Einstein Metrics,

Weyl Curvature, &

Symplectic 4-Manifolds

Claude LeBrun Stony Brook University

Geometric Analysis in Geometry and Topology Tokyo University of Science, November 9, 2015

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

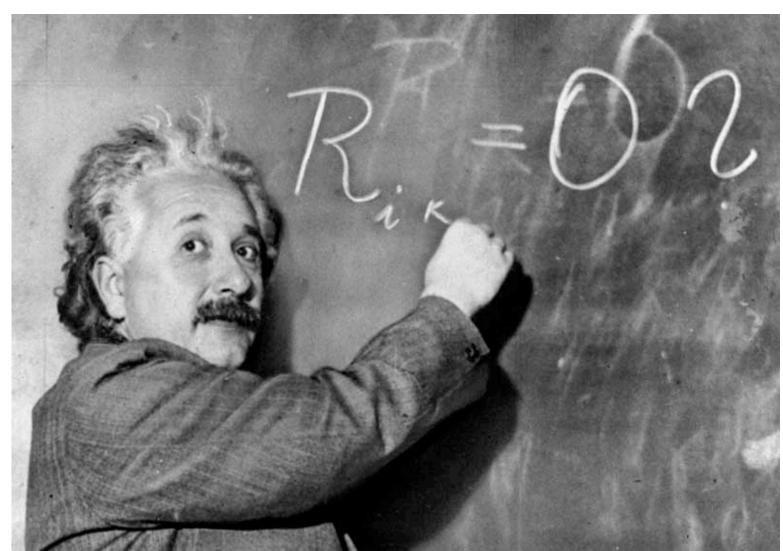
for some constant $\lambda \in \mathbb{R}$.

"...the greatest blunder of my life!"

— A. Einstein, to G. Gamow

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.



$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$r = \lambda g$$

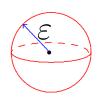
for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$



Given a smooth compact manifold M^n ,

Given a smooth compact manifold M^n , can one decompose M in Einstein and collapsed pieces?

Given a smooth compact manifold M^n , can one decompose M in Einstein and collapsed pieces?

When n = 3, answer is "Yes."

Given a smooth compact manifold M^n , can one decompose M in Einstein and collapsed pieces?

When n = 3, answer is "Yes."

Proof by Ricci flow. Perelman et al.

Given a smooth compact manifold M^n , can one decompose M in Einstein and collapsed pieces?

When n = 3, answer is "Yes."

Proof by Ricci flow. Perelman et al.

Perhaps reasonable in other dimensions?

Suppose M^n admits Einstein metric g.

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When n = 3, g has constant sectional curvature!

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When n = 3, g has constant sectional curvature!

So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ...

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When n = 3, g has constant sectional curvature!

So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ...

But when $n \geq 5$, situation seems hopeless.

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When n = 3, g has constant sectional curvature!

So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ...

But when $n \geq 5$, situation seems hopeless.

{Einstein metrics on S^n }/ \sim is highly disconnected.

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When n = 3, g has constant sectional curvature!

So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ...

But when $n \geq 5$, situation seems hopeless.

{Einstein metrics on S^n }/ \sim is highly disconnected.

When n = 4, situation is more encouraging...

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M =$$

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4$$

Berger,

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, K3,$$

Berger, Hitchin,

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3,$$

Berger, Hitchin,



K3 = underlying M^4 of a generic quartic in \mathbb{CP}_3 .

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, K3,$$

Berger, Hitchin,

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma,$$

Berger, Hitchin, Besson-Courtois-Gallot,

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

Berger, Hitchin, Besson-Courtois-Gallot, L.

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

Berger, Hitchin, Besson-Courtois-Gallot, L.

Four Dimensions is Exceptional!

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

Berger, Hitchin, Besson-Courtois-Gallot, L.

Four Dimensions is Exceptional!

Key question:

Moduli Spaces of Einstein metrics

$$\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

Berger, Hitchin, Besson-Courtois-Gallot, L.

Four Dimensions is Exceptional!

Key question:

For which M^4 is $\mathscr{E}(M)$ connected?

