The mean curvature flow for a convex hypersurface

Naoyuki Koike

Tokyo University of Science koike@ma.kagu.tus.ac.jp

18 December, 2013

Content

- 1. The mean curvature flow
- 2. Hamilton's theorem
- 3. The evolutions of geometric quantities
- 4. The maximum principle
- 5. The mean curvature flow for a convex hypersurface in a Euclidean space (Huisken's result)
- 6. The outline of the proof of Huisken's result I
- 7. Sobolev inequality for a submanifold
- 8. The outline of the proof of Huisken's result II

 $(N, \langle \ , \ \rangle)$: a complete Riemannian manifold

M: a compact manifold

 $f_t: M \hookrightarrow N \ (0 \leq t < T) \ : \ {
m a} \ C^{\infty} ext{-family of immersions}$ of M into N

$$F:\, M imes [0,T) o N \ \Longleftrightarrow \ F(x,t):=f_t(x)\; ((x,t)\in M imes [0,T))$$

When f_t is an embedding, we set $M_t := f_t(M)$.

 H_t : the mean curvature vector of f_t

H: the section of F^*TN defined by

$$H_{(x,t)} := (H_t)_x \ ((x,t) \in M \times [0,T))$$

Definition

$$f_t \ (0 \leq t < T)$$
 : a mean curvature flow $\Longleftrightarrow rac{\partial F}{\partial t} = H \ (ext{MCFE})$

We may write (MCFE) as
$$rac{\partial f_t}{\partial t} = H_t.$$

We consider the case of $N = \mathbb{R}^m$ (Euclidean space).

Then H_t is described as

$$H_t = \triangle_t f_t$$
,

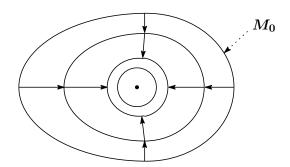
where \triangle_t is the Laplacian op. of $g_t := f_t^* \langle , \rangle$.

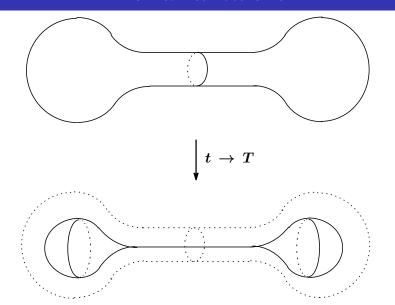
Hence (MCFE) is described as

$$rac{\partial f_t}{\partial t} = \triangle_t f_t$$
,

which is a quasi-linear parabolic equation and hence the existenceness and the uniqueness of the solution of (MCFE) in short time for any smooth initial data is assured by the Hamilton's theorem.

The mean curvature flow





$$f_t: M \hookrightarrow \mathbb{R}^m \ (0 \le t < T):$$
 a mean curvature flow

Definition(self-similar solution)

If
$$f_t = \rho(t)f_0$$
 $(0 \le t < T)$ for some positive-valued C^{∞} -function $\rho: [0,T) \to \mathbb{R}$, then f_t $(0 \le t < T)$ is called a self-similar solution. Also, f_0 is called a self-similar immersion.

Fact

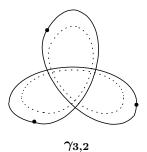
If
$$f_t\ (0 \le t < T)$$
 is a self-similar solution, then $f_t(x) = \sqrt{2(T-t)}f_0(x) \quad (x \in M)$ holds.

The mean curvature flow

Fact

The only self-similar solutions in \mathbb{R}^2 are Abresch-Langer curves $\gamma_{m,n}$'s, where m is the periodic number and n is the rotational number.

The mean curvature flow



Fact

The mean curvature flow for an isoparametric hypersurface in a Euclidean space is a self-similar solution.

$$f_t: M \hookrightarrow \mathbb{R}^m \ (0 \le t < T) :$$
 a mean curvature flow

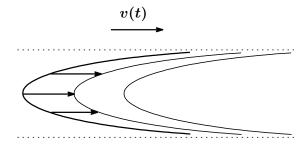
Definition(translating soliton)

If $f_t(M) = f_0(M) + v(t)$ $(0 \le t < T)$ for some constant vector v(t), then f_t $(0 \le t < T)$ is called a translating soliton. Also, f_0 is called a translating immersion.

Fact

The only translating soliton in \mathbb{R}^2 is a grim reaper.

The mean curvature flow



 $y = \ln \cos x$

M: an n-dimensional compact manifold

V: a vector bundle over M

 $\Gamma(V)$: the space of all sections of V

E: a diff. op. of order two of V

 DE_f : the linearization of E at $f \in \Gamma(V)$

 $\sigma(DE_f)\,:\,$ the symbol of DE_f

 $f_t \, (0 \leq t < T) \, : \, \mathsf{a} \, \, C^\infty ext{-curve in } \Gamma(V)$

$$F: M imes [0,T) o V \ \iff F(x,t) := f_t(x) \; ((x,t) \in M imes [0,T))$$

$$\frac{\partial f_t}{\partial t} = E(f_t)$$

If all the eigenvalues of $\sigma(DE_f)(v)$ have the positive real parts for any $f \in \Gamma(V)$ any $v \neq 0 \in \mathbb{R}^n$, then the PDE (*) is said to be parabolic.

