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The goal of this talk explain how two threads in knot theory tie
together.

Instanton Floer homology (originally constructed by Floer in the
late 1980’s building on work of Uhlenbeck, Taubes and
Donaldson). A generalization to knots was implicit in work
Kronheimer and I did in in 1992-3. This has become more
explicit in the past 5 years and has some interesting
applications to knot theory. Related or inspiring symplectic
constructions where carried out by Seidel-Smith and
Wehrheim-Woodward.

Khovanov Homology and Khovanov-Rozansky homology, and
theory of Webs and Foams. Work of Stoisic, Vaz and
Kapustin-Li etc... Combinatorially defined invariants of knots
coming from representation theory.



Given some extra data like a compact Lie group G = SUN we
assign to a three manifold Y a vector space over C, or
Z-module etc:

I(Y )N

Often we’ll drop N from the notation!
To four-dimensional cobordisms X with ∂X = −Y0

∐
Y1 we

assign maps:
ΦX : I(Y0)→ I(Y1)



More generally given a homology class α ∈ H∗(X ) and an
integer 0 ≤ ` ≤ N we get

ΦX (α)` : I(Y0)→ I(Y1)

so that

ΦX (α)`ΦX (β)`′ = (−1)‖α‖‖β‖ΦX (β)`′ΦX (α)`



Some Basic Feature of 3-manifold Topology

Examples of three manifolds.

S3,S1 × S2,T 3,S1 × Σg

A fibered 3-manifold
S1 ×τ Σg

where τ : Σg → Σg is a diffeomorphism. Surgery on knot or link
(this is now a general example.)

+1

−1

+2



The Thurston norm.

‖ · ‖T : H2(Y ;Z)→ R

‖ · ‖T measure the complexity of surfaces representing a
homology class.
I If Σ is connected oriented surface define

x(Σ) = min{0,−χ(Σ)}

I If Σ is disconnected (oriented) define x(Σ) to be the sum of
x of its components.

I ‖α‖T is the minimum of x(Σ) where Σ ↪→ Y represents α.



Instanton Floer Homology

Chern-Weil theory in dimension 4 and Anti-Self-Duality. Let
P → X be a principal SU2-bundle and let E denote the
associated vector bundle.

− 1
8π2

∫
X

tr(FA ∧ FA) = 〈c2(E), [X ]〉.



Thus 2-forms have a conformally invariant decomposition.

Λ2 = Λ+ ⊕ Λ−

∗ = 1 ∗ = −1

Explicitly: e1,e2,e3,e4 oriented orthonormal frame.

ωI = e1∧e2 +e3∧e4, ωJ = e1∧e3−e2∧e4, ωK = e1∧e4 +e2∧e3

span Λ+, the Self-Dual two forms and

e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 + e2 ∧ e4, e1 ∧ e4 − e2 ∧ e3

span Λ−, the Anti-Self-Dual two forms. Note that Λ+ and Λ− are
pointwise orthogonal under both the riemmanian inner product
and the wedge product.



Thus we can decompose the curvature of a connection:

FA = F +
A + F−A .

F +
A = 0 (F−A = 0) are the Anti-Self-Dual (Self-Dual) Yang-Mills

equation.
Note that the Bianchi identity implies

dAFA = 0

and hence if A is SD or ASD we have

d∗AFA = − ∗ dA ∗ FA = ± ∗ dAFA = 0.

Thus SD and ASD are critical points for E but more is true!



If X is a closed four-manifold recall:

8π2k =

∫
X

tr(FA ∧ FA), E(A) = −
∫

X
tr(FA ∧ ∗FA) ≥ 0.

Thus adding these formulae gives:

E(A)+8π2k =

∫
X

tr(FA∧(−∗FA+FA)) = −2
∫

X
tr(F−A ∧∗F

−
A ) ≥ 0

while subtracting gives

E(A)− 8π2k = −2
∫

X
tr(F +

A ∧ ∗F
+
A ) ≥ 0

Thus
E(A) ≥ 8π2|k |

with equality if and only if F +
A = 0 when k ≥ 0 and F−A = 0

when k ≤ 0.



The basic instanton. We’ll use quaternionic notation.
H = R + RI + RJ + RK where IJ = K + cyclic and IJ = −JI +
cyclic.

x = x0 + x1I + x2J + x3K

Conjugation
x = x0 − x1I − x2J − x3K .

S7 ⊂ H2 the unit sphere

Two different SU2 = Sp(1) = {x ∈ H|x̄x = 1} actions.

(x , y)q = (xq, yq) or
(x , y)q = (q̄x , q̄y).

In either case the quotient is S4 = HP1.



Thus we have two principal bundles with total space S7.

P± → S4

where P+ has the right action and P− has the left action. These
are the unit sphere bundles of H-bundles S± → S4. For
example

S+ = {([x , y ], (v0, v1))|(v0, v1) = h̄(x0, x1), h ∈ H}.



Give P± the connection A± which declares that the horizontal
space at p ∈ P± is the orthogonal complement of the fiber
P± → S4. Sp2(= Spin5) acts on S7 isometrically preserving the
connections A±. The stabilizer Stabp of the point
p = (0,1) ∈ S7 ⊂ H2 is a copy of Sp1(= SU2 = Spin3) of
matrices of the form [

∗ 0
0 0

]
The curvature of the connection is an SU2 equivariant map

Λ2(T ∗p S4) = Λ+ ⊕ Λ−(T ∗p S4)→ adP±|p.

At (0,1) ∈ S7 we can write

T(1,0)S7 = H⊕ imH.

The horizontal space is H⊕ 0 and the vertical tangent space at
p is identified with 0⊕ imH. Stabp acts trivially on the vertical
tangent space and by left multiplication on P+ and right
multiplication on P−.



We need to understand the SU2 action. Write
dx = dx0 + dx1I + dx2J + dx3K . Note that dx ∧ dx̄ is a purely
imaginary 2-form (ImH-valued). Indeed

dx ∧ dx̄ = −2(ωI I + ωJJ + ωK K ).

In particular dx ∧ dx̄ is self-dual.

dḡxh ∧ dḡxh = ḡdx ∧ dx̄g.

Thus dx ∧ dx̄ is invariant under the left action ( and equivariant
under the right action) so the left action is trivial on self-dual
forms. Since Thus A+ is a self-dual connection.
Similarly dx̄ ∧ dx is anti-self-dual and invariant under the left
action and equivariant under the right action. Thus A− is an
anti-self-dual connection.



