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1. The mean curvature flow
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The mean curvature flow

The mean curvature flow

(N,(, )) : acomplete Riemannian manifold
M : a compact manifold

ft:M— N(O<t<T) : aC°-family of immersions
of M into N

F: Mx][0,T) —> N
— F(z,t) := fi(x) ((z,t) € M x [0,T))

When f; is an embedding, we set M; := f,(M).
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The mean curvature flow

The mean curvature flow

H; : the mean curvature vector of f;
H : the section of F*T' N defined by

H(g 4y := (Hy)o ((z,t) € M x [0,T))

Definition

ft (0 <t < T) :amean curvature flow

<~— ol = H MCFE
o O ( )

We may write (MCFE) as
Oft
= = H,.
ot
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The mean curvature flow

The mean curvature flow

We consider the case of N = R™ (Euclidean space).

Then H; is described as
Hy = A,
where A; is the Laplacian op. of g; := f;(, ).

Hence (MCFE) is described as

dFf;
T AL
ot tfi

which is a quasi-linear parabolic equation and hence
the existenceness and the uniqueness of the solution
of (MCFE) in short time for any smooth initial data
is assured by the Hamilton’s theorem.
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The mean curvature flow

The mean curvature flow
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The mean curvature flow

The mean curvature flow

t > T
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The mean curvature flow

The mean curvature flow

ft: M — R™ (0<t<T) : amean curvature flow

Definition(self-similar solution)
If fe = p(t)fo (0 <t < T) for some positive-valued
C*°-function p: [0,T) — R, then f; (0 <t < T)
is called a self-similar solution. Also, fo is called

a self-similar immersion.

If f (0 <t <T)is a self-similar solution, then

fe(x) = V2(T — t) fo(z) (= € M) holds.
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The mean curvature flow

The mean curvature flow

The only self-similar solutions in R? are

Abresch-Langer curves ~;, s, where m is
the periodic number and n is the rotational number.
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The mean curvature flow

The mean curvature flow

73,2
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The mean curvature flow

The mean curvature flow

The mean curvature flow for an isoparametric hypersurface

in a Euclidean space is a self-similar solution.




Ya—rEA ML
00000000080

The mean curvature flow

The mean curvature flow

ft: M — R™ (0<t<T) : amean curvature flow

Definition(translating soliton)

If fet(M) = fo(M) + v(t) (0 <t < T) for some constant
vector v(t), then f; (0 <t < T) is called a translating
soliton. Also, fj is called a translating immersion.

The only translating soliton in R? is a grim reaper.
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The mean curvature flow

The mean curvature flow

y =1In cos x
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2. Hamilton’s theorem
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Hamilton's theorem

Hamilton’s theorem

M : an n-dimensional compact manifold
V : a vector bundle over M

I'(V') : the space of all sections of V'

E : a diff. op. of order two of V'

DE¢ : the linearization of E at f(€ I'(V))
o(DEy) : the symbol of DEy
fi(0<t<T):aC>-curveinI'(V)

F: MxI[0,T) =V
— F(z,t) = fi(z) ((2,t) € M X [0,T))
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Hamilton's theorem

Hamilton’s theorem

o5
*) = B(f)

If all the eigenvalues of o(DEy)(v) have the positive
real parts for any f € T'(V) any v(# 0) € R",
then the PDE (x) is said to be parabolic.
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Hamilton's theorem

Hamilton’s theorem

Assume that E admits a map
L:UxT(V) = T(W)
(U : an open subset of I'(V'), W : a vector bundle over M)

satisfying the following conditions:
e L(f,-) is a diff. op. of order one for any f € U

e Q:f— L(f,E(f)) (f € U) is a diff. op. of order one
e for any f € I'(V) and any v(# 0) € R™,

all the eigenvalues of o(DE¢)(v)|N(o(L(f))(v))

has positive real part

( N (-) : the nullity space of (-) )




Ya—rEA L
0000000

Hamilton's theorem

Hamilton’s theorem

Then the PDE
oft

ot E(ft)

is said to be weakly parabolic.
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Hamilton's theorem

Hamilton’s theorem

Theorem 2.1(Hamilton).

