϕ̃1(g0)

ϕ̃t(g0)

We obtain:

g0 ϕ̃1(g0)ḡ = ϕ̃1(gt) + dt2

W × I

ΩBDiff∂(W )
e−→ R+(W )h0

indg0−→ ΩFredd ,0



Let W be a spin manifold, dimW = d . Consider again the
index-difference map:

indg0 : R+(W ) −→ ΩFredd ,0,
where g0 ∈ R+(W ) is a “base-point”. In the homotopy groups:

(indg0)∗ : πkR+(W ) −→ πkΩFredd ,0 = KOk+d+1.

Theorem. (BB, J. Ebert, O.Randal-Williams ’14) Let W be a
spin manifold with dimW = d ≥ 6 and g0 ∈ R+(W ). Then

πkR+(W )
(indg0 )∗
−−−−→ KOk+d+1 =


Z k + d + 1 ≡ 0, 4 (8)
Z2 k + d + 1 ≡ 1, 2 (8)
0 else

is non-zero whenever the target group is non-zero.

Remark. This extends and includes results by Hitchin (’75), by
Crowley-Schick (’12), by Hanke-Schick-Steimle (’13).





Let dimW = d = 2n. Assume W is a manifold with boundary
∂W 6= ∅, and W ′ is the result of an admissible surgery on W .
For example:

W = D2n W ′ = D2n ∪ ((S2n−1 × I )#(Sn × Sn))

=⇒

Then we have:
R+(D2n)h0

∼= R+(W ′)h0 ,

where h0 is the round metric on S2n−1.

Observation: It is enough to prove the result for R+(D2n)h0 or
any manifold obtained by admissible surgeries from D2n.



We need a particular sequence of surgeries:

S2n−1 S2n−1 S2n−1 S2n−1 S2n−1

V0 V1 Vk−1 Vk· · ·

Here V0 = (Sn × Sn) \ D2n,

V1 = (Sn × Sn) \ (D2n
− t D2n

+ ), . . . ,Vk = (Sn × Sn) \ (D2n
− t D2n

+ ).

Then Wk := V0 ∪ V1 ∪ · · · ∪ Vk = #k(Sn × Sn) \ D2n.

We choose psc-metrics gj on each Vj which gives the standard
round metric h0 on the boundary spheres.



We need a particular sequence of surgeries:

S2n−1 S2n−1 S2n−1 S2n−1 S2n−1

h0 h0 h0 h0 h0

(V0,g0) (V1,g1) (Vk−1,gk−1) (Vk ,gk)· · ·

Here V0 = (Sn × Sn) \ D2n,

V1 = (Sn × Sn) \ (D2n
− t D2n

+ ), . . . ,Vk = (Sn × Sn) \ (D2n
− t D2n

+ ).

Then Wk := V0 ∪ V1 ∪ · · · ∪ Vk = #k(Sn × Sn) \ D2n.

We choose psc-metrics gj on each Vj which gives the standard
round metric h0 on the boundary spheres.



S2n−1 S2n−1 S2n−1 S2n−1 S2n−1

h0 h0 h0 h0 h0

(V0,g0) (V1,g1) (Vk−1,gk−1) (Vk ,gk)· · ·

A �
Wk−1

� A

Wk

We have the composition map

R+(Wk−1)h0 ×R
+(Vk)h0,h0 −→ R

+(Wk)h0 .

Gluing metrics along the boundary gives the map:

m : R+(Wk−1)h0 −→ R
+(Wk)h0 , g 7→ g ∪ gk

Magic of Geometry: The map m : R+(Wk−1)h0 −→ R+(Wk)h0

is homotopy equivalence.
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� A
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h0 h0 h0 h0 h0

(V0,g0) (V1,g1) (Vk−1,gk−1) (Vk ,gk)· · ·

A �
Wk−1

� A

Wk

Let and s : Wk ↪→Wk+1 be the inclusion.
It induces the stabilization maps

Diff∂(W0)→ · · · → Diff∂(Wk)→ Diff∂(Wk+1)→ · · ·

BDiff∂(W0)→ · · · → BDiff∂(Wk)→ BDiff∂(Wk+1)→ · · ·

Topology-Geometry Magic: the space BDiff∂(Wk) is the
moduli space of all Riemannian metrics on Wk which restrict to
h0 + dt2 near the boundary ∂Wk .
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h0 h0 h0 h0 h0
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A �
Wk−1

� A

Wk
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Topology-Geometry Magic: the space BDiff∂(Wk) is the
moduli space of all Riemannian metrics on Wk which restrict to
h0 + dt2 near the boundary ∂Wk .



S2n−1 S2n−1 S2n−1 S2n−1 S2n−1

h0 h0 h0 h0 h0

(V0,g0) (V1,g1) (Vk−1,gk−1) (Vk ,gk)· · ·

A �
Wk−1

� A

Wk

Let and s : Wk ↪→Wk+1 be the inclusion.
It gives the fiber bundles:

M+(W0)h0
M+(W1)h0,h0 −→ · · ·−→M

+(Wk)h0,h0 −→ · · ·

BDiff∂(W0) BDiff∂(W1) −→ · · · −→ BDiff∂(Wk) −→ · · ·

-

?
R+(W0)h0

?
R+(W0)h0,h0

?
R+(Wk )h0,h0

-

∼= -
∼= - ∼=-

with homotopy equivalent fibers R+(W0)h0
∼= · · · ∼= R+(Wk)h0,h0



We take a limit to get a fiber bundle:

M+
∞

B∞
?R+

∞ = lim
k→∞


M+(Wk)h0,h0

BDiff∂(W0)

?R+(Wk )h0,h0


where R+

∞ is a space homotopy equivalent to R+(Wk)h0,h0 .

Remark. We still have the map:

ΩB∞
e−→ R+

∞
ind−→ ΩFredd ,0

which is consistent with the maps

ΩBDiff∂(Wk)
e−→ R+(Wk)h0,h0

indg0−→ ΩFredd ,0

Magic of Topology: the limiting space B∞ := lim
k→∞

BDiff∂(Wk)

has been understood.



About 10 years ago, Ib Madsen, Michael Weiss introduced new
technique, parametrized surgery, which allows to describe
various

Moduli Spaces of Manifolds.

Theorem. (S. Galatius, O. Randal-Williams) There is a map

B∞
η−→ Ω∞0 MTθn

inducing isomorphism in homology groups.

This gives the fibre bundles:

M+
∞ M̂+

∞

B∞ Ω∞0 MTΘn

-

?R+
∞ ?R+

∞

-η

Again, it gives a holonomy map

e : ΩΩ∞0 MTΘn −→ R+
∞



The space Ω∞0 MTΘn is the moduli space of (n − 1)-connected
2n-dimensional manifolds.

In particular, there is a map (spin orientation)

α̂ : Ω∞0 MTΘn −→ Fred2n,0

sending a manifold W to the corresponding Dirac operator.

ΩΩ∞0 MTΘn ΩFred2n,0

R+
∞

Q
QQse

-Ωα̂

�
��3

ind

D0 D1Dt
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indg0−→ ΩFredd ,0
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�
��3
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ΩΩ∞0 MTΘn ΩFred2n,0

R+
∞

Q
QQse

-Ωα̂

�
��3

ind

Index Theory Magic

gives commutative

diagram

ih

Then we use algebraic topology to compute the homomorphism

(Ωα̂)∗ : πk(ΩΩ∞0 MTΘn) −→ πk(ΩFred2n,0) = KOk+2n+1

to show that it is nontrivial when the target group is non-trivial.





THANK YOU!