The connection A+ at the point (x , y) ∈ S7 ⊂ H2 is

Im(x̄ ∧ dx + ȳ ∧ dy).

We can trivialize P+ (or P−) by the section

x 7→ (x ,1)

(1 + |x |2)
1
2

Show that the connection one-form

a =
Imx̄ ∧ dx
(1 + |x |2)

=
x̄ ∧ dx − x ∧ dx̄

2(1 + |x |2)

represents A+ in a suitable trivialization of P+.



We can construct from A+ other ASD-connections using
conformal invariance. The dilatation τλ(x) = λx induces a
conformal diffeomorphism. Indeed the basic instanton is
invariant under SO5 acting on S4 but the conformal group SO5,1
acts so effectively there is a

SO5,1/SO5 = H5

worth of ASD-connections in P+. Atiyah-Hitchin-Singer prove
any ASD connections in P+ is gauge equivalent to one of these.



This example exhibits the phenomenon of bubbling. As the the
parameter λ 7→ ∞ the connections

τ∗λ(a) =
Imλx̄ ∧ dλx
(1 + |λx |2)

=
Imx̄ ∧ dx

(1/λ2 + |x |2)

converge away from the origin to

Imx̄ ∧ dx
(|x |2)

which is gauge equivalent to zero! by the gauge transformation

g(x) = x/|x |.



The Chern-Simons Functional. Q = Y × SU2 → Y a principal
SU2 bundle. Suppose that Y = ∂X and that there is an
SU2-bundle P → X . B is a connection in Q extending to a
connection A in P. The Chern-Weil integral∫

X
tr(FA ∧ FA) (mod 8π2Z)

does not depend on A!. This the Chern-Simons invariant of B.
Let Γ be the connection coming for the trivialization and write
B = Γ + b. Consider the connection A = Γ + tb on
[0,1]×Q → [0,1]× Y . Then

FA = dt ∧ b + tdb + t2b ∧ b

then

CS(B) = 2
∫

[0,1]×Y
dt ∧ tr(tb ∧ db + t2b ∧ b ∧ b)

or
CS(B) =

∫
Y

tr(b ∧ db +
2
3

b ∧ b ∧ b).



CS(B) =

∫
Y

tr(b ∧ db +
2
3

b ∧ b ∧ b).

The first variation:

d
dt

CS(B + tc) = 2
∫

Y
tr(c ∧ db + c ∧ b ∧ b) = 2

∫
Y

(c ∧ FB).

So critical points are flat connections FB = 0 and critical points.
The automorphism group upto gauge transformation equivalent
to representation ρ : π1(Y )→ SU2 upto conjugacy.



The downward gradient flow equation

dB
dt

= − ∗ FB

is equivalent to the Anti-Self-Dual Yang Mills Equations for A
the connection on R× Y induced from B(t)

FA = − ∗4 FA

FA = dt ∧ dB
dt

+ FB = − ∗4 (FB + dt ∧ dB
dt

) = −dt ∧ ∗FB − ∗
dB
dt
.

The Hessian of CS. B is flat the linearization of the equation
∗FB = 0 is the operator ∗da : Ω1(Y , adP)→ Ω1(Y , adP), the
Hessian of CS.
Floer used rep mods conjugacy as generators of a complex
and moduli spaces of ASD connections on R× Y to construct
the differential.



A major miracle occurs here. If we view a solution B(t) as a
connection A on R× Y the connection satisfies the
Anti-Self-Dual Yang-Mills equation

FA = − ∗4 FA.

As a 4d-connection

FA = dt ∧ dB
dt

+ FB

and
∗FA = dt ∧ ∗3FB + ∗3

dB
dt

This later equations is invariant not just under
G3 = {g : Y → SU2} but under G4 = {h : R× Y → SU2}.



Problems.
I gradient flow of CS not well defined Hessian of CS, ∗dB

has infinitely many positive and negative eigenvalues.
I B is singular.
I CS is not single valued (cf Novikov homology).
I Compactification of moduli spaces (including gluing).
I Construct pertubations to achieve Morse-Smale Condition

that do no destroy compactness properties.



The gauge group G = {g : Y → SU2} acts on Ω1(Y )⊗ su2 by

g · b = gbg−1 + gdg−1.

Under this action we have

CS(g · B) = CS(B) + deg(g) and Fg·B = gFBg−1

Thus the set of critical points of CS is preserved by the G action
and

{a|FB = 0} = Hom(π1(Y ),SU2)/conj = R(Y )

where the identification is by the holonomy representation.



Examples:
I S3. Only the trivial representation ρtriv . R(Y ) = pt .

Stab(ρtriv ) = SU2.
I Poincare sphere, SU2/Binary Icosohedral group. Has

three representations upto conjugacy ρtriv and ρdef and ρ̄def

I S1 × S2. R(Y ) = SU2/conj an interval.
I T 3. R(Y ) = S1 × S1 × S1/{Z2}.
I (Fintushuel-Stern) S(p,q, r) a Seifert fibered homology

sphere with three exceptional fibers. The representation
space is a finite set of isolated points.

I (Fintushuel-Stern) S a Seifert fibered homology sphere
with four exceptional fibers. The representation space is a
union of S2’s



Notice that a reducible representation into SU2 lives in a
U1-subgroup. We can understand Hom(π1(Y ),U1) = H1(Y ; U1)
via the long exact sequence

H1(Y ,Z)→ H1(Y ;R)→ H1(Y ; U1)→ H2(Y ,Z)→ H2(Y ,R)

Thus
H1(Y ; U1) ≡ Ub1

1 × Tor(H2(Y ,Z)).

Thus for a three manifold H1(Y ; U1) = {0} if and only if
H1(Y ;Z) = 0, i.e. Y is a homology sphere.



Here is Fintushel and Stern’s example. Recall that S(p,q, r) is
the intersection of

V (p,q, r) = xp + yq + zr = 0 ∩ S5 ⊂ C3.

This a Seifert fibered space with the S1-action

u · (x , y , z) = (uqr x ,upr y ,uqpz).

The quotient is an orbifold S2 with three orbifold points with
orders p,q and r .



For a global quotient like this we can form the homotopy
quotient

(S(p,q, r)× ES1)/S1 = S(p,q, r)//S1

The fundamental group of S(p,q, r)//S1 is called the orbifold
fundamental group and has a presentation in this case as
follows.