The Lie group SO(4) is not simple

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g) ,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of $\star : \Lambda^2 \to \Lambda^2$,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$
$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

In dimension 4, Einstein metrics

$$W(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

$$W(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Conformally invariant:

$$\mathcal{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Conformally invariant: only depends on the conformal class

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Conformally invariant: only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Conformally invariant: only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

$$W(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

$$W(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Remark: In dimension n > 4, have analog

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Remark: In dimension n > 4, have analog

$$\mathscr{W}(g) := \int_{M} |W|^{n/2} d\mu_{g}$$

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Remark: In dimension n > 4, have analog

$$\mathscr{W}(g) := \int_{M} |W|^{n/2} d\mu_{g}$$

but Einstein metrics not critical in general:

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Remark: In dimension n > 4, have analog

$$\mathscr{W}(g) := \int_{M} |W|^{n/2} d\mu_g$$

but Einstein metrics not critical in general:

Ricci-flat product $K3 \times T^m$ never critical!

$$W(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Dimension Four is Exceptional

$$W(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

$$W(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Explanation:

$$W(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Explanation:

4-dimensional Gauss-Bonnet formula

$$\mathscr{W}(g) := \int_{\mathcal{M}} \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$

Explanation:

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Explanation:

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

for Euler-characteristic
$$\chi(M) = \sum_{j} (-1)^{j} b_{j}(M)$$
.

$$\mathscr{W}(g) := \int_{\mathcal{M}} \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

$$\mathscr{W}(g) := \int_{\mathcal{M}} \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

To prove that $\mathscr{E}(M)$ connected, must control $\mathscr{W}(g)$.

$$\mathscr{W}(g) := \int_{\mathcal{M}} \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

To prove that $\mathscr{E}(M)$ connected, must control $\mathscr{W}(g)$.

$$\mathscr{W}(g) := \int_{\mathcal{M}} \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$

4-dimensional signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

To prove that $\mathscr{E}(M)$ connected, must control $\mathscr{W}(g)$.

$$\mathscr{W}(g) := \int_{\mathcal{M}} \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$

4-dimensional signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

For signature $\tau(M) = b_{+} - b_{-}$ of intersection form.

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

4-dimensional signature formula \Longrightarrow

$$\mathscr{W}(g) \ge 12\pi^2 |\tau(M)|$$

With equality iff $W_{+} \equiv 0$ or $W_{-} \equiv 0$.

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

4-dimensional signature formula \Longrightarrow

$$\mathscr{W}(g) \ge 12\pi^2 |\tau(M)|$$

With equality iff $W_+ \equiv 0$ or $W_- \equiv 0$.

Equality e.g. for T^4 , K3, \mathcal{H}^4/Γ , or $\mathbb{C}\mathcal{H}_2/\Gamma$.

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

4-dimensional signature formula \Longrightarrow

$$\mathcal{W}(g) \ge 12\pi^2 |\tau(M)|$$

With equality iff $W_{+} \equiv 0$ or $W_{-} \equiv 0$.

Equality e.g. for T^4 , K3, \mathcal{H}^4/Γ , or $\mathbb{C}\mathcal{H}_2/\Gamma$.

Connectedness of $\mathscr{E}(M)$: must also control $\int_M s^2 d\mu$.

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

4-dimensional signature formula \Longrightarrow

$$\mathcal{W}(g) \ge 12\pi^2 |\tau(M)|$$

With equality iff $W_{+} \equiv 0$ or $W_{-} \equiv 0$.

Equality e.g. for T^4 , K3, \mathcal{H}^4/Γ , or $\mathbb{C}\mathcal{H}_2/\Gamma$.

Connectedness of $\mathscr{E}(M)$: more difficult when $\lambda > 0$.

$$W(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Atiyah-Hitchin-Singer (1978):

Standard Einstein metric on \mathbb{CP}_2 minimizes $\mathcal{W}(g)$.

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Atiyah-Hitchin-Singer (1978):

Standard Einstein metric on \mathbb{CP}_2 minimizes $\mathcal{W}(g)$.

