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8. The mean curvature flow for a convex
hypersurface in a Riemannian manifold



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

(N,{(, )) : an (n + 1)-dim. complete Riemannian
manifold

M : an n-dim. compact manifold

f : an immersion of M into NV

ft: M —>NO<t<T) : the m.c.f. for f
Assume that

—K; <Secy < K2 & |[VR|]| < L & i(N) >0,

where Secyy is the sectional curvature (function) of N, VR
is the covariant derivative of the curvature tensor of N,
K, K2, L are non-negative constants and i(IV) is the
injective radius of IN.



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

Theorem 8.1(Huisken(Invent.M.-1986)).

Assume that

|| Hol|h >< Ky + ”2L>
0 0 nimngy = | go-
|| Hol|

Then the following statements hold:
2

) n“L
(l) ||Ht||ht > <nK1 + ||_H||> gt for all ¢ € [0, T).
t

(ii) f: converges to a constant map as t — T.




The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

Remark.

(i) In the case where (N, (, )) is a symmetric space
of compact type, the condition

|| Hol|h >< K1+ "2]‘)
ol||no nimng do
|| Hol|

is equivalent to

||Ho|lho > 0 (<= ho > 0).



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

(ii) In the case where (INV, ( , )) is a symmetric space
of non-compact type, the condition

|| Hol|h >< Ky + "2L)
oo N, gdo
|| Hol|

is equivalent to
||Ho||ho > nK1go.
Here we note that

“ f(M) : a horosphere =— ||Hp||lho = nKigo ”.



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

£(M)

_a horosphere

the ideal boundary of IV

o n?L
f satisfies ||H||h > ( nK7 + m g.



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

According to Theorem 8.1, f;(M) collapses to a one-point
setast — T.

{po} : the one-point set.
exp,, : the exponential map of N at po

ff + the embedding of M into T}, N s.t.

expyp, Ofy = fi



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

l epro



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

Definition(The rescaled mean curvature flow).

We define f, : M < N (0 <7 < co) by

Fr(@) = expy, (P(T) Fr () (@)
((z,7) € M x [0,00)),

where p is the positive function with p(0) = 1 such that
the volume of the domain surrounded by f,(M) is

constant, and ¢ is defined by
t

T =¢(t) := /0 p(t)2dt.




The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

Theorem 8.2(Huisken(Invent.M.-1986)).

Assume that

n?L
||Hol|lho > | nK1 + —— | go-

Then the rescaled m.c.f. f,-(M) (T € [0,00)) converges
to a geodesic sphere centered pg .




9. The singularities of two types of
the mean curvature flow



The singularities of two types of the mean curvature flow

The singularities of two types of the mean curvature flow

M : an n-dimensional compact manifold

(N,(, )) :an (n+4 r)-dimensional complete Riemannian
manifold

f : an immersion of M into IV

ft:M—>NO<t<T) : the m.c.f. for f



The singularities of two types of the mean curvature flow

The singularities of two types of the mean curvature flow

Definition(The singularity of the m.c.f.)

If there exists x € M such that thrrr} [|(At)z|| = oo, then
—
ft (0 <t < T)is said to be of singularity.

In particular, if sup <(T—t) max ||(At)v||2) < oo,
te[0,T) vES e M

then f; (0 <t < T) is said to be of type | singularity.
Otherwise, it is said to be of type Il singularity.




The singularities of two types of the mean curvature flow

The singularities of two types of the mean curvature flow

Definition(The blow-up point)
Let p € R**L,
If there exists * € M such that tllrr% [|(A¢)z|| = oo
—

and that there exists thrr% fi(x) = p,
—
then p is called the blow-up point of the flow f;.




The singularities of two types of the mean curvature flow

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

1t—>T

lim [|(A¢)z|| = oo (z € E)
t—T



The singularities of two types of the mean curvature flow

The singularities of two types of the mean curvature flow

Remark
Assume that f; (0 < t < T) is of singularity. Then, for any

a € (0,1), sup ((T —t)* max ||(At)v||2> = oo.
te[o,T) veESLtM



10. Type I singularity of the mean curvature

flow for a mean convex hypersurface
(Euclidean case)



Type | singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type | singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean case)

M : an n-dimensional compact manifold
f : an immersion of M into R**!

fi: M — R*1(0<t<T) : the m.c.f. for f



Type | singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type | singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean case)

Assume that f; (0 <t < T) is of singularity.

Let pg = tll_)n{']l_‘ ft(xo) be a blow-up point of the flow f;.