π1(S(p,q, r)//S1) ≡ {t ,u, v |tp = 1,uq = 1, v r = 1, tuv = 1} = Tp,q,r



Furthermore the long exact homotopy sequence looks like

→ π1(S1)→ π1(S(p,q, r))→ π1(S(p,q, r)//S1)→ 1.

or
→ Z→ π1(S(p,q, r))→ Tp,q,r → 1.

Thus π1(S(p,q, r)) has a presentation

{t ,u, v ,h|tp = h−b1 ,uq = h−b2 , v r = h−b3 , tuv = hb}

for some integers b,b1,b2,b3. The data (b,p/b1,q/b2, r/b3)
are called the Seifert invariants.



For ρ : π1(S(p,q, r))→ SU2 is a representation write T̃ , Ũ, Ṽ
and H̃ for the images of the generators. Then H commutes with
the others so if ρ is not trivial H̃ = ±1. Then the other matrices
satisfy the equations

T̃ p = ±1, Ũq = ±1, Ṽ r = ±1, T̃ ŨṼ = ±1.

In particular pushing the representation into SO3 they give rise
to a representation of the triangle group Tp,q,r . These
representation we can understand rather easily. Let T ,U and V
denote the images in SO3 of T̃ etc. Then T ,U,V are rotations
about axes `T , `U and `V by angles 2πk/p,2πl/q and 2πm/r .
The fact that these three element satisfy TUV = 1 implies that
the the products of these rotations is the identity.



Given a pair of critical points ρ, σ set

M(ρ, σ) = {A| −
∫

Z
tr(FA ∧ ∗FA) <∞, FA = − ∗ FA,

lim
t 7→−∞

[A|t×Y ] = ρ, lim
t 7→∞

[A|t×Y ] = σ}/G4.



Note that A is ASD if and only if

‖FA‖2L(R× Y ) = −
∫

Z
tr(FA ∧ ∗FA) = ”− CS(ρ) + CS(σ)”

where the difference is computed with respect the path
B(t) = A|t×Y .
Compare to finite dimensional Morse theory. We have the
identity

Ef (x) =
1
2

∫ b

a
(|dx

dt
|2+|∇x f |2)dt = −f (a)+f (b)+

1
2

∫ b

a
(|dx

dt
+∇x f |2)dt

whence Ef (x) = −f (a) + f (b) if and only if x is a downward
gradient flow line

dx
dt

= −∇x f .



Given B± flat connections with central stabilizer choose a path
B(t) with t ∈ R so that for t < −1 B(t) = B− and t > 1
B(t) = B+. Let A be the corresponding 4d-connection on and

R× P = Q → Z = R× Y . Then we make the following
definitions.

A(α, β) = A + L2
2(Z ; T ∗Z ⊗ adP)

G = {g ∈ 1 + L2
3(Z ,End(E))|gg∗ = 1.}

Easy to check the G is a Hilbert manifold and the that
multiplication and inversion are smooth maps. Since gA is
locally gag−1 + gag−1 G acts (smoothly) on A(α, β)

B(α, β) = A(α, β)/G.

In fact B is Hilbert manifold with a local chart given about [A]by

{[A + a]|dA
∗a = 0, ‖a‖L2

2,A
< ε}

The Coulumb slice condition.



I If stabilizer of end points is not Z (G) this is not a good
definition.

I The definition depends on a homotopy class
γ ∈ π1(BQ;α, β) so write Aγ(α, β) or Bγ(α, β) when
necessary.



For A ∈ Aγ(α, β)

F +
A ∈ L2

1(Z ,Λ+(Z )⊗ adP)

Set
Mγ(α, β) = {[A] ∈ B(α, β)|F +

A = 0}

We’d like to see that Mγ(α, β) has a Kuranishi model locally
structure and that

M(α, β) =
⋃

γ∈π1(BP ,α,β)

Mγ(α, β)



Write A = B + b + cdt where B is a pull back connection. Then

FA = FB + dt ∧ ḃ + dBb − dt ∧ dBc +
1
2

[b ∧ b] + dt ∧ [c ∧ b]

0 = F +
A = dt ∧ (ḃ + ∗FB + dBc + ∗dBb + ∗1

2
[b ∧ b] + [c ∧ b])

+ ∗ḃ + FB + ∗dBc + dBb +
1
2

[b ∧ b] + ∗[c ∧ b].

The slice condition

0 = −d∗B(b + cdt) = ∗4dB ∗4 (b + cdt)
= ∗dBdt ∧ ∗b + ∗c
= ∗4(−dt ∧ (dB ∗ b + dt ∧ ∗ċ + dB ∗ c)

= ċ + d∗Bb + dt ∧ d∗Bc.



Linearized equations at B.

0 =

[
ḃ
ċ

]
+

[
∗dB dB
d∗B 0

] [
b
c

]
This of the form d

dt + D where D is a first order self-adjoint
elliptic operator.

Theorem
If D is an invertible first order self-adjoint elliptic operator acting
on a vector bundle F → Y then

d
dt

+ D : L2
k (Z ; F )→ L2

k−1(Z ,F )

is invertible.



Sketch of proof in the case k = 1. Note that

‖( d
dt

+ D)u‖2L2(Z )

∫
Z
〈( d

dt
+ D)u, (

d
dt

+ D)u〉 ∗ 1

=

∫
Z
|du
dt
|2 + |Du|2 + 2〈du

dt
,Du〉 ∗ 1

=

∫
Z
|du
dt
|2 + |Du|2 +

d
dt
〈u,Du〉 ∗ 1

=

∫
Z
|du
dt
|2 + |Du|2 ∗ 1

≥ C‖u‖2L2
1
.

Thus d
dt + D : L2

k (Z ; F )→ L2
k−1(Z ,F ) is injective with closed

range. Exercise: Show the range is dense. Generalize this to
the case of general k .



This can be used to prove in general that provided the Extend
Hessian of L

EHB =

[
∗dB dB
d∗B 0

]
is invertible for B = B± the linearized ASD equations and
gauge fixing are Fredholm so the package we use to analyze
the moduli space on closed manifolds carries over to this case.
EHB plays the role of the Hessian in finite dimensional (and no
group action) Morse theory.



What does invertibility mean? If[
b
c

]
is in the kernel of EHB and B is flat the b is a harmonic
representative of H1(Y , adB) and c ∈ H0(Y , adB). In other
words the B must be
I Irreducible
I Infinitesimally isolated (non-degenerate critical point.)



Given A ∈ Aγ(α, β) write A = B + cdt where B = B(t) is path in
AQ and we can ask what is the index of

d
dt

+ DB.