For any ¢ € I'(V), the solution of the weakly

parabolic equation

oft
Bt E(ft)

with the initial condition fo = ¢ uniquely exists

in short time.
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Hamilton's theorem

Hamilton’s theorem

A immersion f : M — R™ is regarded as a section of
the trivial bundle M x R™ over M.
Then (MCFE) is regarded as a parabolic equation.

Hence the following fact follows from the Hamilton’s th.

The solution of (MCFE) for any initial condition
uniquely exists in short time.
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Hamilton’s theorem

Hamilton’s theorem

N : an (n 4+ r)-dimensional Rimannian manifold
f: M — N an immersion

(W, ¢) : a local coordinate of N s.t. f(U) C W
for some open set U of M

An immersion (¢ o f)|y : U — R™*" is regarded as a local
section of the trivial bundle M x R™*" over M.

Then f satisfies (MCFE) if and only if (¢ o f)|y satisfies a
parabolic equation for any open subset U of M and any
local coordinate (W, ¢) of N with f(U) C W.

Hence the statement of Theorem 2.2 follows from the
Hamilton’s theorem.
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3. The evolutions of geometric quantities
(hypersurface-case)
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The evolutions of geometric quantities (hypersurface-case)

The evolutions of geometric quantities (hypersurface-case)

M : an n-dimensional compact manifold

(N,(, )) : an (n + 1)-dimensional complete
Riemannian manifold

f+:M — N : an immersion

ft (0<t<T) : the mean curvature flow for f
g¢ : the induced metric by f;

&: : a unit normal vector of f;

h: : the second fundamental form of f; (for &)
A; : the shape operator of f; (for &;)

H; : the mean curvature vector of f; (for &)
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The evolutions of geometric quantities (hypersurface-case)

The evolutions of geometric quantities (hypersurface-case)

e

: the section of F*(T'N) given by &;'s
: the section of 7%, (T(%2) M) given by g;’s
the section of 7%, (T(%2) M) given by h's

: the section of 7}, (T(*Y) M) given by A;'s

z » T

: the section of F*(T'V') given by H;'s
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The evolutions of geometric quantities (hypersurface-case)

The evolutions of geometric quantities (hypersurface-case)

V! : the Riemannain connection of g;

V : the connection of 7%, (T M) given by V*'s

(VX)) 5= (V5 as (Vo ¥)apy = — )
(X, Y € I'(my, (TM)))
Denote by the same symbol V also the connection of
7% (T(™*) M) induced from V.
A : the Laplace op. defined by V
(AS)(w) = 3. Ve, Ve, S (S € D(y (T M)))
=1

((e1y+++ yepn) : an orthonormal base of T, M w.r.t. (g¢)z)
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The evolutions of geometric quantities (hypersurface-case)

The evolutions of geometric quantities (hypersurface-case)

Ry : the curvature tensor of (N, (, ))

Ricn : the Ricci tensor of (N, (, ))
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The evolutions of geometric quantities (hypersurface-case)

The evolutions of geometric quantities (hypersurface-case)

Proposition 3.1(Huisken).

« 29 _ _o\m|In
ot
‘Z (X,Y) = (AR)(X,Y) — 2||H||h(AX,Y)
+Tr (A% + Ricn (€, €)) (X, Y)
—Ricy (X, AY) + Rn(X, &, €, AY)
—Ricn (Y, AX) + Rn (Y, &,¢, AX)
+2FI‘I';RN(A.’X9YV’ .)
—(VYRicn) (X, €) — Tr(VIRN) (X, €, Y)
(X,Y € TM)
o||H
. |1% Il _ A||H|| + ||H|| (Tr(A?) + Ricn (&, €))
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The evolutions of geometric quantities (hypersurface-case)

The evolutions of geometric quantities (hypersurface-case)

a:: V%g

’I\[';S(X’ o.Y,0):= > S(X,e;,Y,¢€;)
=1

((e1y+++ yey) : orthon. base of TM w.r.t. g)



va—bkEA ML

4. The maximum principle
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The maximum principle

The maximum principle

gt (t € [0,T)) : a C°°-family of Riemannian metrics of M

g : the section of 7%, (T(®?) M) given by g;’s

For B € T'(w},(T(m-%0) M)), define
¥Bg : (7 (T M)) — T (mh (T H7o5T50) M) by

YBe(S):=B®S (S € I'(xi,(T™M))).