Type | singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

Definition(The rescaled mean curvature flow)

Define the flow f» (0 < 7 < o) by

. 1
fr(x) = /T — o 1(r) (fc/)—l(f)(w) —po)

((z,7) € M X [0,00)),

where ¢ is defined by

B(t) 1= — log (T;t).

This flow f, (0 < 7 < o0) is called the rescaled mean

curvature flow at the blow-up point pg.




Type | singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

The mean curvature flow for a convex hypersurface in a
Riemannian manifold

N LN

Jim, f-(U)

'




Type | singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type | singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

Theorem 10.1(Huisken(JDG-1990)).

Assume that f is mean convex (i.e., H > 0) and that
the m.c.f. f; (0 <t < T) for f is of type | singularity.
Let po = fr(xo) be one of blow-up pts of the m.c.f. f;.
Then, for the rescaled m.c.f. f,. at pg, the following
(a), (b) or (c) holds:
(a) jEOO(M) is S™,
(b) foo(U) is S* x Rk,
(c) foo(U) is v x R™ L,
where ~ is one of Abresch-Langer curves and
U is a neighborhood of pg in M.
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Type | singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

Abresch-Langer curve means a closed curve ~ of positive
curvature in R? such that the mean curvature flow for v
is self-similar.

Example

Abresch-Langer curve of period 3 and rotation 2



Type | singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type | singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

The outline of proof
(Step 1) We shall show that

there exists a seq. {7;}{2; such that lim 7; = oo
> 71— 00
and that {f;,}5°, converges to a smooth map.
By a simple calculation, we obtain
9|V A2 cm g e g
ST < AV AR + O+ VAL,

where C is a constant.
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Type | singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

Set
pr = ||V A |2 4 C|[ V™14, ||2.
Then we have

Opr
or

< Drpr = C|IV™AL|)? + C

where C’ is a constant.
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Type | singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

By applying the maximum principle to this equation, we have
KT S Ho-
Hence, if
SUP(z,7)e M x[0,00) ||Vm_1(AT)$|| < oo,
then we have
SUP (2,r)eMx[0,00) || VT (Ar)z|| < oo.
Therefore, by the induction, it follows that
SUP (,7)eMx[0,00) ||V (A7)z|| < o0
for any m € N.
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Type | singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

Hence, by the standard discussion based on
the Arzera-Ascoli’s theorem, we can show that

there exists a seq. {7;}:2, divergenting to oo
such that f. converges to a C°°-map f..



Type | singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type | singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

(Step 1) We shall show that
f+ converges to a self-similar immersion as 7 — oo.

Define a function p, by
1, -
pr(@) i=exp 3 IF-@IP).
Then, we can show the following monotonicity formula:

d

o | pedin <= [ N+ B ElPordin (< 0),
T JM M

where ﬁT, 57- and dv, are the m. c. v., the u. n. v. f. and
the vol. elem. of f., respcetively.



Type | singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type | singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

By using this monotonicity formula, it is shown that
lim ||H, + fr-&|| =0
T—00
and that
{f+} converges to the C*> map f.
Since ||Hoo + foo . §oo|| =0, foo|U is a
self-similar immersion, where U = M or U is a
neighborhood of pg in M.



Type | singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type | singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

On the other hand, we can show that foo|U satisfies

|1(Aso)a ]l

*) 2e0 || (Foo)al|

Hence, according to to the classification of a self-similar
immersions satisfying (*) (Huisken(JDG-1990)), it follows
that one of the statements (a), (b) or (c) in Theorem 10.1
holds.

g.e.d.



11. Type Il singularity of the mean curvature

flow for a mean convex hypersurface
(Euclidean-case)



Type Il singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type |l singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean case)

M : an n-dimensional compact manifold
f : an immersion of M into R**!

fi: M — R*1(0<t<T) : the m.c.f. for f



Type Il singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type |l singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

Take a seq. {(@k,tk)}52, in M X [0,T) s.t. ¢ < % and

k
1
= max ||(Ht)gc||2 (T - — t)
]

" (at)eMx[o,T—1 k

()P (T = — 1)

Set Ci, := ||(Ht, )z, ||2-
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Type |l singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

The rescaled m.c.f. (fi)r : M — R™! (7 € (ax, bi)) at
pr := ft, (xr) is defined by

(Fo)r (@) i= Cr (fom2y (@) = ful@r)) (@ € M),



Type Il singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Theorem 11.1(Huisken-Sinestrari(Calc.Var.-1999)).

Assume that f; (0 < t < T) is of type Il singularity
and that f is mean convex.
Then the following statements (i) and (ii) hold.