Fubini-Study:

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Atiyah-Hitchin-Singer (1978):

Standard Einstein metric on \mathbb{CP}_2 minimizes $\mathcal{W}(g)$.

Fubini-Study: $W_{-}=0$,

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Atiyah-Hitchin-Singer (1978):

Standard Einstein metric on \mathbb{CP}_2 minimizes $\mathcal{W}(g)$.

Fubini-Study: $W_{-}=0$, Kähler-Einstein.

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Atiyah-Hitchin-Singer (1978):

Standard Einstein metric on \mathbb{CP}_2 minimizes $\mathcal{W}(g)$.

Fubini-Study: $W_{-}=0$, Kähler-Einstein.

Osamu Kobayashi (1985):

What about standard Einstein metric on $S^2 \times S^2$?

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

Atiyah-Hitchin-Singer (1978):

Standard Einstein metric on \mathbb{CP}_2 minimizes $\mathcal{W}(g)$.

Fubini-Study: $W_{-}=0$, Kähler-Einstein.

Osamu Kobayashi (1985):

What about standard Einstein metric on $S^2 \times S^2$?

Also Kähler-Einstein, but $W_{\pm} \neq 0$.

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

•

Osamu Kobayashi (1985):

What about standard Einstein metric on $S^2 \times S^2$?

Also Kähler-Einstein.

Proved: At least a local minimum.

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

•

Osamu Kobayashi (1985):

What about standard Einstein metric on $S^2 \times S^2$?

Also Kähler-Einstein.

Proved: At least a local minimum.

Conjectured: Global minimizer.

$$\mathscr{W}(g) := \int_{M} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}.$$

•

Osamu Kobayashi (1985):

Proposed systematic study of invariant $\inf \mathcal{W}(M)$.

Conjecture (Generalized Kobayashi Conjecture).

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$.

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then [g] is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then [g] is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open.

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then [g] is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then [g] is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky '98).

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then [g] is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$,

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then [g] is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then [g] is absolute minimizer of \mathcal{W}

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then [g] is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then [g] is absolute minimizer of \mathcal{W} among all conformal classes $[\tilde{g}]$ with positive Yamabe constant.

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then [g] is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then [g] is absolute minimizer of \mathcal{W} among all conformal classes $[\tilde{g}]$ with positive Yamabe constant. Moreover, the only other minimizers in this setting are other Kähler-Einstein metrics.

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then [g] is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then [g] is absolute minimizer of \mathcal{W} among all conformal classes $[\tilde{g}]$ with positive Yamabe constant. Moreover, the only other minimizers in this setting are other Kähler-Einstein metrics.

We will see later that Y > 0 does not seem essential.

Kähler geometry is a rich source of Einstein metrics.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω .

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold,

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (perhaps unrelated to ω)?

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (perhaps unrelated to ω)? What if we also require $\lambda \geq 0$?

We've been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (perhaps unrelated to ω)? What if we also require $\lambda \geq 0$?

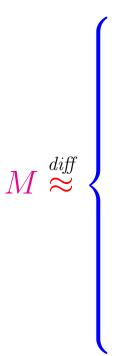
Fortunately, a complete answer is available!

Theorem (L '09).

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω .

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g



```
M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}
```

```
M \stackrel{diff}{\approx} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \end{array} \right.
```

```
\begin{array}{c} \text{ ... anifol} \\ \text{ ... are } \omega. \text{ Then I} \\ \text{ ... if } c \text{ g with } \lambda \geq 0 \text{ if c} \\ \\ \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \end{array} \right. \\ M \stackrel{\textit{diff}}{\approx} \end{array}
```

Theorem (L 09). Suppose that
$$M$$
 is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and of $\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2$, $0 \leq k \leq 8$, $S^2 \times S^2$, $K3$, $K3/\mathbb{Z}_2$,

Theorem (L 09). Suppose that
$$M$$
 is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and o
$$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \end{cases}$$

$$M \stackrel{diff}{\approx} \left\{ \begin{array}{l} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & \\ K3, & \\ K3/\mathbb{Z}_2, & \\ T^4, & \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{array} \right.$$

```
mattern metric g when X = \mathbb{Z} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3, & K3/\mathbb{Z}_2, & T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}
```

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .


```
mattern metric g when X = \mathbb{Z} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3, & K3/\mathbb{Z}_2, & T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}
```

Einstein metric
$$g$$
 with $\lambda \geq 0$ if and only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces.