We now have a family of self-adjoint operators DB(t). Such a
family has a spectral flow. Below we have a spectral flow of +2.



Note the self-adjoint Fredholm operators SF has three
components

SF = SF− ∪ SFo ∪ SF+

where SF± are the essentially positive and negative operators.
SF± are contractible while

ΩSFo ≡ Z× BO( or Z× BU for complex ops).

Theorem (Atiyah-Patodi-Singer..)

Ind(
d
dt

+ Dt ) = sf (Dt )



Idea of proof. Index is homotopy invariant so homotope the
family so that Dt all have the same eigenvectors. Then consider

T± =
d
dt

+± tanh(t) : L2
1(R)→ L2(R).

The kernel of T+ is spanned by sech(t) while for T− the kernel is
spanned by cosh(t). Since T ∗± = −T∓ when

Ind(T±) = ±1 = sf (± tanh(t)).

.



Note the spectral flow is the what remains of the Morse index.
µ(α) should be the number of negative eigenvalue of the
Hessian. Infinite in this case. However in the finite dimensional
situation

dim(M(x , y)) = µ(y)− µ(x) = sf (Hessγ(t)f )

and we can make sense in this case of the difference

µ(β)− µ(α) = sf (EHγ(t))



If γ : S1 → BQ is a closed loop i.e. or γ̃ : [0,1]→ AQ and so
that there is a gauge transformation with gγ̃(0) = γ̃(1) then sf
may be non-zero! Indeed let A be the connection in S1 ×Q with

sf (Dγ(t)) = Ind(DA) = 8k − 3
2

(0 + 0) = 8k = 8 deg(g).

N.B. if Q is an SO3 bundle k ∈ 1
2Z.



Lemma
Let A be a finite energy ASD connection on the half-cylinder
[0,∞)× Y. Suppose that all flat connections Γ on Y have
H1(Y , adΓ) = 0. Then there is a flat connection Γ, T > 0 and
gauge transformation g on [T ,∞)× Y so that

g · A = Γ + a

and a ∈ L2
2([T ,∞)× Y ; T ∗ ⊗ adP).



The first step in the proof is

Lemma
Let Ai be a sequence of ASD connection on a four manifold X
with boundary. Suppose that

∫
X |FAi |

2 7→ 0. Then there is a flat
connection Γ and a subsequence still call Ai and a sequence of
gauge transformations gi so that

gi · Ai 7→ Γ

in the C∞-topology on compact subsets of the interior of X .
Proof. The assumption that the curvature has L2 tending to
zero preclude bubbling so the rest follows from the version of
Uhlenbeck’s theorem we have already proved.



Suppose Y is a homology S3.
I R(Y ) = {ρ : π1(Y )→ SU2}/conj be the space of

conjugacy classes of representations into SU2.
I R∗(Y )

Recall that we have R(Y ) = [t] ∪ R∗(Y ) if an only Y is a
Z-homology sphere where [t] is the trivial gauge equivalence
class. since if ρ : π1(Y )→ SU2 is reducible then
ρ(π1) ⊂ U1 ⊂ SU2 and ρ factors through a non-trivial
representation

ρ̃ : H1(Y ,Z)→ U1.



Assumption. Suppose that Y is a homology sphere and for all
α, β ∈ R(Y ) and all γ ∈ π1(BQ; a,b)

Mγ(a,b)

cut out transversally by the ASD equations. Note that if a or b
are in R∗(Y ) then all [A] ∈ Mγ(a,b) are irreducible and we have
Then we have

dim(Mγ(a,b)) = sfγ(a,b).

Let
M̆γ(a,b) = Mγ(a,b)/R.

So that dim(M̆γ(a,b)) = sfγ(a,b)− 1.



What is the dimension of Mγ(a, t) or Mγ(t,b).
Define sfγ(t,b) as follows

and sfγ(a, t) similarly.



Then

dim(Mγ(a, t) = sfγ(a, t) and dim(Mγ(t,a) = sfγ(t,b)

but
sfγ1(a, t) + sfγ2(t,b) + 3 = sfγ1+γ2(a,b)!



What is the Uhlenbeck compactification of this space? An ideal
instanton, I is a pair consisting of a point in a symmetric
product of Z and an ASD connection on Z . Set

IMγ(a,b) =
⋃
k

Symk (Z )×Mγ−k (a,b).

for the space of Ideal instantons from a to b in the homotopy
class γ. The dimension of a typical piece

Symk (Z )×Mγ−k (a,b)

is
4k + sfγ(a,b)− 8k = sfγ(a,b)− 4k

The moduli space of ideal instantons mod translation in the
homotopy class γ is

˘IMγ(a,b) = IMγ(a,b)/IR 3 Ĭ

where now the typical piece has dimension

sfγ(a,b)− 4k − 1



A broken path of ideal instantons from a to b in the homotopy
class γ is an ordered set (Ĭ1, . . . , Ĭl) with Ĭi ∈ M̆γi (ai−1,ai) and
so that
I if ai−1 = ai and γi = 0 then k > 0.
I a0 = a,al = b
I γ1 + . . .+ γl = γ.

Let
M̆+
γ (a,b)

be the set of broken path of ideal instantons.



Note that the dimension of a stratum

(Symk0(Z )×Mγ0−k0(a0,a1))/R×. . . (Symkl (Z )×Mγl−kl (al−1,b))/R

of M̆+
γ (a,b) is

sfγ(a,b)− l − 4(k0 + . . .+ kl)− 3t

where t is the number times the trivial connection appears
amongst the a1, . . . ,al−1.

Theorem
With the topology of convergence upto bubbling mod
translation. M̆+

γ (a,b) is compact.
NB. The gauge equivalence class of the trivial connection t can
be among the ai .



The (mod 2) Floer-Morse complex is

C∗ =
⊕

a∈R∗(Y )

Z2a

with
∂(a) =

∑
b∈R∗(Y )

∑
sfγ(a,b)=1

]{[A] ∈ M̆γ(a,b)}β.

The homology of this complex is denoted

I∗(Y ).

Why is this ∂2 = 0? The component of ∂2(a) along c is∑
b∈R∗(Y )

∑
](M̆γ1(a,b))](M̆γ2(b, c))



Consider the compactification

M̆+
γ (a, c)

where in this case we have sfγ(a, c) = 2. Only the non-negative
dimensional strata appear so

2− l − 4(k1 + . . .+ kl)− 3t ≥ 0.