Assume that E admits a map

$$L:U imes\Gamma(V) o\Gamma(W)$$

 $(U: an open subset of \Gamma(V), W: a vector bundle over M)$ satisfying the following conditions:

- $\bullet \quad L(f,\cdot) \text{ is a diff. op. of order one for any } f \in U$ $\bullet \quad Q: f \mapsto L(f,E(f)) \ (f \in U) \text{ is a diff. op. of order one}$ $\bullet \quad \text{for any } f \in \Gamma(V) \text{ and any } v(\neq 0) \in \mathbb{R}^n,$
 - all the eigenvalues of $\sigma(DE_f)(v)|_{N(\sigma(L(f))(v))}$ has positive real part

$$\Big(\ N(\cdot) : ext{ the nullity space of } (\cdot) \ \Big)$$

Hamilton's theorem

Then the PDE

$$\frac{\partial f_t}{\partial t} = E(f_t)$$

is said to be weakly parabolic.

Theorem 2.1(Hamilton).

For any $\phi \in \Gamma(V)$, the solution of the weakly parabolic equation

$$\frac{\partial f_t}{\partial t} = E(f_t)$$

. $\frac{\partial f_t}{\partial t} = E(f_t)$ with the initial condition $f_0 = \phi$ uniquely exists in short time.

A immersion $f:M\hookrightarrow\mathbb{R}^m$ is regarded as a section of the trivial bundle $M\times\mathbb{R}^m$ over M.

Then (MCFE) is regarded as a parabolic equation. Hence the following fact follows from the Hamilton's th.

Theorem 2.2.

The solution of (MCFE) for any initial condition uniquely exists in short time.

N: an (n+r)-dimensional Rimannian manifold

 $f:M\hookrightarrow N$ an immersion

 (W,ϕ) : a local coordinate of N s.t. $f(U)\subset W$ for some open set U of M

An immersion $(\phi \circ f)|_U : U \hookrightarrow \mathbb{R}^{n+r}$ is regarded as a local section of the trivial bundle $M \times \mathbb{R}^{n+r}$ over M.

Then f satisfies (MCFE) if and only if $(\phi\circ f)|_U$ satisfies a parabolic equation for any open subset U of M and any local coordinate (W,ϕ) of N with $f(U)\subset W$. Hence the statement of Theorem 2.2 follows from the

Hamilton's theorem.

M : an n-dimensional compact manifold $(N,\langle\;,\;\rangle): \text{ an } (n+1)\text{-dimensional complete}$ Riemannian manifold

 $f:M\hookrightarrow N$: an immersion

 $f_t \ (0 \leq t < T)$: the mean curvature flow for f

 g_t : the induced metric by f_t

 ξ_t : a unit normal vector of f_t

 h_t : the second fundamental form of f_t (for ξ_t)

 A_t : the shape operator of f_t (for ξ_t)

 H_t : the mean curvature vector of f_t (for ξ_t)

 ξ : the section of $F^*(TN)$ given by ξ_t 's

g : the section of $\pi_M^*(T^{(0,2)}M)$ given by g_t 's

h : the section of $\pi_M^*(T^{(0,2)}M)$ given by h_t 's

A: the section of $\pi_M^*(T^{(1,1)}M)$ given by A_t 's

H: the section of $F^*(TV)$ given by H_t 's

 $abla^t$: the Riemannain connection of g_t

abla: the connection of $\pi_M^*(TM)$ given by $abla^t$'s

$$\left(\begin{array}{c} (\nabla_X Y)_{(x,t)} := (\nabla_X^t Y)_x, \ \ (\nabla_{\frac{\partial}{\partial t}} Y)_{(x,t)} = \frac{dY_{(x,\cdot)}}{dt} \\ (X,\,Y \in \Gamma(\pi_M^*(TM))) \end{array}\right)$$

Denote by the same symbol ∇ also the connection of $\pi_M^*(T^{(r,s)}M)$ induced from ∇ .

 \triangle : the Laplace op. defined by ∇

$$\left(\begin{array}{c} (\triangle S)_{(x,t)} := \sum\limits_{i=1}^n \nabla_{e_i} \nabla_{e_i} S \ \left(S \in \Gamma(\pi_M^*(T^{(r,s)}M))\right) \\ ((e_1,\cdots,e_n) \ : \ \text{an orthonormal base of} \ T_x M \ \text{w.r.t.} \ (g_t)_x) \end{array}\right)$$

The evolutions of geometric quantities (hypersurface-case)

 R_N : the curvature tensor of $(N,\langle\;,\;
angle)$

 Ric_N : the Ricci tensor of $(N,\langle\;,\;
angle)$

Proposition 3.1(Huisken).

$$\begin{split} \bullet & \frac{\partial g}{\partial t} = -2||H||h \\ \bullet & \frac{\partial h}{\partial t}(X,Y) = (\triangle h)(X,Y) - 2||H||h(AX,Y) \\ & + \operatorname{Tr}\left(A^2 + \operatorname{Ric}_N(\xi,\xi)\right)h(X,Y) \\ & - \operatorname{Ric}_N(X,AY) + R_N(X,\xi,\xi,AY) \\ & - \operatorname{Ric}_N(Y,AX) + R_N(Y,\xi,\xi,AX) \\ & + 2\operatorname{Tr}_{\bullet}^{\bullet}R_N(A\bullet,X,Y,\bullet) \\ & - (\nabla_Y^N \operatorname{Ric}_N)(X,\xi) - \operatorname{Tr}(\nabla_{\bullet}^N R_N)(X,\xi,Y) \\ & (X,Y \in TM) \end{split}$$