Einstein metric
$$g$$
 with $\chi \geq 0$ if and only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, & K3, \\
K3/\mathbb{Z}_2, & T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

Einstein metric
$$g$$
 with $\lambda \geq 0$ if and only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, & K3, \\
K3/\mathbb{Z}_2, & T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

No others: Hitchin-Thorpe, Seiberg-Witten, ...

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

Definitive list . . .

```
\mathbb{CP}_{2} \# k \mathbb{\overline{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M)$

But we understand some cases better than others!

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$

But we understand some cases better than others!

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M)$ completely understood.

But we understand some cases better than others!

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Know an Einstein metric on each manifold.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$. But is it connected?

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

In the remaining cases,

$$g = uh$$

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces,

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$+1$$
 $+1$
 -1
 -1

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{array}{c}
+1 \\
 & \cdots \\
 & +1 \\
\hline
 & b_{+}(M) \\
 & b_{-}(M) \\
\end{array}$$

$$\begin{array}{c}
-1 \\
 & \cdots \\
 & -1
\end{array}$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms. Then

$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

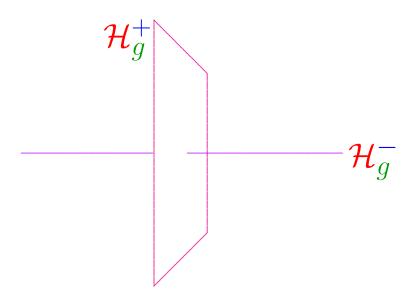
where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

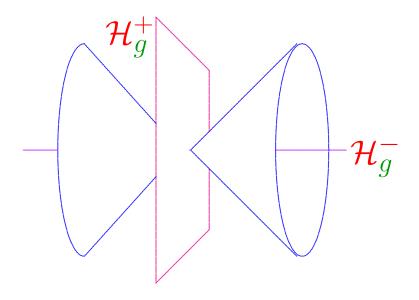
self-dual & anti-self-dual harmonic forms. Then

$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$

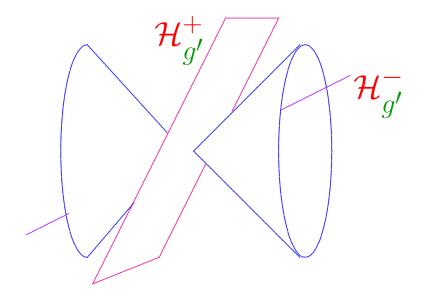
This decomposition is conformally invariant, but does vary as we change [g].



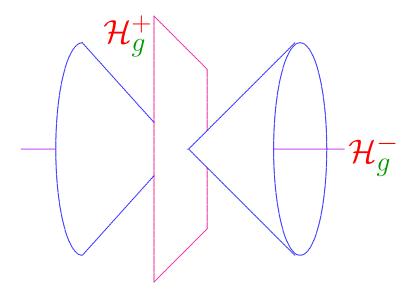
$$H^2(M,\mathbb{R})$$



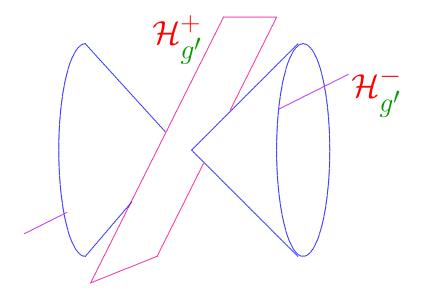
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



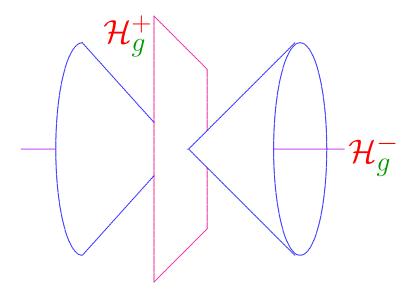
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



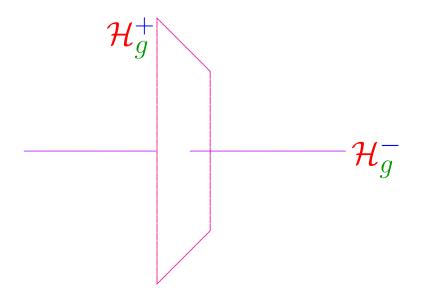