Similarly, define a map ¥ gp by

YeoB(S) == S® B (S € T(m}, (T M))).
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The maximum principle

The maximum principle

Define gk : T'(wh (T M)) — T'(n},(T*"k)M)) by

PYer(S) == S®---®S (k—times) (S € T(w}, (T M))).

Define vg,;; : T'(7%, (T M)) — T(m%,(T™*=2) M)) by

(’wQ’ij(S))(m,t) (Xla MR} Xs—2)
= Z Sty (X1 1€ky " 5 Chy "t » Xs—2)
k=1 ’ J
(S € T(mh (T M)), Xq,--+,Xs_2 € ToM),

where {e1,-: ,en} is an orthon. base of T, M w.r.t. g;.
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The maximum principle

The maximum principle

Also, define v; : T'(7%, (T M)) — T(m},(T— 1= M))
by

(¥i(S)) (,t) (X15 -+ s Xs—1)
= TI'S(m,t) (Xla ey Xio1,0, Xy ’Xs—l)
(S € T(mi (TTHM)), Xy,+-+,Xs_1 € TuM).
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The maximum principle

The maximum principle

P : amap from (7%, (T(™*) M)) to
F(WTW(GB?aS’:O T(r’,s')M))

Definition(a map of polynomial type).

If P is given as the sum of the compositions of the above
five types of maps Vg, YgB, Ygk, Vg;:ij, Vi, then we say
that P is of polynomial type.
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The maximum principle

The maximum principle

Example.

P = 14,56 0 1g;2,4 0 Pg3 + Pg;1,5 0 Pgia,6 © Y3 0 PB,® © YRB,
(B1 € T(m3(TODM)), By € (i, (TO3M)))

P(S)(X,Y) = rI‘I';lrI‘rgz‘S(Xa.l) ® S(Ya.l) &® 50202
+TrTry' Tro* Bi(e1, X) ® S(-, 02) @ Bz(e1,2,Y)

P(S)’iliz == gklkzgk3k4si1k1Si2k25k3k4
+9k1k49k3k5(Bl)zfilskzkg(Bz)k4k5i2



Ya—rEqA L
00000®000000

The maximum principle

The maximum principle

In general, we can define a multi-variable map P of

k
polynomial type as a map from II I‘(‘rr}"VI(T(”’S")M))
i=1

to D(w%,( & T™M)).

r,s=0

Remark For S; € T'(m}, (T M)) (i = 1,--- , k),
P(S1,---,Sk) is described as Sy * - - - % Sy, in terms of

the Hamilton’s x-notation.

Example.

P(51,852)i = (Sl)klkz(Bl)k1k2 + (S2) ik, (BQ);?I
+g*ikeg '“3’“5(Bs)ﬁfi(sl)kzks(SZ)k4’“5j
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The maximum principle

The maximum principle

P : a map of polynomial type from
T'(7%,(T©2M)) to oneself

Definition(null vector condition).

Assume that, for any S € T'(7},(T(®?) M)) and any
(z,t) € M x [0,T),

X €eKerSf, ), = P(S)@n(X,X) > 0.

Then we say that P satisfies the null vector condition.
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The maximum principle

The maximum principle

P : a map of polynomial type from
I'(7}3,(M x R)) to oneself

Definition(zero point condition).

Assume that, for any p € T'(w},(M X R)) and any
(x,t) € M x [0,T),

p(z,t) =0 = P(p)(z,t) > 0.

Then we say that P satisfies the zero point condition.
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The maximum principle

The maximum principle

gt (0<t<T) : aC-family of Riemannian metrics on M
V(0 <t<T) : the Riemannian connection of g,

V : the connection of 7},(T'M) defined by V*'s
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The maximum principle

The maximum principle

S : an element of T'(7%,(T(%2) M))

Theorem 4.1(Maximum principle).

Assume that S satisfies

as
® Xy : an element of I'(7},(TM))
e P : a map of polynomial type from I'(7%, (T2 M))
to oneself satisfying the null vector condition

If So > 0 (resp. Sp > 0), then S; > 0 (resp. S; > 0)
holds for all t € [0,T).
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The maximum principle

The maximum principle

p : an element of I'(7},(M X R))

Theorem 4.2(Maximum principle).

