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Vector fields on surfaces
Let
S c R’

be a surface embedded in R3. We consider vector fields on S.

0 2. Vector fields on a sphere and a torus

Taking a local parametrization
f(U%u,v) = S(C)R?
of the surface, we can (locally) indicate the vector fields on the
uv-plane.



Indices of vector fields

X ¢ a vector field on U C (R* u,v)0

p: an isolated zero of X.

Y(t) == p+ e(cost,sint),
where € is a sufficiently small number. Then the winding number

of the map

S' > (cost,sint)

Xv(t) c gl

‘Xv(t)‘

is called the indez of the vector field of X at p.
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0 3. Vector fields on the uv-plane



The Poincare-Hopf index formula
S: an oriented closed surface

0 4. embedded closed surfaces

X: a vector field on S,
P, ..., Pp: the zeros of X on .S,
Then the Poincare-Hopt index formula asserts that

I(p1) + -+~ + I(pn) = x(5),
where I(p;) = Ind, (X) is the index of X at p;.



Indices of directional vector fields
Instead of vector field, we consider an assignment

S 3 pr L, : aline passing through p
called a direction field. It induces a flow without orientation on
the surface.

a<b<c (index 1/2) a=b<c (index 1)
0 5. The curvature line flows of the ellipsoid z/a® + y?/b* + 2?/c* = 1
On can compute the index at an isolated singular point of a given

direction field as same as the case of vector fields.
It takes values in half-integers, in general.



Examples of direction fields

= =
\ =

index 1/2 index -1/2

0 6. Examples of direction fields

The above figure indicates the eigen flows of symmetric matrices
u v U —v

P1s -5 Pn
be the set of isolated singular points of the direction field of the
closed surface S. We denote by I(p;) the index at p,;. Then, it
holds that

Let

I(p1) + -+ 1(pn) = x(5),
which is the Poincare-Hopf index formula for direction fields.



Umbilics on surfaces
U C (R*u,v); a domain[]
f: U — R’ an immersion[]

Lo Jux e
e x ol

is a unit normal vector field on U. The three functions
E=fu fu, F:=fuJo, G:=Ff fo

are called the coefficients of the first fundamental form. Also, the

coefficients of the second fundamental form are given by

L= Ffu-v, M:=Ff, v, N:=f, v
Then the eigenvalues of the matrix

- (E5) ()

are principal curvatures, and their eigenvectors correspond to the
principal directions.

0 7. The graphs of z = u® — 3uv?(= Re(2?)) and 2z = u? + wv?(= Re(z%2))

The eigenflow of the matrix Ay is called the curvature line flow.
The umbilics correspond to the diagonal points of Ay.



Loewner’s conjecture
By the Poincare-Hopt index formula,
e the total sum of indices of all umbilics on a convex surface is
equal to 2.

0 8. The upper half of 322 + 23> + 22 =1

e [s the number of umbilics on a convex surface greater than or
equal to 27 (Caratheodory’s conjecture).

e [s the indices of umbilics on a regular surface less than or equal
to one? [0 Loewner’s conjecturel][]
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Bates’ example

e Larry Batesd A weak counterezample to the Carathéodory
conjecture, Differential Geometry and its Applications, 15

(2001) 79800

0 9. Bates’ graph and its inversion

The image of the graph

B(x,y) =2+ st

V14221 + 2

has no umbilics, so its inversion

f=F/|F?,  F:=(2,y, Bxy)
is a closed regular surface, which is differentiable but not Cl-regular
at (0,0,0). This implies that (0,0,0) is a differentiable umbilic of
index 2. (cf. Bachelor’s thesis of Fujiyama)ll

(Advantages of the inversion)]

(1) A conformal transformation preserves the umbilic flow.
(2) It maps to spheres to spheres.
(3) Tt is useful to construct non-analytic smooth surfaces.
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The regularity of surfaces after inversion []
Let U be a domain containing (0, 0), and
fR*\U — R\ {0}

a smooth function.

Theorem 1 (Fujiyama-Ando-U). If f/r is bounded, and
f2 N Qrffr
(1)

2
,
then the inversion of the image of f can be expressed as a
continuous graph Z = Z¢(X,Y) near the origin (0,0,0), where

r= /1% + y°.
Moreover, under the assumtion (1), Z = Zy(X,Y) s differen-

tiable at the origin if and only if
(2) lim I _ 0.

r—oo 1

<1,

The Bates’ function is bounded and satisfies (1) and (2). So the
inversion of the Bates’ function induces a differentiable umbilic.
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The regularity of surfaces after inversion II
About Cl-regularity, we have the following:

Proposition 2. If the function [ is bounded, and

@ Imf=0, (b lm 2=y,

r—oo T
then the inversion of f can be expressed as a graph z = Z(X,Y)
which has C-reqularity at the origin (0,0,0) = (0,0, Z:(0,0)).