$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$



$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$



$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$



$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$

Suppose M^4 has $b_+ = 1$.

Suppose M^4 has $b_+ = 1$. \iff

 $\forall g, \exists!$ self-dual harmonic 2-form ω :

Suppose M^4 has $b_+ = 1$. \iff

 $\forall g, \exists! \text{ self-dual harmonic 2-form } \omega$:

$$d\omega = 0, \qquad \star \omega = \omega.$$

Suppose M^4 has $b_+ = 1$. \iff

Up to scale, $\forall g$, $\exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

Suppose M^4 has $b_+ = 1$.

Up to scale, $\forall g$, $\exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star \omega = \omega.$$

This allows us to associate the scalar quantity

Suppose M^4 has $b_+ = 1$.

Up to scale, $\forall g, \exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

Up to scale, $\forall g, \exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star\omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric g on such a manifold.

Up to scale, $\forall g$, \exists ! self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric g on such a manifold.

Let us now focus on metrics g

Up to scale, $\forall g$, $\exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star\omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric g on such a manifold.

Let us now focus on metrics g for which

$$W_{+}(\omega,\omega) > 0$$

Up to scale, $\forall g$, $\exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star\omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric g on such a manifold.

Let us now focus on metrics g for which

$$W_{+}(\omega,\omega) > 0$$

everywhere on M.

 $W_{+}(\omega,\omega)$ is non-trivially related

 $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s,

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

 $W_{+}(\omega,\omega)$ is non-trivially related to scalar curv s,

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_{+}(\omega,\omega) > 0$$

on average.

 $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s,

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_{+}(\omega,\omega) > 0$$

on average. But we will need this everywhere.

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if g satisfies

