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Given a smooth compact manifold M™, can one
decompose M in Einstein and collapsed pieces?

When n = 3, answer is “Yes.”

Proof by Ricci flow. Perelman et al.

Perhaps reasonable in other dimensions?
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Recognition Problem:

Suppose M"™ admits Einstein metric g.
What, if anything, does ¢ then tell us about M7

Can we recognize M by looking at g7

When n = 3, ¢ has constant sectional curvature!

So M has universal cover 52, R3 H?. ..

But when n > 5, situation seems hopeless.

{Einstein metrics on S™} /~ is highly disconnected.

When n = 4, situation is more encouraging. . .
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Moduli Spaces of Einstein metrics

& (M) = {Einstein g}/(Diffeos x RT)

Known to be connected for certain 4-manifolds:
M = T K3, HYl, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.

Four Dimensions is Exceptional!

Key question:

For which M* is &(M) connected?
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Why is dimension 4 special?

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At oA~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Remark: In dimension n > 4, have analog
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M

but Einstein metrics not critical in general:
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In dimension 4, FEinstein metrics are critical points
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(o) = [ (WP W) g

4-dimensional signature formula

1
1272 S

(M) (W2 = W) du

For signature 7(M) = by —b_ of intersection form.
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In dimension 4, FEinstein metrics are critical points
of the conformally invariant Weyl functional:

(o) = [ (WP W) g

4-dimensional signature formula =—-

W (g) = 12| (M)
With equality it W4 =0or W_ =0.
Equality e.g. for T#, K3, 7—[4/F, or CHy/T.

Connectedness of & (M ): more difficult when A > 0.
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Osamu Kobayashi (1985):
What about standard Einstein metric on S? x S27?
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Proved: At least a local minimum.
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In dimension 4, FEinstein metrics are critical points
of the conformally invariant Weyl functional:

(@)= [ (W + W) g

Osamu Kobayashi (1985):

Proposed systematic study of invariant inf % (M ).
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Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture).
Let M* be a compact 4-manifold that admits a
Kdhler-Einstein metric g with A > 0. Then |g]
s an absolute minimaizer of the Weyl functional
W among all conformal classes |G| on M.

This is still open. But there has been progress!

Theorem (Gursky '98). If smooth compact M*
admats Kahler-Einstein metric g with A > 0, then
g is absolute minimizer of W among all con-
formal classes |g| with positive Yamabe constant.
Moreover, the only other minimizers in this set-
ting are other Kahler-Einstein metrics.

We will see later that Y > 0 does not seem essential.
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We’ve been discussing very special 4-Manifolds.
Kahler geometry is a rich source of Einstein metrics.

If M admits a Kahler metric, it of course admits a
symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Question. ]f(M4, w) 1s a symplectic 4-manifold,
when does M* admit an FEinstein metric g
(perhaps unrelated to w)? What if we also re-
quire A > 07

Fortunately, a complete answer is available!



Theorem (L '09).



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w.



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with A > 0



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

y




Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

[ CPy#kCPy,




Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S




Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if
(CPo#kCPy, 0<k <S8,

52 x SQ,




Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if
(CPy#kCPy, 0<k <S8,

52 x SQ,

K3,




Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if
(CPy#kCPy, 0<k <38,

52 x SQ,

K3,
M =~  K3/Zo,




Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K37,

T4

)




Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K37,
T4

T4 )2, T )23, T )2y, T | Zs,

\



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K37,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).




Conventions:

CP5y = reverse oriented CPs.



Conventions:

CP5y = reverse oriented CPs.

Connected sum #:

C=> C=>



Conventions:

CP5y = reverse oriented CPs.

Connected sum #:

=2 =>



Conventions:

CP5y = reverse oriented CPs.

Connected sum #:



Conventions:

CP5y = reverse oriented CPs.

Connected sum #:

=2 =>



Conventions:

CP5y = reverse oriented CPs.

Connected sum #:

C=> C=>



Conventions:

CP5y = reverse oriented CPs.

Connected sum #:

=2 =>



Conventions:

CP5y = reverse oriented CPs.

Connected sum #:



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K37,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).




Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K37,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surfaces.



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M g{ K3/79,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Existence: Yau, Tian, Page, Chen-L-Weber, et al.



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M g{ K3/79,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

No others: Hitchin-Thorpe, Seiberg-Witten, . ..