•
$$\frac{\partial ||H||}{\partial t} = \triangle ||H|| + ||H|| \left(\operatorname{Tr}(A^2) + \operatorname{Ric}_N(\xi, \xi) \right)$$

$$rac{\partial g}{\partial t} :=
abla_{rac{\partial}{\partial t}} g$$

$$\mathrm{Tr}_g^{ullet} S(X,ullet,Y,ullet) := \sum\limits_{i=1}^n S(X,e_i,Y,e_i) \ ((e_1,\cdots,e_n): \mathrm{orthon.\ base\ of}\ TM\ \mathrm{w.r.t.}\ g)$$

$$g_t\,(t\in[0,T)):$$
 a C^∞ -family of Riemannian metrics of M $g:$ the section of $\pi_M^*(T^{(0,2)}M)$ given by g_t 's For $B\in\Gamma(\pi_M^*(T^{(r_0,s_0)}M))$, define $\psi_{B\otimes}:\Gamma(\pi_M^*(T^{(r,s)}M))\to\Gamma(\pi_M^*(T^{(r+r_0,s+s_0)}M))$ by

Similarly, define a map $\psi_{\otimes B}$ by

$$\psi_{\otimes B}(S) := S \otimes B \ \ (S \in \Gamma(\pi_M^*(T^{(r,s)}M))).$$

 $\psi_{B\otimes}(S) := B\otimes S \ \ (S\in \Gamma(\pi_M^*(T^{(r,s)}M))).$

Define
$$\psi_{\otimes^k}: \Gamma(\pi_M^*(T^{(r,s)}M)) o \Gamma(\pi_M^*(T^{(kr,ks)}M))$$
 by $\psi_{\otimes^k}(S) := S \otimes \cdots \otimes S \ (k ext{-times}) \ \ (S \in \Gamma(\pi_M^*(T^{(r,s)}M))).$

Define
$$\psi_{g;ij}:\Gamma(\pi_M^*(T^{(r,s)}M)) o \Gamma(\pi_M^*(T^{(r,s-2)}M))$$
 by

$$\begin{split} &(\psi_{g,ij}(S))_{(x,t)}(X_1,\cdots,X_{s-2})\\ := \sum_{k=1}^n S_{(x,t)}(X_1,\cdots,e_k,\cdots,e_k,\cdots,X_{s-2})\\ &(S \in \Gamma(\pi_M^*(T^{(r,s)}M)),\ X_1,\cdots,X_{s-2} \in T_xM), \end{split}$$

where $\{e_1, \cdots, e_n\}$ is an orthon. base of T_xM w.r.t. g_t .

Also, define $\psi_i:\Gamma(\pi_M^*(T^{(r,s)}M)) \to \Gamma(\pi_M^*(T^{(r-1,s-1)}M))$ by

$$\begin{split} &(\psi_i(S))_{(x,t)}(X_1,\cdots,X_{s-1})\\ &:= \mathrm{Tr} S_{(x,t)}(X_1,\cdots,X_{i-1},\bullet,X_i,\cdots,X_{s-1})\\ &\quad (S \in \Gamma(\pi_M^*(T^{(r,s)}M)),\ X_1,\cdots,X_{s-1} \in T_xM). \end{split}$$

$$P: \text{ a map from } \Gamma(\pi_M^*(T^{(r,s)}M)) \text{ to } \\ \Gamma(\pi_M^*(\oplus_{r',s'=0}^\infty T^{(r',s')}M))$$

Definition(a map of polynomial type).

If P is given as the sum of the compositions of the above five types of maps $\psi_{B\otimes},\ \psi_{\otimes B},\ \psi_{\otimes^k},\ \psi_{g;ij},\ \psi_i$, then we say that P is of polynomial type.

Example.

$$P = \psi_{g;5,6} \circ \psi_{g;2,4} \circ \psi_{\otimes^3} + \psi_{g;1,5} \circ \psi_{g;4,6} \circ \psi_3 \circ \psi_{B_1 \otimes} \circ \psi_{\otimes B_2}$$

$$(B_1 \in \Gamma(\pi_M^*(T^{(1,2)}M)), \ B_2 \in \Gamma(\pi_M^*(T^{(0,3)}M)))$$

$$P(S)(X,Y) = \operatorname{Tr}_g^{\bullet_1} \operatorname{Tr}_g^{\bullet_2} S(X, \bullet_1) \otimes S(Y, \bullet_1) \otimes S_{\bullet_2 \bullet_2}$$

+
$$\operatorname{Tr} \operatorname{Tr}_g^{\bullet_1} \operatorname{Tr}_g^{\bullet_2} B_1(\bullet_1, X) \otimes S(\cdot, \bullet_2) \otimes B_2(\bullet_1, \bullet_2, Y)$$

$$P(S)_{i_1 i_2} = g^{k_1 k_2} g^{k_3 k_4} S_{i_1 k_1} S_{i_2 k_2} S_{k_3 k_4}$$

$$+ g^{k_1 k_4} g^{k_3 k_5} (B_1)_{k_1 i_1}^{k_2} S_{k_2 k_3} (B_2)_{k_4 k_5 i_2}$$

In general, we can define a multi-variable map P of polynomial type as a map from $\prod\limits_{i=1}^k \Gamma(\pi_M^*(T^{(r_i,s_i)}M))$ to $\Gamma(\pi_M^*(\bigoplus\limits_{s=0}^\infty T^{(r,s)}M)).$

Remark For
$$S_i \in \Gamma(\pi_M^*(T^{(r_i,s_i)}M))$$
 $(i=1,\cdots,k)$, $P(S_1,\cdots,S_k)$ is described as $S_1*\cdots*S_k$ in terms of the Hamilton's *-notation.