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if g satisfies

$$W_{+}(\omega,\omega) > 0$$

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if g satisfies

$$W_{+}(\omega,\omega) > 0$$

so does every other metric \tilde{g} in conformal class [g].

Theorem A.

Theorem A. Let (M, g) be a smooth compact

Theorem A. Let (M, g) be a smooth compact 4-dimensional Einstein manifold

$$W_{+}(\omega,\omega) > 0$$

$$W_{+}(\omega,\omega) > 0$$

everywhere on M,

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

• the Kähler-Einstein metrics with $\lambda > 0$;

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$; and
- the CLW metric on $\mathbb{CP}_2\#2\mathbb{CP}_2$.

Del Pezzo surfaces:

Del Pezzo surfaces:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

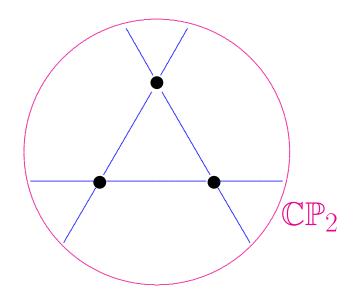
Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

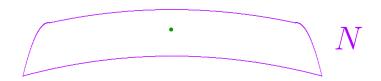
 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

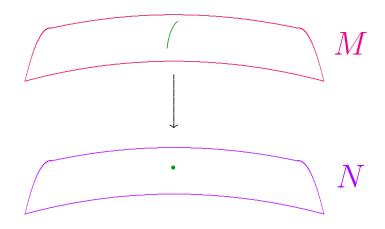


If N is a complex surface,

If N is a complex surface, may replace $p \in N$

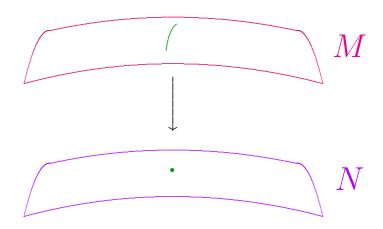


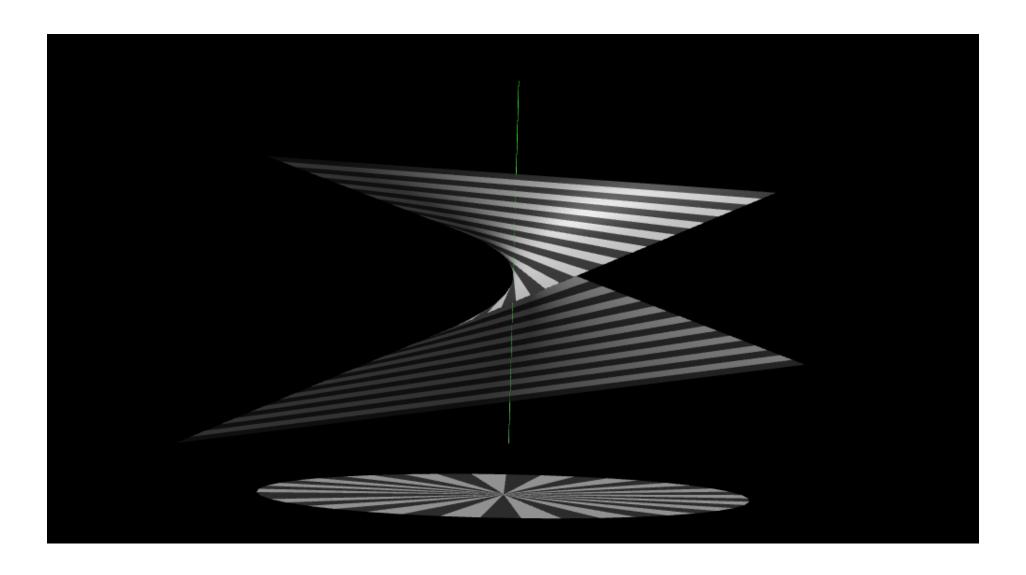
If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1



If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

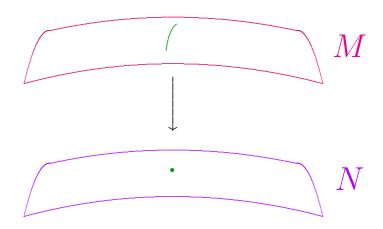
$$M \approx N \# \overline{\mathbb{CP}}_2$$

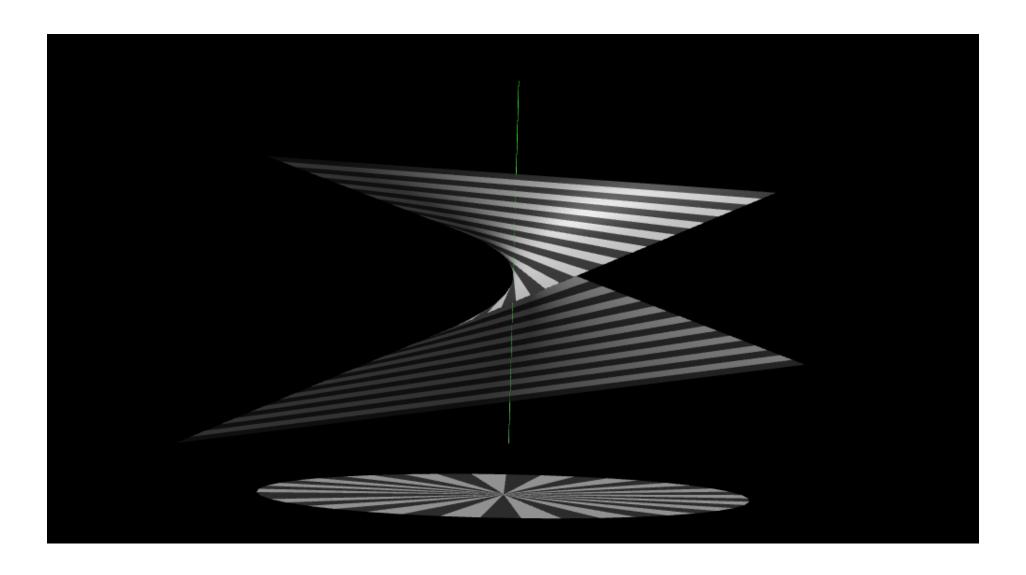




If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

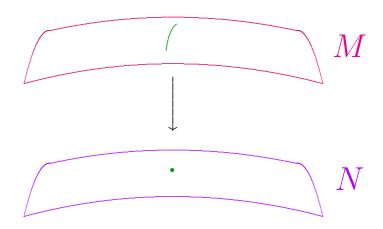
$$M \approx N \# \overline{\mathbb{CP}}_2$$

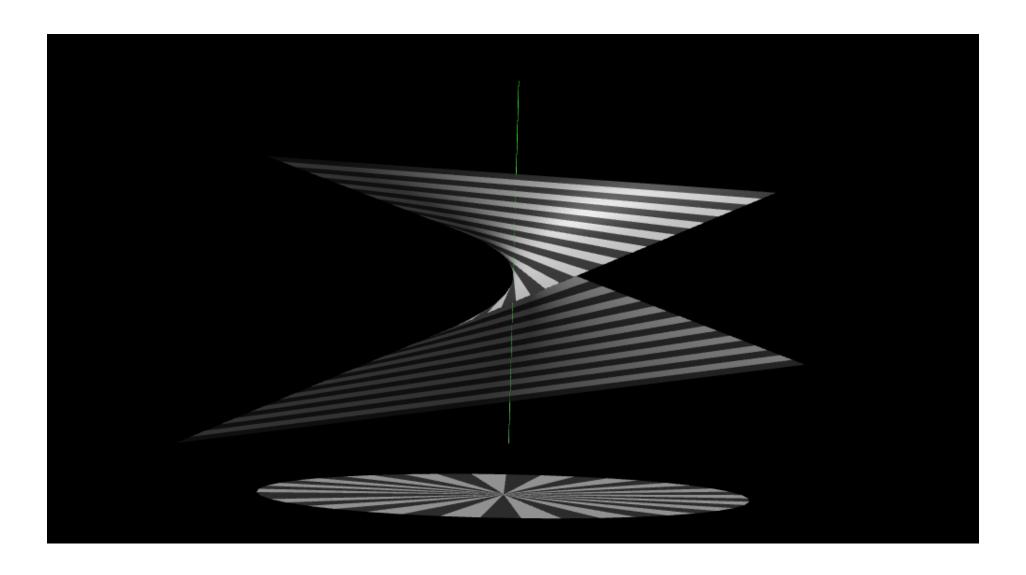




If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

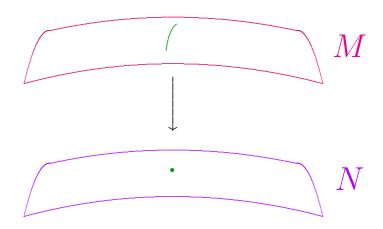
$$M \approx N \# \overline{\mathbb{CP}}_2$$





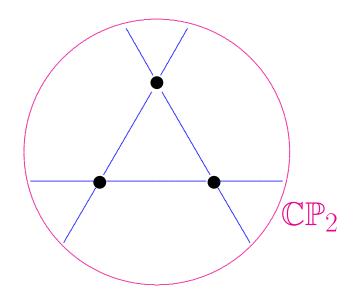
If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$



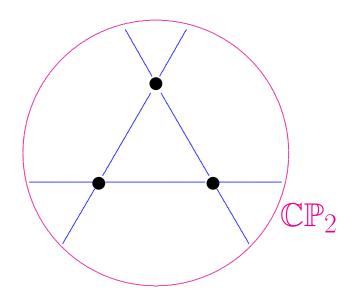
 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.



 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

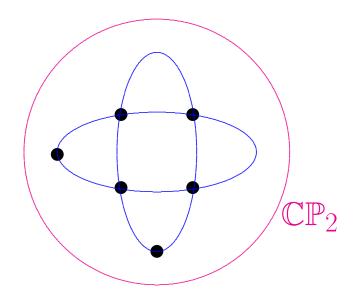
Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.



No 3 on a line,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

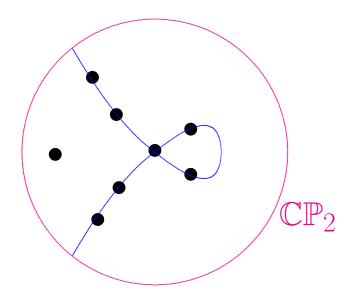
Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.