Assume that p satisfies

op
= 8pr+ Vxop+ P(p)
at
® X : an element of I'(7},(TM))
e P : a map of polynomial type from I'(7},(M x R))

to oneself satisfying the zero point condition

If po > 0 (resp. po > 0), then p; > 0 (resp. p: > 0)
holds for all t € [0, T).
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The maximum principle

The maximum principle

The maximum principle is used to show the preservability of
the geometric properties along the mean curature flow.
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5. The mean curvature flow for a convex
hypersurface in a Euclidean space
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The mean curvature flow for a convex hypersurface in a Euclidean space

The mean curvature flow for a convex hypersurface in a
Euclidean space

f: M < R*™! : an embedding (dim M = n)

ft 0<t<T) : the mean curvature flow for f

Theorem 5.1(Huisken(JDG-1984)).

Assume that f is strongly convex (i.e., h > 0).

Then the following statements hold:
(i) ft (0 <t < T) are strongly convex.
(ii) lim f; is a constant map.
t—T
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The mean curvature flow for a convex hypersurface in a Euclidean space

The mean curvature flow for a convex hypersurface in a
Euclidean space
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The mean curvature flow for a convex hypersurface in a Euclidean space

Assume that f is strongly convex.
Let (lim £:)(M) = {po}.
t—T

Definition(The rescaled mean curvature flow)(Huisken).
We define f; : M < R"*t1 (0 < 7 < o) by

Fr(@) = p(r) (F5-1(r) (@) — po)
((z,7) € M x [0,00)),

where p is the positive function with p(0) = 1 such that
the volume of f, (M) is constant, ¢ is defined by
t

r= o) = | ptyat
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The mean curvature flow for a convex hypersurface in a Euclidean space

The mean curvature flow for a convex hypersurface in a
Euclidean space

e The rescaled m.c.f. f- o< < oo) satisfies

- H + HS&VfT’
where I/LI\T is the mean curvature vector of _f,. and
Hiw 1= [ ||H,|PaVe/Vol(F, (MD)).

M

dfr
(RMCF) f
or
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The mean curvature flow for a convex hypersurface in a Euclidean space

The mean curvature flow for a convex hypersurface in a
Euclidean space

~

fr :the rescaled m. c. f.
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The mean curvature flow for a convex hypersurface in a Euclidean space

The mean curvature flow for a convex hypersurface in a
Euclidean space

Theorem 5.2(Huisken(JDG-1984)).

If f is strongly convex, then the flow f.r converges to
a totally umbilic embedding as 7 — oo.
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6. The Outline of the proof of Theorem 5.1
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The Outline of the proof of Theorem 5.1

The Outline of the proof of (i) of Theorems 5.1

f: M — R™1 : strongly convex
fe: M — R (0<t<T) : the mc.f. for f
The outline of the proof of (i) of Theorem 5.1

(Step 1) We shall show that ||H:|| > 0 holds for all
t € [0,T).

According to Proposition 3.1, we have

|| H]|

= A||H H|| - Tr(A?).
5 [|HI| + [|H]|| - Tr(A%)
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The Outline of the proof of Theorem 5.1

The Outline of the proof of (i) of Theorems 5.1

Define a map P; of polynomial type by
Pi(p) := p-Tr(A?) (p € D(mp(M X R))).

Since P; satisfies the zero point condition, it follows from
the above evolution eq. and Theorem 4.2 (maximum

principle) that
|| H¢|| > O holds for all t € [0,T).
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The Outline of the proof of Theorem 5.1

The Outline of the proof of (i) of Theorems 5.1

From the assumption, hg — ¢||Hy||go > O holds for some
e > 0.

Set St = ht — EHHtHgt.
(Step 11) We shall show that S; > 0 holds for all ¢t € [0,T).

By using Proposition 3.1, we can show

oS
B =AS — 2||H||Q(A2(')a ) + ||A||2h

—cH||Al|*g + 2¢||H|*h.
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The Outline of the proof of Theorem 5.1

The Outline of the proof of (i) of Theorems 5.1

Let P> be the map of polynomial type satisfying

Py(8) = —2||H||g(A*(),-) + [|Al|*h
—el|H|| - [|All*g + 2e||H||*h.