Example.

$$P(S_1, S_2)_{ij} = (S_1)_{k_1 k_2} (B_1)_{ij}^{k_1 k_2} + (S_2)_{ik_1} (B_2)_{j}^{k_1} + g^{k_1 k_4} g^{k_3 k_5} (B_3)_{k_1 i}^{k_2} (S_1)_{k_2 k_3} (S_2)_{k_4 k_5 j}$$

P : a map of polynomial type from $\Gamma(\pi_M^*(T^{(0,2)}M))$ to oneself

Definition(null vector condition).

Assume that, for any $S \in \Gamma(\pi_M^*(T^{(0,2)}M))$ and any $(x,t) \in M imes [0,T)$,

$$X \in \operatorname{Ker} S_{(x,t)}^{\sharp} \implies P(S)_{(x,t)}(X,X) \geq 0.$$

Then we say that P satisfies the null vector condition.

P : a map of polynomial type from $\Gamma(\pi_M^*(M imes \mathbb{R}))$ to oneself

Definition(zero point condition).

Assume that, for any $ho\in\Gamma(\pi_M^*(M imes\mathbb{R}))$ and any $(x,t)\in M imes[0,T)$,

$$\rho(x,t) = 0 \implies P(\rho)(x,t) \ge 0.$$

Then we say that P satisfies the zero point condition.

$$g_t \, (0 \leq t < T) \; : \;$$
 a C^{∞} -family of Riemannian metrics on M

$$abla^t \, (0 \leq t < T) \,\, : \,\,$$
 the Riemannian connection of g_t

$$abla$$
 : the connection of $\pi_M^*(TM)$ defined by $abla^t$'s

S: an element of $\Gamma(\pi_M^*(T^{(0,2)}M))$

Theorem 4.1(Maximum principle).

Assume that S satisfies

$$\frac{\partial S}{\partial t} = \triangle S + \nabla_{X_0} S + P(S)$$

- $\left(\begin{array}{c} \bullet \, X_0 \, : \, \text{an element of} \, \Gamma(\pi_M^*(TM)) \\ \bullet \, P \, : \, \text{a map of polynomial type from} \, \Gamma(\pi_M^*(T^{(0,2)}M)) \\ \text{to oneself satisfying the null vector condition} \end{array}\right)$

If
$$S_0 \ge 0$$
 (resp. $S_0 > 0$), then $S_t \ge 0$ (resp. $S_t > 0$) holds for all $t \in [0, T)$.

 ρ : an element of $\Gamma(\pi_M^*(M \times \mathbb{R}))$

Theorem 4.2(Maximum principle).

Assume that ρ satisfies

$$\frac{\partial \rho}{\partial t} = \triangle \rho + \nabla_{X_0} \rho + P(\rho)$$

- $\left(\begin{array}{c} \bullet \, X_0 \, : \, \text{an element of } \Gamma(\pi_M^*(TM)) \\ \bullet \, P \, : \, \text{a map of polynomial type from } \Gamma(\pi_M^*(M \times \mathbb{R})) \\ \text{to oneself satisfying the zero point condition} \end{array}\right)$

If
$$\rho_0 \ge 0$$
 (resp. $\rho_0 > 0$), then $\rho_t \ge 0$ (resp. $\rho_t > 0$) holds for all $t \in [0, T)$.

The maximum principle is used to show the preservability of the geometric properties along the mean curature flow. 5. The mean curvature flow for a convex hypersurface in a Euclidean space

The mean curvature flow for a convex hypersurface in a Euclidean space

$$f:M\hookrightarrow \mathbb{R}^{n+1}$$
 : an embedding $(\dim M=n)$

$$f_t \ (0 \leq t < T)$$
 : the mean curvature flow for f

Theorem 5.1(Huisken(JDG-1984)).

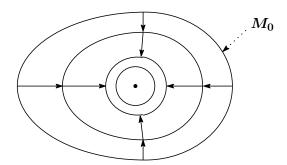
Assume that f is strongly convex (i.e., h > 0).

Then the following statements hold:

- (i) f_t ($0 \le t < T$) are strongly convex.
- (ii) $\lim_{t\to T} f_t$ is a constant map.

The mean curvature flow for a convex hypersurface in a Euclidean space

The mean curvature flow for a convex hypersurface in a Euclidean space



Assume that f is strongly convex.

Let
$$(\lim_{t\to T} f_t)(M) = \{p_0\}.$$

Definition(The rescaled mean curvature flow)(Huisken).