The Bates’” function does not satisfy (b). In fact, the unit normal

vector field
(=B, —B,,1)

| \/1+B§+B§

VB

satisfies
lim VB<$,O> — (O -

T— 00

9
S-Sl

1
lim vp(0,y) = (—\/5,0,

Y—r00
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Identifiers of umbilics
For a given function

f:(Uzxy) — R,

we define the following vector field on U by

0 0

Df = di— + dy—

f d18x+d20y’
dl = (1 + fi)fxy — f:vfyfx:m

dy = (14 f2) fyy — faa(1+ 1)),

Theorem 3. The vector field Dy on U has the following prop-
erties:

(1) D¢(xo,90) = 0 if and only if P = (x9,y0) € U is an um-
bilic. (c¢f. Ghomi-Howard 2012)0]
(2) Moreover, the number

Indp(Dy)/2
15 equal to the index of curvature line flow at P.

Using Dy, we can easily find four umbilics on an ellipsoid. The
function d; for Bates’ function is computed by

20 (y?+1) +32* (P + 1) + 2* (6y* +3) +2y° + 1
(2 + 1) (g2 +1)°7 |
This implies that B has no umbilics.

dy =
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Polar identifier for umbilics
Let f:(U,0) — R be a smooth function.

We set
x =1 Ccosb, y =rsiné,
and define a new vector field by
0 0
Af:i=01— 4 0o—
d "o i Oy’

51 = _f9 (1 + fr2 +Tfrfrr) +r (1 + fr2) fr97
0y = (14 f7) (rfr+ foo) — for (P + ) -

Theorem 4 (Ando-Fujiyama-U).

The vector field Ay satisfies the following properties:
(1) Ay(P) =0 if and only if P € U is an umbilic.
(2) If P = (0,0), then the number

IHdp(Af)

2
gives the index of curvature line flow of the graph of f.

1+

Examplel] . The function
f=a"—=3zy" =1’ cosO(—1 + 2 cos 20)
has an index —1/2 at (0,0), which follows from

Ay = (—GTSSiH 30, —6r° (97“4 + 2) COS 39) .
Example . The function

f=a’4+ay* =r’cosb
has an index 1/2 at (0,0), which follows from

3

Ay = (—QTBSiD 0, —2r3cos 6 (2 — 3r* — 61t cos 29)) :
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The main theorem
We set
Uy = {(z,y) € R*; 2* +y* < 1}.
Theorem (Ando-Fujiyama-U.) For each positive integer, there
exists a C'!-differentiable immersion

¢0: U — R’
satisfying the following properties:
(1) ¢ is real analytic on Uy := Uy \ {(0,0)}.
(2) The %gldex of curvature line flow of ¢(z,y) at (0,0) is equal to
1+ 7
In fact, we consider the function
(f =)fm(r,0) =1+ tanh(r® cos mb),
O<a<l m=1,2,3---).

Then the inversion of it satisfies the above conditions (1) and (2).

0 10. The image of f for m =5 and a = 1/5.
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The proof of the theorem
[] The surface obtained by the inversion of f50

O 11. The inversion of f for m =5 and a = 1/5.

We set
f=1+ F(r*cosmb), F(x) := tanh(x).
Then
(1>F(— ) = —F(z),
(2) F'(x) > 0 for x € RO
(3) F"(x )<Ofor:z:>OD
(4) F(x) ~ e % for x >> 00

61 = —mrs,, (aracmF” (r'cp) + (a—1)F" (racm))
and
P35, = — 20 (22 — m2s2) B ()
+acy, (a’c2, — am® + m?s2) F' (cr®)’
— Cpr” 2 (a® = 2a 4+ m?) F' (c,,r"),
where ¢, = cosm#@, s,, = sinmé.

Indoo<Af) = —
m

The index after inversion =2 — If(oc0) =1+ —.
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AN ALTERNATIVE PROOF WITHOUT INVERSION

We set
A = r?tanh(r cos f) (0<a<1),

where
xr =rcosb, y = rsinb.
The the index of H) is equal to
m
1+ —.
i 2
We set .

= A 22 A2+ A2 — 1.
Y 1+A§+A§( e T Ay )

Then it is a unit normal vector of the surface
P = (x,y,\) — \v,
which is C'l-differentiable at (0,0) and its curvature line flow has

the index
m

1 + ER
In fact, A is related to f,, by
N o= (22 4 42" L Yy
(27 +y7) <x2+y2’x2+y2
(= tanh(r” cos(mf))) = fin,
and the formula
indo(H (1)) + indoo (H(2)) = 2
holds for an arbitrary given C*°-function p : R*\ {(0,0)} — R.
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