Thus ki = 0, t = 0 and l = 1,2. So the only ends of M̆+
γ (a, c)

are
M̆γ1(a,b) ∪ M̆γ2(b, c).

Since these appear as ends the of a one dimensional moduli
space there is an even number.



For SU2 construction works if there are no representations with
U1 ⊂ SU2 stabilizer.

For general N we can work with PUN -bundles. P → Y
classified by a characteristic class:

w(P) ∈ H2(Y , π1(PUN)) = H2(Y ,Z/NZ).

More generally for PUN the construction works if there are no
representation with non-trivial stabilizer. With not trivial
topology can guarantee this if there is a surface Σ ↪→ Y so that
〈w(P), [Σ]〉 is a unit in Z/NZ.

These theory have a grading mod 2N.



The action of homology classes

Just as the homology of a space is acted on by cohomology via
the cap product the Floer homology is acted on by the
cohomology of space of gauge equivalence classes of
connections. Now this has the homotopy type of

MapsP(X ,BSU2).

and so there is an evaluation map

ev : X ×MapsP(X ,BPUN)→ BPUN .

Thus we define maps

µ` : H∗(X )→ H2`−∗(A/G)

by
ev∗(c`)/α.



The resulting cohomology classes lead to the operators.

ΦX (α)`.

Defined by

ΦX (α)`([ρ]) =
∑

[σ]

sfγ([ρ],[σ])=2`−|α|

〈µ`(α),MX ,w ([ρ], [σ])[σ]〉

where the sum is over moduli spaces of dimension 2`− |α|.



Floer homology and the Thurston Norm

The spectrum of the operators Φ(α)2 : I(Y )2 → I(Y )2 (and
Φ(y)2 : I(Y )2 → I(Y )2). determines the Thurston Norm.
If α ∈ H2(Y ;Z)

Spec(Φ(α)2) ⊂ {−‖α‖T ,−‖α‖T + 2, . . . , ‖α‖T − 2, ‖α‖T}.
Furthermore ±‖α‖T ∈ Spec(Φ(α)2) (old theorem of
Kronheimer-M).
More recently thanks to Paolo Ghiggini, Yi-Ni, Andras Juhasz
(for inspirations from Heegaard Floer theory).

Dim((Ker(Φ(α)2 − ‖α‖T )m ∩ Ker(Φ(y)2 − 4)m} = 1

for all m > 0. if and only PD(α) ∈ H1(Y ,Z) = Y ,S1 has a
fibered representative.



Sutured Manifolds

Important to extend the theory to manifolds with boundary.
Borrow Gabai’s sutured manifold technology. A sutured three
manifold is a pair (Y , γ).
I A three manifold with boundary, Y .
I A union of simple closed curves γ on R = ∂Y dividing ∂Y

into two components R± so that ∂R+ = γ = ∂R−.
Important examples. Product sutured manifold. Let Σ be a two
manifold with boundary.

Y = [−1,1]× Σ, γ = 0× ∂Σ.



Sutured Manifold Decomposition

Given an oriented surface S ⊂ Y with ∂S ⊂ ∂Y and ∂S with
boundary in (Y , γ) we can cut along S to get

(Y , γ) S (Y ′, γ′)

Theorem
(Gabai) Any sutured three manifold (Y , γ) (irreducible) can be
decomposed along successive incompersible surfaces

(Y , γ) S0 (Y1, γ1) S1 (Y2, γ2) . . . Sn−1 (Yn, γn)

where each Si is incompressible in (Yi , γi) and (Yn, γn) is
product sutured manifold.



Cheap and dirty sutured Floer homology.
Juhász defined a sutured Floer homology in Heegaard Floer
context for a balanced suture manifold (Y , γ). Balanced means
χ(R+) = χ(R−).

SHH(Y , γ)

Given (Y , γ) pick an high genus connected surface R0 with ∂R0
diffeomorphic to γ. Choose φ : [−1,1]R0 → ∂Y a
diffeormorphism onto a tubular neighborhood of γ.

Ỹ = Y ∪φ [−1,1]× R0

∂Ỹ = 1× R0 ∪ R+

∐
{−1} × R0 ∪ R− = R̃+

∐
R̃−.

Balanced implies χ(R̃−) = χ(R̃+). Choose a diffeomorphism
τ : R̃+ → R̃−. Form

Ȳ = Ỹ/τ

Then R̄ ⊂ Ȳ . For example. If (Y , γ) is a product sutured
manifold then Ȳ is fibered three manifold and R̄ is a fiber, for
correct τ is a product.



The Floer homology of S1 × Σ is known (for G = PSU2 and
w = P.D.(S1 × pt) thanks to work of Munoz. In particular
Dim(I(Y )2|(Φ(α)2 − ‖α‖T &Φ(y)2 = 4} = 1 as per the fibration
result. Set

SI(Y , γ) = (Ker(Φ(α)2 + χ(R̄))m ∩ Ker(Φ(y)2 − 4)m

at operators on I(Ȳ ) and for m large. The (surprising) fact is
that SI(Y , γ) is independent of the choices made.
(Kronheimer-M).



Behavior of SI(Y , γ) under sutured manifold
decomposition

The basic result Juhász proves for SHH(Y , γ) carries over to
SI(Y , γ).

Theorem
If Si ⊂ Yi and (Yi , γi)

 
Si (Yi+1, γi+1) as in Gabai’s theorem then

we have SI(Yi+1, γi+1) is a direct summand of SI(Yi , γi)



Getting a knot invariant.

K ⊂ S3, let Y = S3 \ N(K ) and let γ a pair of oppositely
oriented meridians. Define

HI(K ) = SI(Y , γ).

In fact for suitable choice Ȳ = S3 \ N(K ) ∪ S1 × (T 2 \ D2). In
this model a Seifert surface of genus g gets completed to
surface, Ŝ of genus g + 1. Unless g = 0 there at least
eigenspace of µ(Ŝ) that are non zero thus:

rank(HI(K )) = 1

if and only K = U.



Brief introduction to Khovanov homology.
I For an unlink UN of N components

Kh(UN) ∼ A⊗N

where A is H∗(S2)

I The cobordisms P : U2 → U1 and copants P̄ : U1 → U2
induce the two natural maps:
Intersection products

Kh(U2) ∼ A⊗ A P∗−→ Kh(U1) ∼ A,

and diagonal inclusion

∆ : A→ A⊗ A.