We define $\widehat{f_{ au}} : M \hookrightarrow \mathbb{R}^{n+1} \ \ (0 \leq au < \infty)$ by

$$egin{aligned} \widehat{f}_{ au}(x) &:=
ho(au) \left(f_{\phi^{-1}(au)}(x) - p_0
ight) \ &((x, au) \in M imes [0,\infty)), \end{aligned}$$

where ρ is the positive function with $\rho(0)=1$ such that the volume of $\hat{f}_{\tau}(M)$ is constant, ϕ is defined by

$$\tau = \phi(t) := \int_0^t \rho(t)^2 dt.$$

The mean curvature flow for a convex hypersurface in a **Euclidean space**

Fact.

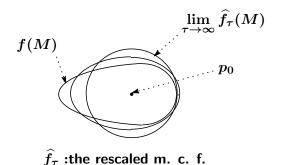
$$\begin{array}{ll} \bullet & \text{The rescaled m.c.f. } \widehat{f_{\tau}} & (0 \leq \tau < \infty) \text{ satisfies} \\ & (\text{RMCF}) & \frac{\partial \widehat{f_{\tau}}}{\partial \tau} = \widehat{H_{\tau}} + \frac{1}{n} H_{\text{sav}} \widehat{f_{\tau}}, \end{array}$$

where $\widehat{H}_{ au}$ is the mean curvature vector of $\widehat{f}_{ au}$ and

$$H_{\mathrm{sav}} := \int_{M} ||\widehat{H}_{ au}||^2 dV_{ au}/\mathrm{Vol}(\widehat{f}_{ au}(M)).$$

The mean curvature flow for a convex hypersurface in a Euclidean space

The mean curvature flow for a convex hypersurface in a Euclidean space



The mean curvature flow for a convex hypersurface in a Euclidean space

The mean curvature flow for a convex hypersurface in a Euclidean space

Theorem 5.2(Huisken(JDG-1984)).

If f is strongly convex, then the flow \widehat{f}_{τ} converges to a totally umbilic embedding as $\tau \to \infty$.

6. The Outline of the proof of Theorem 5.1

$$f:M\hookrightarrow \mathbb{R}^{n+1}$$
 : strongly convex

$$f_t: M \hookrightarrow \mathbb{R}^{n+1} \ (0 \le t < T) \ : \ \mathsf{the} \ \mathsf{m.c.f.} \ \mathsf{for} \ f$$

The outline of the proof of (i) of Theorem 5.1

(Step I) We shall show that $||H_t|| > 0$ holds for all $t \in [0,T)$.

According to Proposition 3.1, we have

$$\frac{\partial ||H||}{\partial t} = \triangle ||H|| + ||H|| \cdot \mathrm{Tr}(A^2).$$

Define a map P_1 of polynomial type by

$$P_1(\rho) := \rho \cdot \operatorname{Tr}(A^2) \ \ (\rho \in \Gamma(\pi_M^*(M \times \mathbb{R}))).$$

Since P_1 satisfies the zero point condition, it follows from the above evolution eq. and Theorem 4.2 (maximum principle) that

$$||H_t|| > 0$$
 holds for all $t \in [0, T)$.

From the assumption, $h_0-arepsilon||H_0||g_0>0$ holds for some arepsilon>0.

Set
$$S_t := h_t - \varepsilon ||H_t|| g_t$$
.

(Step II) We shall show that $S_t>0$ holds for all $t\in[0,T)$.

By using Proposition 3.1, we can show

$$rac{\partial S}{\partial t} = riangle S - 2||H||g(A^2(\cdot),\cdot) + ||A||^2h \ - arepsilon H||A||^2g + 2arepsilon||H||^2h.$$

Let P_2 be the map of polynomial type satisfying

$$P_2(S) = -2||H||g(A^2(\cdot), \cdot) + ||A||^2h - \varepsilon||H|| \cdot ||A||^2g + 2\varepsilon||H||^2h.$$

Since P_2 satisfies the null vector condition, it follows from the above evolution eq. and Theorem 4.1 (maximum principle) that

$$S_t > 0$$
 holds for all $t \in [0, T)$.

From $||H_t|| > 0$ and $S_t > 0$ ($t \in [0,T)$), we obtain

$$h_t > 0$$
 $(t \in [0,T)).$

This completes the proof of (i) of Theorem 5.1. q.e.d.

The outline of the proof of (ii) of Theorem 5.1 by Zhu

(Step I) We shall show $T < \infty$.

 S^n : a sphere in \mathbb{R}^{n+1} surrounding $f_0(M)$

 f_t^S : the mean curvature flow for S^n

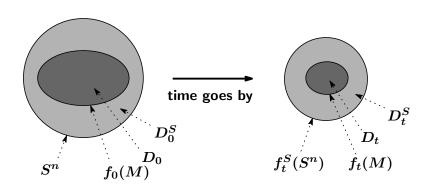
 D_t : the domain surrounded by $f_t(M)$

 D_t^S : the domain surrounded by $f_t^S(S^n)$

Then we can show $D_t \subset D_t^S$ $(\forall t)$.

Also, $f_t^S(S^n)$ collapses to a one-point set in finite time, From these facts, we obtain $T<\infty$.