Since P: satisfies the null vector condition, it follows
from the above evolution eq. and Theorem 4.1 (maximum
principle) that

St > 0 holds for all t € [0,T).
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The Outline of the proof of Theorem 5.1

The Outline of the proof of (i) of Theorems 5.1

From ||H¢|| > 0and S; > 0 (t € [0,T")), we obtain
hy > 0 (t € [0,T)).

This completes the proof of (i) of Theorem 5.1. g.e.d.
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The Outline of the proof of Theorem 5.1

The Outline of the proof of (ii) of Theorems 5.1

The outline of the proof of (ii) of Theorem 5.1 by Zhu

(Step 1) We shall show 7" < oco.
S™ : a sphere in R" 11 surrounding fo(M)
ff : the mean curvature flow for S™
D, : the domain surrounded by f;(M)
D? : the domain surrounded by f5(S™)

Then we can show D; C Dy (Vt).
Also, f5(S™) collapses to a one-point set in finite time,
From these facts, we obtain 7' < oo.
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The Outline of the proof of Theorem 5.1

The mean curvature flow for a convex hypersurface in a
Euclidean space

—_—
time goes by

Y FE(8™)  f()
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

The following three cases can be considered.
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

—_—
time goes by

lim Vol(D;) =0
t—T

—_—
time goes by

li 1(D
ing Vol(Dn) # 0
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

—_—
time goes by @

lim Vol(D;) =0
t—T
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The Outline of the proof of Theorem 5.1

The Outline of the proof of of (ii) Theorems 5.1

(Step 1) We shall show that thn’ll“ Vol(D;) = 0.
%
Suppose that lim Vol(D;) # 0.
t—T

Then there exists the ball B, (xo) in R®t! such that
B,.,(xz¢) C D, holds for all t € [0, T).

Without loss of generality, we may assume that x is
the origin O of R™* 11,



va—hkBA ML

00000000000 @O0000000000000

The Outline of the proof of Theorem 5.1

The outline of the proof of (ii) of Theorem 5.1

S™(1) : the unit sphere centered at zo = O in R" 11

We define v : M x [0,T) — S™(1) and
r:S"(1) X [0,T) — R by

fi(z) = r(vi(z), )yoe(x) ((z,t) € M x [0, T)).
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

It is shown that 7 satisfies the following uniformly parabolic
equation with bounded coefficients:

o oy (Erad @ grad )Y )
—=r — radr ® grad r
ot g r2 + ||grad r||? & 8

X (T(Vdr),-j —2(dr ® dr);j — ngij)
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

ftz (93)
B, (:]30) "Utz (m)

fu(M) )
Fra(M) s
(0<t <ty <T) (lim f;)(M)
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The Outline of the proof of Theorem 5.1

The outline of the proof of (ii) of Theorem 5.1

Hence, according to the standard regularity theorem
for a uniformly parabolic equation (Libermann),

|[|[V™rs|| is uniformly bounded for any m € N.

Hence, by the standard discussion based on
the Arzela-Ascoli’s theorem, we can show that

there exists a seq. {t;};°, deverging to co
s.t. ¢, converges to a smooth function.
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The Outline of the proof of Theorem 5.1

The outline of the proof of (ii) of Theorem 5.1

On the other hand, since B,,(xo) C f:(M) holds for all
t € [0,T), we obtain ¢, > 7.

Therefore it follows that
{ft }52, converges to a smooth embedding.

Furthermore, from the monotonicity of || f;(x)|| w.r.t. t,
it follows that

ft converges to a smooth embedding ast — T'.

This contradicts that T is the explosion time.
Therefore we obtain lim Vol(D;) = 0.
t—T



va—hkBA ML

000000000000 0000e00000000

The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

Therefore, the following two cases only can be considered.
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

—_—
time goes by

lim Vol(D;) =0
t—=T
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

—_—
time goes by @

lim Vol(D;) =0
t—T
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

Amax : M % [0,T) = R

— Amax(Z,t) := max Spec AL, ((z,t) € M x [0,T))

Amin : M X [O,T) — R

= Amin(Z,t) := min Spec A? ((z,t) € M x [0,T))

Wmax : [0,T) — R : the maximal width of fi(M)

Wmin ¢ [0,T) — R : the minimal width of fi(M)
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