So that X = [x ] and 1 = [S2] and

∆(X ) = X ⊗ X and ∆(1) = 1⊗ X + X ⊗ 1,∆(X ) = X ⊗ X .



I The Skein Exact Sequence. Given a knot diagram form the
”Cube of resolutions”.
Consider three knots, K2,K1,K0 which identical in the
complement of a ball and in the ball looks like:

Then there is an exact triangle:

Kh(K0)→ Kh(K1)→ Kh(K2)→ Kh(K0).

where the maps are those induced by the (local) cobordisms.

I ”Universality”



Some examples and properties.

Kh(unlink) A
Kh(N-component unlink) A⊗N

Kh(Trefoil) Z4 ⊕ Z/2Z



Some Coincidences

Consider the space of representations (N.B not conjugacy
classes)

RI(Y ,K ) = {ρ : π1(Y \ K ))→ U2|specρ(µ) = {±1}}

Thus ρ(µ)2 = 1 and det(ρ(µ)) = −1. The set of such elements
is a 2-sphere.
For an unlink of k -components we get ×kS2

I .



For knots in S3 it is somewhat easier to a get a description of
this representation space. Consider the Wirtinger presentation
for the fundamental group of the knot complement.

π1(S3 \ K ) = 〈x1, x2, . . . , xn|r1, . . . rn−1〉

where each rs are is of the form

xixjx−1
i = xk .

x_i

x_i

x_k

x_j



Now p ∈ S2 acts on S2 by conjugation as the symmetric space
involution τp : S2 → S2 of reflection along geodesics through p.
Thus since the xi ’s are meridians we see that the three points

ρ(xj), ρ(xi), ρ(xk )

lie on the same geodesic with ρ(xi) being (a) midpoint between
the other two.

x_k

x_i

x_j



For the trefoil the presentation is simply
〈x , y , z|xyx−1 = z and cyclic〉. Thus we are looking for triples of
points on S2 lying on the same geodesic so that each point a
midpoint of the other two. There are two possibilities, either all
three points are the same or they 3 equally spaced labelled
points on a geodesic.

RI(S3,T2,3) = S2
I

∐
RP3



For a (2,p)-torus knot the story is similar. The presentation is

〈x1, x2, . . . , xp|xi+1xix−1
i+1 = xi+2〉.

Thus the repsentation space is p ordered points lying on the
same geodesic so that xi+1 is the midpoint of xi and xi+2. There
possibilities
I x1 and x2 (hence all the points are the same).
I x1 and x2 are antipodal in which case p is even and all odd

points are x1 and all even points are x2.
I The angle of x1 and x2 is 2πk/p where 0 < k < p/2.

RI(S3,T2,2m+1) = S2
I

∐
m

RP3

RI(S3,T2,2m+2) = S2
I

∐
S2

I

∐
m

RP3



Taking the homology in any of these cases gives the Khovanov
homology (without a grading), of the corresponding knot. Of
course to get in invariant with good properties simply taking the
homology is too naive (but we all know what to do), should use
instanton Floer homology.



Instanton Floer Homology (on Orbifolds)

To get knots in the picture we generalize this story to orbifolds.
The construction generalizes in a rather straightforward manner
to Z2-orbifolds. Consider P → Ŷ an orbifold principal U2 bundle
with orbifold locus a link K ⊂ Y . The determinant δP is an
orbifold line bunlde. The orbifold fundamental group

π1,orb(Ŷ ) = π1(Y \ K )/〈µ2 = 1〉.

Hence the representation space is a (union of) components of
projective representation of π1,orb(Ŷ ).
We will need to fix a connection in det(P) = δ. We’ll keep track
of this by choosing a one manifold ω ⊂ Y with ∂ω ⊂ K and
require the connection the connection in δ to be flat on
Y \ (ω ∪ K ) have holomony −1 on any loop linking ω ∪ K once.



Critical points of CS mod gauge are now conjugacy classes of
representations ρ : π1(Y \ (K ∪ ω))→ U2 s.t.
I det(ρ(γ)) = −1 if γ links ω ∪ K .
I ρ(µ)2 = 1 if µ links K once.

Note that neither of these conditions uses an orientation of the
knot. Actually a little more care is require to say this carefully.
More on this later.



The Morse homology of CS on connection on P → Ŷ is
denoted

I∗(Y ,K , ω).

This a Z4 graded Z-module.
We can do this provided the critical points of CS are away from
the singular points of the quotient space A/G, in other words
there are no reducible representations.



Avoiding Reducible Representations

We need to avoid reducible representations. We can achieve
this by adding a Hopf link in a little ball in our three manifold
and where the part of ω contained in that ball is a curve joining
the two components. There is a unique up to conjugacy
representation of the Hopf Link complement where the
generator are sent to matrices X and Y satisfying

X 2 = 1,Y 2 = 1, and det(XYX−1Y−1) = −1

One can check that:

X =

[
−1 0
0 1

]
Y =

1√
2

[
1 1
1 −1

] (1)

solve this, uniquely upto conjugacy.



Getting knot invariants.
Given link K ⊂ Y 3 as indicated before we can naturally from
and new link to which the theory can be applied.

(Y ,K ) (Y ,K ], ω)

And define I](Y ,K ) = I(Y ,K ], ω), if Y = S3 sometimes it gets
dropped from the notation.

This finally gives the correct representation variety!.

Hom(π1(Y \ K ),SU2) = Hom(π1(Y \ K ],SU2)/conj .



Exact sequences and spectral sequences Consider three
knots, K2,K1,K0 which identical in the complement of a ball and
in the ball looks like:

Such a ball is called a crossing. An orientation of K gives a
crossing a sign.



These knots are cobordant via surfaces S2,1,S1,0,S0,2

Figure: The twisted rectangle T that gives rise to the cobordism S2,1
from K2 to K1.

These cobordisms induce maps

. . .→ I](K2)
Φ2,1→ I](K1)

Φ1,0→ I](K0)
Φ0,2→ . . . .

In fact this is an exact triangle.



This follows from observing that for example

Z0 = (I × S3,S2,1) ◦ (I × S3,S1,0)

is diffeomorphic to

Z1 = (I × S3,S2,0)#(S4,RP2
+).

where S2,0 is the cobordism S0,2 viewed backwards.

Tδ 2,1
T

δ 1,0

Figure: Curve δ has a neighborhood which is a möbius band



This means there is a one parameter family gt , t ∈ [0,1] of
metrics on Z . The two ends points of which realize the two
decompositions above. For simple geometric reasons the
moduli space for the metric g1 is empty.
This means we can define a chain homotopy:

H0,2(α) =
∑
β

#(∪tMgt (α, β))β

which verifies

Φ1,0 ◦ Φ2,1 = ∂0H2,0 + H2,0∂2.