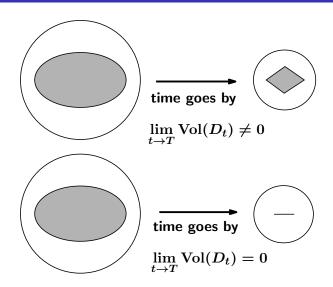
The mean curvature flow for a convex hypersurface in a Euclidean space

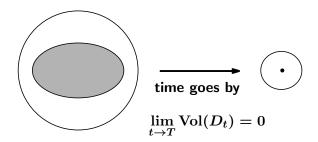


The Outline of the proof of Theorem $5.1\,$

Outline of the proof of (ii) of Theorem 5.1

The following three cases can be considered.





(Step II) We shall show that
$$\lim_{t o T} \operatorname{Vol}(D_t) = 0.$$

Suppose that $\lim_{t\to T}\operatorname{Vol}(D_t)\neq 0$.

Then there exists the ball $B_{r_0}(x_0)$ in \mathbb{R}^{n+1} such that $B_{r_0}(x_0) \subset D_t$ holds for all $t \in [0,T)$.

Without loss of generality, we may assume that x_0 is the origin O of \mathbb{R}^{n+1} .

$$S^n(1)$$
 : the unit sphere centered at $x_0=O$ in \mathbb{R}^{n+1}

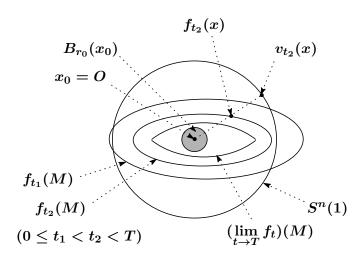
We define
$$v: M \times [0,T) \to S^n(1)$$
 and

$$r:S^n(1) imes [0,T) o \mathbb{R}$$
 by

$$f_t(x) = r(v_t(x), t)v_t(x) \ \ ((x, t) \in M \times [0, T)).$$

It is shown that r satisfies the following uniformly parabolic equation with bounded coefficients:

$$\frac{\partial r}{\partial t} = r^{-3} \left(\bar{g}^{ij} - \frac{1}{r^2 + ||\operatorname{grad} r||^2} (\operatorname{grad} r \otimes \operatorname{grad} r)^{ij} \right) \times \left(r(\overline{\nabla} dr)_{ij} - 2(dr \otimes dr)_{ij} - r^2 \bar{g}_{ij} \right)$$



Hence, according to the standard regularity theorem for a uniformly parabolic equation (Libermann),

 $||\nabla^m r_t||$ is uniformly bounded for any $m \in \mathbb{N}$.

Hence, by the standard discussion based on the Arzela-Ascoli's theorem, we can show that

there exists a seq. $\{t_i\}_{i=1}^{\infty}$ deverging to ∞ s.t. r_{t_i} converges to a smooth function.

On the other hand, since $B_{r_0}(x_0)\subset f_t(M)$ holds for all $t\in [0,T)$, we obtain $r_{t_i}\geq r_0.$

Therefore it follows that

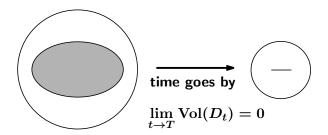
$$\{\widetilde{f}_{t_i}\}_{i=1}^{\infty}$$
 converges to a smooth embedding.

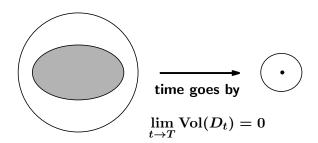
Furthermore, from the monotonicity of $||f_t(x)||$ w.r.t. t, it follows that

 f_t converges to a smooth embedding as $t \to T$.

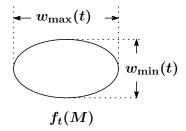
This contradicts that T is the explosion time. Therefore we obtain $\lim \operatorname{Vol}(D_t) = 0$.

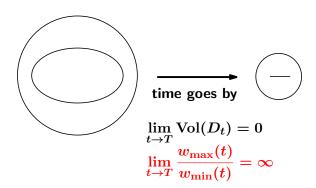
Therefore, the following two cases only can be considered.





$$egin{aligned} \lambda_{\max} &: M imes [0,T)
ightarrow \mathbb{R} \ & \iff \lambda_{\max}(x,t) := \max \ \operatorname{Spec} A^t_x \ \ ((x,t) \in M imes [0,T)) \ & \lambda_{\min} &: M imes [0,T)
ightarrow \mathbb{R} \ & \iff \lambda_{\min}(x,t) := \min \ \operatorname{Spec} A^t_x \ \ ((x,t) \in M imes [0,T)) \ & w_{\max} &: [0,T)
ightarrow \mathbb{R} \ : \ \ ext{the maximal width of} \ f_t(M) \ & w_{\min} &: [0,T)
ightarrow \mathbb{R} \ : \ \ ext{the minimal width of} \ f_t(M) \end{aligned}$$





(Step 3) We shall show
$$\sup_{t \in [0,T)} \frac{w_{\max}(t)}{w_{\min}(t)} < \infty.$$

First we show

$$\sup_{(x,t)\in M\times [0,T)}\frac{\lambda_{\max}(x,t)}{\lambda_{\min}(x,t)}\,<\,\infty.$$

From this fact, we can show

$$\sup_{t\in[0,T)}\frac{w_{\max}(t)}{w_{\min}(t)}\,<\,\infty.$$

Outline of the proof of (ii) of Theorem 5.1

From

$$\lim_{t \to T} \operatorname{Vol}(D_t) = 0$$

and

$$\sup_{t \in [0,T)} \frac{w_{\max}(t)}{w_{\min}(t)} \, < \, \infty,$$

it follows that

$$f_t(M)$$
 collapses to the one-point set $\{x_0\}.$ q.e.d.