<— Wmax (t) —"
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

—_—
time goes by

lim Vol(D;) =0
t—T

. wmax(t)
lim ———= =
t—T ’U_}min(t)
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The Outline of the proof of Theorem 5.1

The outline of the proof of (ii) of Theorem 5.1

wmax(t)
(Step 3) We shall show sup ———= < oo.

t€[0,T) Wmin (1)
First we show

A x,t

(z,)EM x[0,T) Amin(Z,1)
From this fact, we can show

w t

t€[0,T7) Wmin (t)
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The Outline of the proof of Theorem 5.1

Outline of the proof of (ii) of Theorem 5.1

From
lim Vol(D;) =0
t—T

and

wmax(t)
sup ——— < 09,
te[0,T) 'wmin(t)

it follows that

ft(M) collapses to the one-point set {x¢}.
g.e.d.



va—hkBA ML

000000000000000000000000
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Uniformly parabolic equation

M : an n-dimensional compact manifold

V : a vector bundle over M

I'(V') : the space of all sections of V'

E; : a C°°-family of diff. op. of order two of V'
o(DEy;) : the symbol of DE,
fi(0<t<T):aC>-curveinI'(V)

F:MXx[0,T) >V
— F(z,t) = fi(z) ((2,t) € M X [0,T))
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The Outline of the proof of Theorem 5.1

Uniformly parabolic equation

() e = ms)

If there exists a positive constant C s.t. the real parts
of all the eigenvalues of o(DE;)(v) are greater than
C||v||? for any v(# 0) € R™ and any t € [0,T),

then the PDE () is said to be uniformly parabolic
over M x [0,T).
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Outline of the proof of (ii) of Theorem 5.1

The original proof by Huisken

(Step 1) We shall show that, for some § € (0, %)

1 _
sup max <||(At):n||2 - ||(Ht)m||2> /N(He)o| >0 < oo
0<t<T xeM n

For 6 € (0, %), define a function p over M x [0,T) by

|I(H;)m||2>

p(z,t) = (II(Aw:)acII2 - /11 (He)a[*~°.
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The Outline of the proof of Theorem 5.1

Outline of the proof of Theorem 5.1

Set
Bi(k) :={x € M | pt(x) > k}

and

T
|| B(k)|| := / / dvgdt.
0 JBy(k)
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Outline of the proof of Theorem 5.1

By using the Sobolev inequality for a submanifold
(Hoffman-Spruck), the Héolder inequality
and the interpolation inequality, we can show that

51— s2|™ - [|B(s1)|| < Cl|B(s2)[|"

for any s1, sg s.t. s1 > so > ko, where kg, 1, r2 and
C(> 0) are some constants. Here we need to choose §
suitably.
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The Outline of the proof of Theorem 5.1

Outline of the proof of Theorem 5.1

Hence, by the Stampacchia’s iteration lemma, we can show
1B (ko +d)|| =0
for some constant d(> 0). That is, we obtain

sup max py(e) < ko + d (< c0).
0<t<T TEM
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The Outline of the proof of Theorem 5.1

Outline of the proof of Theorem 5.1

(Step 1) We show that

li A = oo.
lim max [[(A¢)z]| = oo
Hence we obtain

(2) lim max ||(H¢),|| = oo.

t—T xeM
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Outline of the proof of Theorem 5.1

(Step 111) We show that

maxgen ||(He)zll
t—=T mingens ||(He)zl|

(3)

(Step 1IV) From (1), (2) and (3), we obtain

(Al 1Y
W 1 (1 ) =°
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The Outline of the proof of Theorem 5.1

Outline of the proof of Theorem 5.1

From (2) and (4), it follows that

the diameter of f;(M) converges to zero as t — T,
that is, f; converges to a constant map.
g.e.d.