No 3 on a line, no 6 on conic,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.



No 3 on a line, no 6 on conic, no 8 on nodal cubic.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber...

Uniqueness: Bando-Mabuchi, L 2012...

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

Just a point if $b_2(M) \leq 5$.

 $\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B.

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathscr{E}^+_{\omega}(M)$ is connected.

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathcal{E}_{\omega}^{+}(M)$ is connected. Moreover, if $b_2(M) \leq 5$,

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathcal{E}_{\omega}^{+}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}_{\omega}^{+}(M) = \{point\}$.

Corollary.

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathcal{E}_{\omega}^{+}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}_{\omega}^{+}(M) = \{point\}$.

Corollary. $\mathscr{E}^+_{\omega}(M)$ is exactly one connected component of $\mathscr{E}(M)$.

Key point:

Key point: $W^+(\omega, \omega) > 0$

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_{+}(M) = 1$,

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_{+}(M) = 1$, and let [g] be conformal class.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_{+}(M) = 1$, and let [g] be conformal class. We will say that [g]

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_{+}(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type if associated self-dual harmonic ω

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_{+}(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type if associated self-dual harmonic ω is nowhere zero.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_{+}(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type if associated self-dual harmonic ω is nowhere zero.

• open condition;

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_{+}(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type if associated self-dual harmonic ω is nowhere zero.

- open condition;
- holds in Kähler case;

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_{+}(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type if associated self-dual harmonic ω is nowhere zero.

- open condition;
- holds in Kähler case;