Uniformly parabolic equation

M: an n-dimensional compact manifold

V: a vector bundle over M

 $\Gamma(V)$: the space of all sections of V

 E_t : a C^∞ -family of diff. op. of order two of V

 $\sigma(DE_t)$: the symbol of DE_t

$$f_t \, (0 \leq t < T)$$
 : a C^∞ -curve in $\Gamma(V)$

$$F:\, M imes [0,T) o V$$

$$\iff F(x,t) := f_t(x) \ ((x,t) \in M \times [0,T))$$

Uniformly parabolic equation

$$\frac{\partial f_t}{\partial t} = E_t(f_t)$$

If there exists a positive constant C s.t. the real parts of all the eigenvalues of $\sigma(DE_t)(v)$ are greater than $C||v||^2$ for any $v(\neq 0) \in \mathbb{R}^n$ and any $t \in [0,T)$, then the PDE (*) is said to be uniformly parabolic over $M \times [0,T)$.

Outline of the proof of (ii) of Theorem 5.1

The original proof by Huisken

(Step I) We shall show that, for some $\delta \in (0, \frac{1}{2})$,

$$\sup_{0 \leq t < T} \max_{x \in M} \left(||(A_t)_x||^2 - \frac{1}{n} ||(H_t)_x||^2 \right) / ||(H_t)_x||^{2-\delta} \, < \, \infty.$$

For $\delta \in (0, \frac{1}{2})$, define a function ho over M imes [0, T) by

$$ho(x,t) := \left(||(A_t)_x||^2 - \frac{||(H_t)_x||^2}{n} \right) / ||(H_t)_x||^{2-\delta}.$$

Set

$$B_t(k) := \{x \in M \mid \rho_t(x) \ge k\}$$

and

$$||B(k)||:=\int_0^T\int_{B_t(k)}dv_tdt.$$

By using the Sobolev inequality for a submanifold (Hoffman-Spruck), the Hölder inequality and the interpolation inequality, we can show that

$$|s_1 - s_2|^{r_1} \cdot ||B(s_1)|| \le C||B(s_2)||^{r_2}$$

for any $s_1,\ s_2$ s.t. $s_1>s_2\geq k_0$, where $k_0,\ r_1,\ r_2$ and C(>0) are some constants. Here we need to choose δ suitably.

Hence, by the Stampacchia's iteration lemma, we can show

$$||B(k_0+d)||=0$$

for some constant d(>0). That is, we obtain

$$\sup_{0 < t < T} \max_{x \in M} \rho_t(x) \le k_0 + d (< \infty).$$

(Step II) We show that

$$\lim_{t\to T}\max_{x\in M}\,||(A_t)_x||=\infty.$$

Hence we obtain

(2)
$$\lim_{t\to T} \max_{x\in M} ||(H_t)_x|| = \infty.$$

(Step III) We show that

(3)
$$\lim_{t \to T} \frac{\max_{x \in M} ||(H_t)_x||}{\min_{x \in M} ||(H_t)_x||} = 1.$$

(Step IV) From (1), (2) and (3), we obtain

(4)
$$\lim_{t \to T} \left(\frac{||(A_t)_x||}{||(H_t)_x||} - \frac{1}{n} \right) = 0.$$

From (2) and (4), it follows that

the diameter of $f_t(M)$ converges to zero as $t \to T$, that is, f_t converges to a constant map.

q.e.d.

M: a n-dimensional manifold

N: a (n+r)-dimensional Riemnnian manifold

 $f:M\hookrightarrow N$: an immersion

H: the mean curvature vector of f

b: the real number or the purely imaginary number s.t. b^2 is equal to the maximum of the sectional curvatures of N

Assume that $b^2 \neq 0$.

i(M): the injective radius of N restricted to M

 ω_n : the volume of the unit ball in \mathbb{R}^n

$$\psi$$
 : a non-negative C^1 -function over M s.t. $\psi|_{\partial M}=0$

Fix $\alpha \in (0,1)$.

 ho_0 : a positive constant described explicitly in terms of b, lpha and $\operatorname{Vol}(\operatorname{supp} \psi)$

Sobolev inequality(Hoffman-Spruck)

If $ho_0 \le i(M)$ and $b^2(1-lpha)^{-2/n}(\omega_n^{-1}\mathrm{Vol}(\mathrm{supp}\,\psi))^{2/n} \le 1$, then

$$||\psi||_{L^{n/(n-1)}} \leq C_{n,lpha} \int_{M} \left(||
abla \psi|| + \psi||H||\right) dv.$$

Hölder inequality

Let
$$\dfrac{1}{p}+\dfrac{1}{q}=1 \ (p>0,q>0)$$
 and $\psi_i\in L^p(M)\cap L^q(M)$ $(i=1,2).$ Then

$$\int_{M} |\psi_{1}\psi_{2}| dv \leq ||\psi_{1}||_{L^{p}} \times ||\psi_{2}||_{L^{q}}.$$