CPy#kCPy, 0< k<8,

S2 % S2

K3,

K3/Zs,

I

T %o, T Z3, T ) 2y, T* | L,

T4)(Zo ® Zo), T ) (Zg ® Z3), or T | (Zgy & ZLy).



Definitive list . ..

CPy#kCPy, 0<k <8,

S2 % §2

K3,

K3/ 79,

I

T4)Z9, T 23, T ) 2y, T* | L,

T4)(Zo ® Zo), T/ (Z3 ® Z3), 0r T*/(Zg ® ZLy).



CPy#kCPy, 0< k<8,

S2 % S2

K3,

K3/Zs,

I

T %o, T Z3, T ) 2y, T* | L,

T4)(Zo ® Zo), T ) (Zg ® Z3), or T | (Zgy & ZLy).



But we understand some cases better than others!

CPy#kCPy, 0< k<8,

S2 % S2,

K3,

K3/Zs,

T

T %o, T Z3, T ) 2y, T* | L,

T (Zo ® Zo), T (Zg ® Zs),or T*)(Zo & Zy).



But we understand some cases better than others!

CPy#kCPy, 0< k<8,
S2 % S2,

K3,

K3/Zs,

T4

T4 )2, T 23, T | 2y, T | L,

T (Zy & L), T" /(L3 & Z3), 0r T"(Zy & Zy).



But we understand some cases better than others!

CPy#kCPy, 0< k<8,
S2 % S2,

K3,

K3/Zs,

T4

T4 )2, T )23, T )24, T Zs,

T (Zy & L), T" /(L3 & Z3), 0r T"(Zy & Zy).

Below the line:



But we understand some cases better than others!

CPy#kCPy, 0< k<8,
S2 % S2,

K3,

K3/Zs,

T4

T4 )2, T )23, T )24, T Zs,

T (Zy & L), T" /(L3 & Z3), 0r T"(Zy & Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.



But we understand some cases better than others!

CPy#kCPy, 0< k<8,
S2 % S2,

K3,

K3/Zs,

T4

T4 )2, T 23, T | 2y, T | L,

T (Zy & L), T" /(L3 & Z3), 0r T"(Zy & Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space & (M)



But we understand some cases better than others!

CPy#kCPy, 0< k<8,
S2 % S2,

K3,

K3/Zs,

T4

T4 )2, T )23, T )24, T Zs,
T (Zy & L), T" /(L3 & Z3), 0r T"(Zy & Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space & (M) = {Einstein ¢} /(Diffeosx RT)



But we understand some cases better than others!

CPy#kCPy, 0< k<8,
S2 % S2,

K3,

K3/Zs,

T4

T4 )2, T 23, T | 2y, T | L,
T (Zy & L), T" /(L3 & Z3), 0r T"(Zy & Zy).

Below the line:
Every Einstein metric is Ricci-flat Kahler.

Moduli space & (M) completely understood.



But we understand some cases better than others!

CPy#kCPy, 0< k<8,
S2 % S2,

K3,

K3/Zs,

T4

T4 )2, T 23, T | 2y, T | L,

T (Zy & L), T" /(L3 & Z3), 0r T"(Zy & Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space & (M) connected!



CPy#kCPy, 0< k<8,
S2 % S2,

K3,

K3/Zs,

T4

T4 )2, T )23, T )24, T Zs,

T (Zy & L), T" /(L3 & Z3), 0r T"(Zy & Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space & (M) connected!



Above the line:

CPy#kCPy, 0< k<8,
S2 % S2,

K3,

K3/Zs,

T4

T4 )2, T )23, T )24, T Zs,

T (Zy & L), T" /(L3 & Z3), 0r T"(Zy & Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space & (M) connected!



Above the line:

Know an Einstein metric on each manifold.

CPy#kCPy, 0< k<8,
S2 % S2.

K3,
K3/Zs,

T4

T4 )2, T )23, T )24, T* ) Zs,

T (Zy & L), T" ) (Z3 & Z3), 0r T"(Zy & Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space &(M) connected!



Above the line:
Moduli space &(M) # @.

CPy#kCPy, 0< k<8,
S2 % S2.

K3,
K3/Zs,

T4

T4 )2, T )23, T )24, T* ) Zs,

T (Zy & L), T" ) (Z3 & Z3), 0r T"(Zy & Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space &(M) connected!