These chain homotopies allow us to define a chain maps

C0 ↔ Cone(Φ2,1)

given by (Φ0,2,H0,1) and (H2,0,Φ1,0). These maps are chain
homotopy inverses proving the existence of the long exact
sequence.



To see that when we stretch out the (S4,RP2
+) pair the moduli

space eventually becomes empty note that on (S4,RP2
+) (this

one is double branch covered by −CP2) we saw there was as
unique irreducible solution. (S3,U) there is a unique flat
connection and it is reducible with stabilizer U1. Thus when you
stretch the moduli space becomes empty.



The distguished triangle detection lemma. (Ozsvath
and Szabo.) cf Seidel

Suppose we have:
I a sequence of complexes {(Ci ,di)}i∈Z,
I a sequence of anti-chain maps fi : Ci → Ci−1,
I a sequence ji : Ci → Ci−2 chain homotopies

di−2ji + jidi + fi−1fi = 0

for all i ∈ Z,
so that the (chain) map:

ji−1fi + fi−2ji : Ci → Ci−3

is chain homotopic to an isomorphism.
Then the induced maps in homology,

(fi)∗ : H∗(Ci ,di)→ H∗(Ci−1,di−1)

form an exact sequence; in particular for each i the anti-chain
map

Φ : s 7→ (fis, jis)

Φ : Ci → Cone(fi−1)

is invertible unto chain homotopy. Here Cone(fi) denotes
Ci ⊕ Ci−1 equipped with the differential(

di 0
fi di−1

)
.



K0
K3

K2 K1

Figure: Two intersecting Möbius bands, M31 and M20 inside S30.



31 20

30

Y2 Y1

Figure: The five 3-manifolds, Y2, Y1, S30, S31 and S20 in the
composite cobordism ([0,3]× Y ,S30).



Q(Y )1Q(Y )2

Q( )3120Q( )

30Q( )

G'30

Figure: The family of metrics G30 containing the image of family G′
30.



Given a collection of crossings, X = {B1, . . .Bn} we can
construct from K = K2...2, we obtain a collection of knots, Kv
where v ∈ ZX. This family is 3-periodic in each component. We
also have surfaces Svu which give cobordisms from Kv to Ku.
When v = u + ei such surfaces induce maps just as before.
More generally when v > u the surfaces come in families.

τ1 2τ3τ

B1

B2

B3

The family of metrics Gvu parametrized by τ ∈ RI (R3 in this
example).



Specializing to the case u, v ∈ {0,1}X note that the family of
metrics admits an action of translation by R. Let Ğuv denote the
quotient by this action. We can define maps

Fvu : Cv → Cu

by the formula

Fvu(α) =
∑
β

#(MĞvu )(α, β))β

where v > u, Fuu = ∂u and Fvu = 0 when v < u. We get a
Khovanov like cube of resolutions.

(CX,FX) = (⊕uC,[Fvu])

This is a chain complex with differential F generalizing the
mapping cone of the case (N=1). It is chain homotopy
equivalent with (C(K ), ∂K ).



If all of the resolutions Ku of X are unlinks we call X a
pseudo-diagram. In this case I\(Kv ) is is isomorphic to

H∗(×b0(Kv )S2) = ×b0(Kv )H∗(S2).

If in addition we have a diagram then the complex (CX,FX) is
filtered by |v | and the E1 page can be determined together with
the differential. Then all the surfaces Svu with |v − u| = 1 are
pairs of pants and the E1 page of the spectral sequence is the
Khovanov complex.
A similar construction was done by Ozsvath and Szabo 2006.
They related the Heegaard Floer homology of the double
branched over of a link and gave a mod 2 relation between
Khovanov homology and earlier and was a motivation for this
work. Jonathan Bloom established a similar story for the
Seiberg-Witten equations.



The distguished triangle detection lemma. (Ozsvath and
Szabo.)



Theorem
Kronheimer-M 2009 For links L ⊂ S3 (with a distinguished base
point) there is a spectral sequence starting with reduced
Khovanov cohomology and abutting to I\(L).

Theorem
Kronheimer-M If K is a knot I\(K ) ≡ Z iff K ≡ U.
The later theorem comes from slightly earlier work carrying
over Juhász’ sutured Floer homology to the instanton context.

Corollary
Reduced Khovanov homology detects the unknot.

Corollary
The Rasmussen s invariant bounds the slice genus in
homotopy balls.



Bouyed this success we’d like to extend this story to SUN gauge
theory and hopefully relate it to Khovanov-Rozansky homology.

We can extend this game to UN . Consider elements g ∈ UN so
that

g2 = 1

Thus g has two eigenvalues ±1 so the conjugacy classes
divide up according to the dimension of the −1 eigenspace.
Suppose it is N1-dimensional. These a form a copy of the
Grassmanian GrN1,N as a distinguished subset GrN1,N ⊂ UN .



When N1 = 1 then the representation spaces for the simple
examples are
I CPN−1 for the unknot or ×kCPN−1 for unknot of

k -components.
I CPN−1∐STCPN−1 for the trefoil.

Now the homology of these spaces reproduces the
Khovanov-Rozansky homology of this examples.



Repeat setup of gauge theory on orbifolds.

Given (X ,S) a of a four-manifold and a smoothly embedded
submanifold. Consider this pair as defining an orbifold with
cone-angle π along S. When N > 2, S must be orientable. To
see this you need to work on the level of connections. The
connections one forms

diag(i ,0, . . . ,0)dθ and diag(−i ,0, . . . ,0)dθ

are only gauge equivalent for N = 2 by a determinant 1 gauge
transformation. We’ll do gauge theory on orbifold UN -bundles

on P → (X ,S) so that along S the Z2 action is non-trivial. In a
little while we will allow S to be a kind of singular surface called
a foam. We restrict our orbifold bundles so that above a fixed
point of the local Z2 action the bundle automorphism is one of
g’s above and stick for the moment to the CPN−1 case.



Again UN connections can have complicated stabilizers so we
restrict our gauge group to those that lift to SUN .

We fix the a connection in the determinant of the UN -bundles
by keeping track of w via ω ⊂ X surface with ∂ω ⊂ S

N.B. An orbifold bundle P → X̂ does not necessarily give rise to
a bundle on X , only locally.