Interpolation inequality

Let
$$1 \leq p < q < r \leq \infty, \;\; \theta := \frac{1/p - 1/q}{1/p - 1/r}$$
 and $\psi \in L^p(M) \cap L^r(M).$ Then

$$||\psi||_{L^q} \le ||\psi||_{L^p}^{1-\theta} \times ||\psi||_{L^r}^{\theta}.$$

Stambacchia's iteration lemma

Let ψ be a non-negative and non-increasing function over $[a,\infty)$. Assume that

$$\psi(t_2) \leq \left(rac{C}{t_2-t_1}
ight)^lpha \psi(t_1)^eta \quad (orall \, t_1,t_2 ext{ s.t. } a < t_1 < t_2),$$

where C, α and β are some constants with $C, \alpha > 0$ and $\beta > 1$. Then we have

$$\psi(a+d)=0,$$

where $d = C\psi(a)^{(\beta-1)/\alpha} \times 2^{\beta/(\beta-1)}$.

Outline of the proof of Theorem 5.2 by Zhu

$$f:M\hookrightarrow \mathbb{R}^{n+1}$$
 : strongly convex

$$\widehat{f_{ au}}:M\hookrightarrow\mathbb{R}^{n+1}\,(0\leq au<\infty)$$
 : the rescaled m.c.f. for f

$$S^n(1)$$
 : the unit sphere centered at $x_0=O$ in \mathbb{R}^{n+1}

We define
$$\widehat{v}: M \times [0,\infty) \to S^n(1)$$
 and $\widehat{r}: S^n(1) \times [0,\infty) \to \mathbb{R}$ by

$$\widehat{f}_{\tau}(x) = \widehat{r}(\widehat{v}_{\tau}(x), \tau)\widehat{v}_{\tau}(x) \quad ((x, \tau) \in M \times [0, \infty)).$$

(Step I) We shall show that

$$\lim_{ au o\infty}\widehat{f}_ au$$
 is a smooth embedding.

First we show that

 $\hat{r}_{ au}$ satisfies a uniformly parabolic equation with bounded coefficients.

Hence, according to the standard regularity theorem for a uniformly parabolic equation,

 $||
abla^m \widehat{r}_{ au}||$ is uniformly bounded for any $m \in \mathbb{N}$.

Hence, by the standard discussion based on the Arzela-Ascoli's theorem, we can show that

there exists a seq. $\{\tau_i\}_{i=1}^{\infty}$ diverging to ∞ s.t. \tilde{r}_{τ_i} converges to a smooth function.

Therefore it follows that

 $\{\widehat{f}_{ au_i}\}_{i=1}^\infty$ converges to a smooth embedding.

(Step II) We shall show that \hat{f}_{∞} is self-similar.

$$\rho_{\tau}(x) := \exp(-\frac{1}{2}||\widehat{f_{\tau}}(x)||)$$

First we show the following monotonicity formula:

$$rac{d}{d au}\int_{M}
ho_{ au}d\widehat{v}_{ au}\leq-\int_{M}||\widehat{H}_{ au}+\widehat{f}_{ au}\cdot\widehat{\xi}_{ au}||
ho_{ au}d\widehat{v}_{ au}\ (\leq0),$$

where \widehat{H}_{τ} , $\widehat{\xi}_{\tau}$ and $d\widehat{v}_{\tau}$ are the m. c. v., the u. n. v. f. and the vol. elem. of \widehat{f}_{τ} , respectively.

By using this monotonicity formula, it is shown that

$$\lim_{ au o\infty}||\widehat{H}_{ au}+\widehat{f}_{ au}\cdot\widehat{\xi}_{ au}||=0.$$

This implies that \widehat{f}_{∞} is self-similar.

According to the classification of the self-similar solution for a compact hypersurface, \widehat{f}_{∞} is totally umbilic.

q.e.d.

The outline of the proof of Theorem 5.2 by Huisken

 $\widehat{h}_{ au}\,:$ the second fundamental form of $\widehat{f_{ au}}$

 $\widehat{A}_{ au}\,$: the shape operator of $\widehat{f}_{ au}$

(Step I) First we show that

$$\frac{\max_{x \in M} ||(\widehat{H}_{\tau})_x||}{\min_{x \in M} ||(\widehat{H}_{\tau})_x||} \to 1 \quad (\tau \to \infty).$$

(Step II) By using this fact and discussing deicately, we show that

$$\int_M \left(||\widehat{A}_{ au}||^2 - rac{||\widehat{H}_{ au}||^2}{n}
ight) d\widehat{v}_{ au} \leq C e^{-\delta au}.$$

Furthermore, by using the Sobolev inequality and discussing delicately, we show that

$$||\widehat{A}_{ au}||^2 - rac{||\widehat{H}_{ au}||^2}{n} \leq Ce^{-\delta au}.$$

Furthermore, by discussing delicately, we show that

$$egin{aligned} \max_{x \in M} \ ||(\widehat{H}_{ au})_x|| - \min_{x \in M} \ ||(\widehat{H}_{ au})_x|| & \leq Ce^{-\delta au} \ \max_{x \in M} \ ||(
abla^m \widehat{A}_{ au})_x|| & \leq C_m e^{-\delta' au} \ \ (orall \ m \in \mathbb{N}) \end{aligned}$$

From these facts, it follows that

$$\widehat{f}_{ au}$$
 converges to a totally umbilic embedding as $au o \infty$. q.e.d.