7. Sobolev inequality for a submanifold



Sobolev inequality for a submanifold

Sobolev inequality for a submanifold

M : a n-dimensional manifold

N : a (n + r)-dimensional Riemnnian manifold
f: M — N : an immersion

H : the mean curvature vector of f

b : the real number or the purely imaginary number
s.t. b? is equal to the maximum of the sectioal
curvatures of N

Assume that b? # 0.
t(M) : the injective radius of N restricted to M

wy, ¢ the volume of the unit ball in R™



Sobolev inequality for a submanifold

Sobolev inequality for a submanifold

1 : a non-negative C'-function over M s.t. 1|spr = 0
Fix a € (0,1).

po : a positive constant described explicitly in terms of
b, a and Vol(supp )

Sobolev inequality(Hoffman-Spruck)

If po < i(M) and b?(1 — a) =2/ (w; Vol(supp v))?/™ < 1,
then

1]l Ln/n-1) < Cnya /M(HVI/)II + ¥||H]|) dv.




Sobolev inequality for a submanifold

Sobolev inequality for a submanifold

Holder inequality

1 1

Let —+—-=1(p>0,g>0)andy; € LP(M) N LI(M)
b q

(¢ =1,2). Then

[ rsaldo < [lallis % [1alles.
M

Interpolation inequality
_1/p—1/q
1/p—1/r

Letl1<p<g<r<oo, 0: and

¥ € LP(M) N L"(M). Then

1-6 (2]
1llza < [19lIe™ x |1lL-

N




Sobolev inequality for a submanifold

Sobolev inequality for a submanifold

Stambacchia’s iteration lemma

Let v» be a non-negative and non-increasing function over
[a, 00). Assume that

P(ty) < ( ) ()P (Viti,t2 st a <ty < ta),

to — 1

where C, a and 3 are some constants with C,a > 0
and 8 > 1. Then we have

Y(a+d) =0,

where d = Cp(a)B—1/a x 28/(B-1),
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The outline of the proof of Theorem 5.2

Outline of the proof of Theorem 5.2 by Zhu

f: M — R™! : strongly convex
fr: M < R"1(0 < 7 < 00) : the rescaled m.c.f. for f
S™(1) : the unit sphere centered at zop = O in R**1

We define v : M X [0,00) — S™(1) and
r:S™"(1) X [0,00) — R by

ﬁ-(w) = 7(vr (), T)v- () ((z,7) € M X [0,00)).
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The outline of the proof of Theorem 5.2

(Step 1) We shall show that

lim f, is a smooth embedding.
T—+00

First we show that

7, satisfies a uniformly parabolic equation
with bounded coefficients.

Hence, according to the standard regularity theorem
for a uniformly parabolic equation,

[|[V™7,|| is uniformly bounded for any m € N.
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The outline of the proof of Theorem 5.2

Hence, by the standard discussion based on
the Arzela-Ascoli's theorem, we can show that

there exists a seq. {7;}:2, diverging to oo s.t.
r,, converges to a smooth function.

Therefore it follows that

{f.,i 152, converges to a smooth embedding.
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The outline of the proof of Theorem 5.2

(Step 1) We shall show that foo is self-similar.

pr(x) := exp(—;3||f-(2)|])
First we show the following monotonicity formula:

d

o | pedin <= [+ FrEllprdin (< 0),
T JM M

where ﬁ.,-, E,- and dv, are the m. c. v., the u. n. v. f. and
the vol. elem. of f,, respcetively.

By using this monotonicity formula, it is shown that

lim ||H, + f- - &|| =0,
T—00

This implies that foo is self-similar.
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Outline of the proof of Theorem 5.2

According to the classification of the self-similar solution
for a compact hypersurface, f is totally umbilic.
g.e.d.
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The outline of the proof of Theorem 5.2

The outline of the proof of Theorem 5.2 by Huisken

ﬁ,. : the second fundamental form of ﬁ.

XT : the shape operator of fT

(Step 1) First we show that

maxgens ||(Hr)al|

- — (1 — o0).
mingenr ||(Hr)z|
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The outline of the proof of Theorem 5.3

(Step Il) By using this fact and discussing deicately,
we show that

. H.||?
/ <||AT||2 — ””) dv, < Ce 9.
M n

Furthermore, by using the Sobolev inequality and discussing
delicately, we show that

|| H-||?
n

14,12 - < cet.
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The outline of the proof of Theorem 5.2

Furthermore, by discussing delicately, we show that

max ||(Hy)|| — min [|(H)z|| < Ce™®"

m A < —&'T
max [|(V™Ar)e|| < Cme (Vm € N)

From these facts, it follows that

ﬁr converges to a totally umbilic embedding as 7 — oo.
g.e.d.
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