(i) hm ap = —oo and lim bg = oo holds and,
k— o0 k—ro0

for each 7 € (—o0, 00), the seq. {(fk)"'}k::k,- as

a subseq. {(J?k,-)r}fil converging to a smooth immersion
(foo).,, where k. is a positive integer s.t. T € (ag, bg)
(Vk > k;). Furthermore, the flow Foo (7 € (—o0,0))
is a mean curvature flow.
(ii) For the limit flow fo. the following (a) or (b) hold:
(a) (foo).r(M) is of positive scalar curvature for all 7.

(b) (foo)+(U) is congruent to v, x R™~1 for all T,

where ~.’'s are grim reapers and U is open in M.
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Type |l singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

A grim reaper is the only translating immersion in R2,

y =Incosx



Type Il singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type |l singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

The outline of the proof of (i) of Theorem 11.1

First we show the fact similar to the uniformly boundedness
of the norms of the higher derivatives of the s.f.f. of (fk),.’s
(k € N), where 7 is fixed. Under this fact, we can show
that there exists a subseq. {(sz)f}fgl converging to
a smooth immersion (foo).r by the standard discussion
based on the Arzela-Ascoli’theorem. Furhtermore, we can
show the flow foo T = (foo)T is a mean curvature flow.
g.e.d.
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Type |l singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

The outline of the proof of (ii) of Theorem 11.1

A, : the shape operator of (foo).r
f{\,. : the mean curvature vector of (foo),.

First we show that
I|A-|1? < ||HA|? (V7).

Next we show that
|A-||? < [[H-||? (V7) or |[|AL]||?> = [[H,|]? (VT).
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Type |l singularity of the mean curvature flow
for a mean convex hypersurface (Euclidean-case)

In case of ||A,||2 < ||H,||> (V7).
(foo),.(M)’s are of positive scalar curvature.

In case of ||A,||2 = ||H,||> (V7),
(fo)+(U)’s are congruent to I'; x R™~1’s,
where I'’s are grim reaper curves y = —In cosx + 7.

Therefore we obtain (ii) of Theorem 11.1. q.e.d.
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The evolutions of geometric quantities
(higher codimension-case)

M : an n-dimensional compact manifold

(N,(, )) : an (n 4+ r)-dimensional complete Riemannian
manifold

f:M — N : an immersion

ft (0 <t<T) : the mean curvature flow for f
g¢ : the induced metric by f;

h: : the second fundamental form of f; (for &)
A; : the shape tensor of f; (for &)

H; : the mean curvature vector of f; (for &)
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The evolutions of geometric quantities
(higher codimension-case)

T+tM : the normal bundle of f;

T-FM : the subbundle of F*T N defined by
(TF M)z = T;*M ((z,t) € M x [0,T))
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The evolutions of geometric quantities
(higher codimension-case)

g : the section of 7%, (T(%?) M) given by g;'s
h : the section of 7%, (T(®?) M) ® T+F M given by h;’s
H : the section of T M given by H;'s

A : the section of (T+FM)* ® w4, (T M)
given by A;’'s
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The evolutions of geometric quantities

(higher codimension-case)

V : the Riemannain connection of (NN, (, ))
R : the curvature tensor of (N, ( , ))
V! : the Riemannain connection of g;

V : the connection of 7%, (T M) given by V*'s

dy...
(VXY) () = (V&Y ), (VoY) = C;:’)

(X, Y € I'(my, (TM)))




The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities
(higher codimension-case)

V-t : the normal connections of f;

V- : the connection of T-F M given by V-1t's

(V.J)_(g)(a:,t) = (Vé—(tg(,,t))m, (Vi%f)($,t) = ((V%g)J—)(x,t)
(X € T(m3 (TM)), &€ (T M))
((-)L : the TF M —component of (-))

Remark
(F*TN)(z,8) = (fe)«(TeM) & (T M) (04



The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities
(higher codimension-case)

V : the connection of (T M)("") @ 7% (T M)
defined by V and V+

A : the Laplace op. defined by v

(/A\S)(ac,t) = Z 661661‘5

=1
(S € D((T++ M) ") @ 3y, (T M)))
((e1y+++ yepn) : an orthonormal base of T, M w.r.t. (g¢)z)
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The evolutions of geometric quantities
(higher codimension-case)

Proposition 12.1.