We’ll look at moduli spaces Mω(X ,S) of orbifold connections A
on orbifold bundle P → X with w represented by ω solving the
ASD equations:

F +
A = 0.

The action and dimension formula.

As usual we set

κ =
1

4Nπ2

∫
X

tr(FA ∧ FA)

For A ASD we have κ ≥ 0.

κ =
1

8N
S · S (mod 1)/2.

Then
Mω =

⋃
κ

Mκ,ω

The expected dimension of Mκ,ω is

4Nκ+
N2 − 1

2
(χ(X ) + σ(X )) + (N − 1)χ(S) +

N − 1
2

S · S.



Instanton Floer Homology

With this orbifold situation in mind we consider the case of
X = R× Y and S = R× K for some link K ⊂ Y . Consider
P → Ŷ an orbifold principal PUn bundle. Keep track of w(P) by
a choosing a one manifold ω ⊂ Y with ∂ω ⊂ K .

ASD equation on R× Y corresponds to the downward gradient
flow for Chern-Simons function.

Critical points of CS mod gauge are now conjugacy classes of
representations ρ : π1(Y \ (K ∪ ω))→ SUN s.t.
I det ρ(γ) = −1 if γ links ω ∪ K once
I ρ(γ) ∈ G1 if γ links K once.



Avoiding Reducible Representations

We need to avoid reducible representations. We need move to
a more general situation where now we also allow the holonomy
to be satisfy gN = e2πi/N . Enough if there is Σ ⊂ Y so that all
reps of π1(Σ \Σ∩ (K ∪ ω)) with given conditions are irreducible.
We will avoid this issue by assume that there is a Hopf link with
w a curve joining the two components with multiplicity 1.



XYX−1Y−1 = e2πi/N

X = ε


1 0 0 · · · 0
0 ζ 0 · · · 0
0 0 ζ2 · · · 0

. . . 0
0 0 0 0 ζN−1



Y = ε


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0

. . . 0
0 0 0 1 0



(2)

Here, ζ = e2πi/N , and ε is 1 if N is odd and an Nth root of −1 if
N is even.



As before we construct the Morse homology of CS on A/G. It is
denoted

I∗(Y ,K , ω).

This now Z2N graded Z-module.
It is functorial under cobordism (of pairs). If
∂(X ,Σ, ω) = (−Y0,−K0,−ω0)

∐
(Y1,K1, ω1) then there is a map

Φ∗(X ,Σ, ω) : I∗(Y0,K0, ω0)→ I∗(Y1,K1, ω1)



As before the cohomology ring of A/G acts. Now

A/G ≡ MapP((Y ,K ), (BSUN ,BS(Uk × UN−k ))

So corresponding to points in Y there are maps

νi : I∗(Y , ω)→ I∗−4(Y , ω), i = 2, . . .N

a point p on K gives rise to

ρj(p) : I∗(Y , ω)→ I∗−2(Y , ω), j = 1, . . . , k

Finally a surface Σ in Y (disjoint from K ) gives rise to a
operators

µi([Σ]) : I∗(Y , ω)→ I∗−2(Y , ω), i = 2,N

These are again commuting operators.





A typical cobordism of pairs decorated with 0 and 1 cycles on
the two manifold and 0,1,2,3-cycles on the four manifold.
I Each component of the 2-manifold is labelled by an integer

0 ≤ N1 ≤ N.
I Each i-cycle on the two manifold is label by an integer

1, . . .N1.
I Each j-cycle on the four-manifold is labelled by an integer

2, . . . ,N.



Getting knot invariants.

Given link K ⊂ Y 3 as indicated before we can naturally from
and new link to which the theory can be applied.

(Y ,K ) (Y ,K ], ω)

And define I](Y ,K ) = I(Y ,K ], ω), if Y = S3 sometimes it gets
dropped from the notation.



Exact sequences and spectral sequences Consider three
knots, K2,K1,K0 which identical in the complement of a ball and
in the ball looks like:

Such a ball is called a crossing. An orientation of K gives a
crossing a sign.



These knots are cobordant via surfaces S2,1,S1,0,S0,2

Figure: The twisted rectangle T that gives rise to the cobordism S2,1
from K2 to K1.

These cobordism are not in general orientable so unless
N = 2k , they don’t induce maps. If they do

. . .→ I](K2)
Φ2,1→ I](K1)

Φ1,0→ I](K0)
Φ0,2→ . . . .

In fact this is an exact triangle when N = 2 (and k = 1) but not
otherwise (

(2k
k

)2
= 2

(2k
k

)
only when k = 1.)



Extending the definition to webs and foams.

We are already working in the context of orbifolds so lets try a
slightly more general context. The Klein 4-group V = Z2

2 acts
on R3 by orientation preserving isometries. The quotient is
homeomorphic to R3. The singular locus is the quotient of the
coordinate axis, a Y ⊂ R3/V . We can consider orbifolds that a
locally modeled on the open subsets of R3/K . Thus we can
consider K ⊂ Y to a trivalent graph and consider Y as an
orbifold. To build an orbifold bundle over (Y ,K ) we need each
edge of K to be oriented. We also associate to each oriented
edge e an element of ge of some Gk (so that g−e = g−1

e ). At
each vertex v with oriented edges e1,e2,e3 we require

ge1ge2ge3 = 1

if all the edges point into the vertex. Now there are many
possibilities.





The representation space of the web is two step Flag manifold.

Fl1,2(CN) = {`, π|` ⊂ π ⊂ CN}

Its homology agree in rank with the Khovanov-Rozansky
answer.



from Maackay-Stosic-Vaz



The 4-dimensional pictures that naturally fit into the context of
orbifolds that are locally modeled on the quotient R4/V8 where
V8 is Z3

2 acting in an orientation preserving manner by reflecting
coordinate axis. Again the quotient is R4/V8 is homemorphic to
R4. This singular locus is the image of the coordinate 2-planes
and is homeomorphic to a cone on the 1-skeleton of a
tetrahedron. We’ve checked that the tools we used before to
prove the exact triangle in N = 2 work to prove the indicated
exact triangle for webs when the edges are labelled only with
1’s and 2’s.
Lobb and Zenter study these representation spaces for planar
webs. Ethan Street is developing the extension of this theory to
tangles.



We can now revisit the skein sequence.



From Maackay-Stosic-Vaz.



We have the surfaces as before, but now orientability is not a
problem. We can insert extra pieces that fix orientations.