Above the line:
Moduli space &(M) # @. But is it connected?

CPy#kCPy, 0< k<8,
S2 % S2.

K3,
K3/Zo,

T4

T4 )2, T )23, T )24, T* ) Zs,

TY)(Zo © 7o), T/ (Z3 ® Z3), or T*)(Zo  Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space &(M) connected!



In the remaining cases,



In the remaining cases, all known Einstein metrics
are conformally Kahler:



In the remaining cases, all known Einstein metrics
are conformally Kahler:

g =uh



In the remaining cases, all known Einstein metrics
are conformally Kahler:

g =uh

for some Kahler metric h and a positive function .

These live on Del Pezzo surtaces,



In the remaining cases, all known Einstein metrics
are conformally Kahler:

g =uh

for some Kahler metric h and a positive function .

These live on Del Pezzo surtaces, which are, in par-
ticular, oriented 4-manifolds with by = 1.
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Hodge theory:

H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} dH,,

where

Hy ={p e T(A") | dp = 0}
self-dual & anti-self-dual harmonic forms. Then
T =+
b (M) = dlmHg :
This decomposition is conformally invariant,

but does vary as we change |g]|.
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Up to scale, V ¢, d! self-dual harmonic 2-form w:

dw = 0, *W = W.
This allows us to associate the scalar quantity
Wi (w,w)
with any metric ¢ on such a manifold.
Let us now focus on metrics g for which

Wi(w,w) >0

everywhere on M.
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Wi (w,w) is non-trivially related to scalar curv s,

via Weitzenbock for harmonic self-dual 2-form w:

0=V*Vw —2W " (w, ) + gw

Taking inner product with w and integrating:

/ W (e, w)dpt > / ol dp
M M6

In particular, an Einstein metric with A > 0 has

Wi(w,w) >0

on average. But we will need this everywhere.
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However, W (w, w) conformally invariant, with weight:

If g~ u?g, then Wi(w,w) ~> u oW (w,w)

Much simpler than scalar curvature!

In particular, if ¢ satisfies

Wi(w,w) >0

so does every other metric g in conformal class [g].
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everywhere on M, then g is conformally Kahler
and has Einstein constant A > 0. Moreover, M
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In fact, all known Einstein metrics on Del Pezzo
surfaces have these properties. They are

e the Kahler-Einstein metrics with A > 0:
e the Page metric on CPy#CPy: and

e the CLW metric on CPy#2CP».
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

For each topological type:
Moduli space of such (M4, .J) is connected.

Just a point if by( M) < 5.
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For M*? a Del Pezzo surface, set
&(M) = {Einstein h on M }/(Diffeos x RT)

&7 (M) = {Einstein h with W (w,w) > 0} /~

Theorem B. &/ (M) is connected. Moreover, if
bo(M) < 5, then &L (M) = {point}.

Corollary. &%(M) is exactly one connected com-
ponent of &(M).
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Key point: W™ (w,w) > 0 = w # 0,

But w A w = |w|?d, because *w = w.

So harmonic form w defines symplectic structure.

We now coditfy this weaker condition:

Definition. Let M be smooth 4-manifold with
by (M) =1, and let |g] be conformal class. We
will say that |g] is of symplectic type if associated
self-dual harmonic w 1S nowhere zero.

e open condition;
e holds in Kahler case;

e most such classes have Y ([g]) < 0.
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Theorem C. Let M be the underlying smooth
oriented 4-manifold of a del Pezzo surface. Then

any conformal class |g] of symplectic type on M
satisfies

[ i
M

with equality iff |g] contains a Kdhler-Finstein
metric q.

e

o (2x 4 37)(M),

This is exactly Gursky’s inequality — but now proved
for a different open set of conformal classes!

Strong evidence for O. Kobayashi’s conjecture.
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What about other Einstein metrics we’ve discussed?
Characterized by: Hermitian, but not Kahler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold
of a toric del Pezzo surface, and let g be Ein-
stein, Hermitian metric on M whach s invariant
under fized torus action. Then the conformal
class |g] minimizes Weyl functional % among
symplectic conformal classes which are invariant
under the torus action. Moreover, up to diffeo-
morphism, |g] is the unique such minimizer.

Tempting to conjecture that these minimize, too!
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