8
. a—gt’(X, Y) = —2(AuX,Y)

. %(x, Y) = (Ah)(X,Y) + Tr2Tr, (h(X,Y), h(s,-))h(s, ")
+TI';TI';](h(Y; ’)’ h(.a '))h(X7 .)
—2TrTr, (h(X, ), h(Y;-))h(e,)
+2TrSTr; (R(X, @)Y, -)h(e, )
—TryTr, (R(e,Y)e, )h(X,")
—TI‘;TI‘;] (E(.a X).v >h(K )
+(Tr; (R(e, h(X,Y))e)) L
—2(Tr5 (R(X, @)h(Y,e)) 1
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The evolutions of geometric quantities
(higher codimension-case)

Proposition 12.1(continued).
—2(Tr; (R(Y,®)h(X,e)) 1
+(Try(VeR)(e, X)Y) L
—(Try(VxR)(Y, e)e) L
(X,Y € TM)

o« 28 _ R H 4 T (H, h(se,)h(s, )

at
—Tr3Tr, Tr} (h(x, ), h(,-))h(x, o)
+Trg(R(e, H)e)) 1 — 4TryTr, (R(:, ®)h(:, ®)) 1
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The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold
in a Euclidean space (Andrews-Baker’s result)

M : an n-dimensional compact manifold
f: M — R*™" : an immersion

ft 0<t<T) : the mean curvature flow for f



The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold
in a Euclidean space (Andrews-Baker’s result)

Theorem 13.1(Andrews-Baker(JDG-2010)).

Assume that ||Hp|| > 0 and ||ho||? < Cy||Ho||? hold,
where C,, is given by

4
(2<n<4)
Clp, = 3n
(n > 1)
n_

Then f; converges to a constant map ast — T'.




The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold
in a Euclidean space (Andrews-Baker’s result)

The outline of the proof of Theorem 13.1

(Step 1) We show that, for some § € (0, 1),
(1)

1 _
sup max (H(At)muz—H(Ht)mnz)/n(ﬂt)mnz ’
OSt<T rxeM n

< oo,

where we use the assumption

|lhol|* < Cnl|Hol|*.
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The mean curvature flow for a submanifold
in a Euclidean space (Andrews-Baker’s result)

(Step I1) We show that

li A = oo.
lim max [[(A¢)z]| = oo
Hence we obtain

2 li H. = oo.
(2) lim max [|(Ht)z|| = o0

(Step 111) We show that

. maxgen ||(He)al|
(3) lim —; =
t—T MmiNgcpg ||(Ht):c||




The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold
in a Euclidean space (Andrews-Baker’s result)

(Step IV) From (1), (2) and (3), we obtain

CAell 1Y
“ A <||<Ht)m|| ) =0

From (2) and (4), it follows that

the diameter of f,(M) converges to zero as t — T,
that is, f; converges to a constant map.
g.e.d.



The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold
in a Euclidean space (Andrews-Baker’s result)

Assume that ||Hp|| > 0 and ||hol||? < C,||Hp||? hold.
Let (lim f;)(M) = {po}-
t—T

Definition(The rescaled mean curvature flow).

We define f; : M < R"™" (0 < 7 < c0) by

1
V2n(T — ¢~ (1)) <f4’_1(7)($) - po)
((z,7) € M X [0,00)),

fr(@) =

where ¢ is defined by

1 T —1t
T =¢(t) := —%log (T)




The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a convex hypersurface in a

Euclidean space

Theorem 13.2(Andrews-Baker(JDG-2010)).

Assume that ||Hp|| > 0 and ||ho||? < C,||Hp||? hold,
where C,, is given by

4
(2<n<4)
C, = 3n,
(n > 4)
n—1

Then the rescaled mean curvature flow f, converges

to a totally umbilic embedding as 7 — oc.




The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold
in a Euclidean space (Andrews-Baker’s result)

The outline of the proof of Theorem 13.2

ﬁ,. : the second fundamental form of ﬁ.

A, : the shape operator of j/:;

H. : the mean curvature vector of f-

(Step 1) First we show that

maxgens ||(Hr)al|

mingens [|(Hr)zl|

(7 — o0).



The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold
in a Euclidean space (Andrews-Baker’s result)

(Step Il) By using this fact and discussing deicately,
we show that

- H.||?
/ <||A,||2 — ””) dv, < Ce 0.
M n

Furthermore, by using the Sobolev inequality and discussing
delicately, we show that

|| H||?
n

1AL - < Ce .



The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold
in a Euclidean space (Andrews-Baker’s result)

Furthermore, by discussing delicately, we show that

max ||(Hy)|| — min [|(H)z|| < Ce™®"

mA\T x < m —o'r
max [[(V™Ar)s|| < Cme (Vm € N)

From these facts, it follows that

j?.r converges to a totally umbilic embedding as 7 — oc.
g.e.d.