- most such classes have Y([g]) < 0.

Theorem C. Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff [g] contains a Kähler-Einstein metric g.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff [g] contains a Kähler-Einstein metric g.

This is exactly Gursky's inequality

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff [g] contains a Kähler-Einstein metric g.

This is exactly Gursky's inequality — but now proved for a different open set of conformal classes!

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff [g] contains a Kähler-Einstein metric g.

This is exactly Gursky's inequality — but now proved for a different open set of conformal classes!

Now works in a setting where $Y \to -\infty$ allowed.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff [g] contains a Kähler-Einstein metric g.

This is exactly Gursky's inequality — but now proved for a different open set of conformal classes!

Strong evidence for O. Kobayashi's conjecture.

Characterized by: Hermitian, but not Kähler.

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem.

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface,

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action.

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class [g] minimizes Weyl functional \mathcal{W}

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class [g] minimizes Weyl functional \mathcal{W} among symplectic conformal classes

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class [g] minimizes Weyl functional \mathcal{W} among symplectic conformal classes which are invariant under the torus action.

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class [g] minimizes Weyl functional \mathscr{W} among symplectic conformal classes which are invariant under the torus action. Moreover, up to diffeomorphism, [g] is the unique such minimizer.

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class [g] minimizes Weyl functional \mathscr{W} among symplectic conformal classes which are invariant under the torus action. Moreover, up to diffeomorphism, [g] is the unique such minimizer.

Tempting to conjecture that these minimize, too!

小林先生、お誕生日おめでとうございます。

小林先生、お誕生日おめでとうございます。

会議に誘っていただきありがとうございまた。

小林先生、お誕生日おめでとうございます。

会議に誘っていただきありがとうございまた。

以上です。