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8. The mean curvature flow for a convex
hypersurface in a Riemannian manifold



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

(N, 〈 , 〉) : an (n + 1)-dim. complete Riemannian

manifold

M : an n-dim. compact manifold

f : an immersion of M into N

ft : M ↪→ N (0 ≤ t < T ) : the m.c.f. for f

Assume that

−K1 ≤ SecN ≤ K2 & ||∇R|| ≤ L & i(N) > 0,

where SecN is the sectional curvature (function) of N , ∇R

is the covariant derivative of the curvature tensor of N ,

K1,K2, L are non-negative constants and i(N) is the

injective radius of N .



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

.
Theorem 8.1(Huisken(Invent.M.-1986)).
..

......

Assume that

||H0||h0 >

(
nK1 +

n2L

||H0||

)
g0.

Then the following statements hold:

(i) ||Ht||ht >

(
nK1 +

n2L

||Ht||

)
gt for all t ∈ [0, T ).

(ii) ft converges to a constant map as t → T .



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

Remark.

(i) In the case where (N, 〈 , 〉) is a symmetric space

of compact type, the condition

||H0||h0 >

(
nK1 +

n2L

||H0||

)
g0

is equivalent to

||H0||h0 > 0 (⇐⇒ h0 > 0).



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

(ii) In the case where (N, 〈 , 〉) is a symmetric space

of non-compact type, the condition

||H0||h0 >

(
nK1 +

n2L

||H0||

)
g0

is equivalent to

||H0||h0 > nK1g0.

Here we note that

“ f(M) : a horosphere =⇒ ||H0||h0 = nK1g0 ”.



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

the ideal boundary of N

a horosphere

f(M)

f satisfies ||H||h >

(
nK1 +

n2L

||H||

)
g.

N



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

According to Theorem 8.1, ft(M) collapses to a one-point

set as t → T .

{p0} : the one-point set.

expp0
: the exponential map of N at p0

fe
t : the embedding of M into Tp0N s.t.

expp0
◦fe

t = ft



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

M

Tp0N

N

expp0

ft

fe
t



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

.
Definition(The rescaled mean curvature flow).
..

......

We define f̂τ : M ↪→ N (0 ≤ τ < ∞) by

f̂τ (x) := expp0

(
ρ(τ )fe

φ−1(τ)(x)
)

((x, τ ) ∈ M × [0,∞)),

where ρ is the positive function with ρ(0) = 1 such that

the volume of the domain surrounded by f̂τ (M) is

constant, and φ is defined by

τ = φ(t) :=

∫ t

0
ρ(t)2dt.



The mean curvature flow for a convex hypersurface in a Riemannian manifold

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

.
Theorem 8.2(Huisken(Invent.M.-1986)).
..

......

Assume that

||H0||h0 >

(
nK1 +

n2L

||H0||

)
g0.

Then the rescaled m.c.f. f̂τ (M) (τ ∈ [0,∞)) converges

to a geodesic sphere centered p0 .



9. The singularities of two types of
the mean curvature flow



The singularities of two types of the mean curvature flow

The singularities of two types of the mean curvature flow

M : an n-dimensional compact manifold

(N, 〈 , 〉) : an (n+ r)-dimensional complete Riemannian

manifold

f : an immersion of M into N

ft : M ↪→ N (0 ≤ t < T ) : the m.c.f. for f



The singularities of two types of the mean curvature flow

The singularities of two types of the mean curvature flow

.
Definition(The singularity of the m.c.f.)
..

......

If there exists x ∈ M such that lim
t→T

||(At)x|| = ∞, then

ft (0 ≤ t < T ) is said to be of singularity.

In particular, if sup
t∈[0,T )

(
(T − t) max

v∈S⊥tM
||(At)v||2

)
< ∞,

then ft (0 ≤ t < T ) is said to be of type I singularity.

Otherwise, it is said to be of type II singularity.



The singularities of two types of the mean curvature flow

The singularities of two types of the mean curvature flow

.
Definition(The blow-up point)
..

......

Let p ∈ Rn+1.

If there exists x ∈ M such that lim
t→T

||(At)x|| = ∞
and that there exists lim

t→T
ft(x) = p,

then p is called the blow-up point of the flow ft.



The singularities of two types of the mean curvature flow

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

t → T

lim
t→T

||(At)x|| = ∞ (x ∈ E)

E



The singularities of two types of the mean curvature flow

The singularities of two types of the mean curvature flow

Remark

Assume that ft (0 ≤ t < T ) is of singularity. Then, for any

α ∈ (0, 1), sup
t∈[0,T )

(
(T − t)α max

v∈S⊥tM
||(At)v||2

)
= ∞.



10. Type I singularity of the mean curvature

flow for a mean convex hypersurface
(Euclidean case)



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean case)

M : an n-dimensional compact manifold

f : an immersion of M into Rn+1

ft : M ↪→ Rn+1 (0 ≤ t < T ) : the m.c.f. for f



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean case)

Assume that ft (0 ≤ t < T ) is of singularity.

Let p0 = lim
t→T

ft(x0) be a blow-up point of the flow ft.



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

.
Definition(The rescaled mean curvature flow)
..

......

Define the flow f̂τ (0 ≤ τ < ∞) by

f̂τ (x) :=
1

2
√

T − φ−1(τ )

(
fφ−1(τ)(x) − p0

)
((x, τ ) ∈ M × [0,∞)),

where φ is defined by

φ(t) := −
1

4
log

(
T − t

T

)
.

This flow f̂τ (0 ≤ τ < ∞) is called the rescaled mean

curvature flow at the blow-up point p0.



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

The mean curvature flow for a convex hypersurface in a

Riemannian manifold

t → T
f(x0)

lim
t→T

||(At)x0|| = ∞τ → ∞
lim
τ→∞

f̂τ (U)

lim
t→T

ft(M)
U p0



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

.
Theorem 10.1(Huisken(JDG-1990)).
..

......

Assume that f is mean convex (i.e., H > 0) and that

the m.c.f. ft (0 ≤ t < T ) for f is of type I singularity.

Let p0 = fT (x0) be one of blow-up pts of the m.c.f. ft.

Then, for the rescaled m.c.f. f̂τ at p0, the following

(a), (b) or (c) holds:

(a) f̂∞(M) is Sn,

(b) f̂∞(U) is Sk × Rn−k,

(c) f̂∞(U) is γ × Rn−1,

where γ is one of Abresch-Langer curves and

U is a neighborhood of p0 in M .



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

Abresch-Langer curve means a closed curve γ of positive

curvature in R2 such that the mean curvature flow for γ

is self-similar.

Example

Abresch-Langer curve of period 3 and rotation 2



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

The outline of proof

(Step I) We shall show that

there exists a seq. {τi}∞i=1 such that lim
i→∞

τi = ∞

and that {f̂τi}∞i=1 converges to a smooth map.

By a simple calculation, we obtain

∂||∇̂mÂτ ||2

∂τ
≤ 4τ ||∇̂mÂτ ||2 + C(1 + ||∇̂mÂτ ||2),

where C is a constant.



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

Set

µτ := ||∇̂mÂτ ||2 + C||∇̂m−1Âτ ||2.
Then we have

∂µτ

∂τ
≤ 4̂τµτ − C||∇̂mÂτ ||2 + C′,

where C′ is a constant.



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

By applying the maximum principle to this equation, we have

µτ ≤ µ0.

Hence, if

sup(x,τ)∈M×[0,∞) ||∇̂m−1(Âτ )x|| < ∞,

then we have

sup(x,τ)∈M×[0,∞) ||∇̂m(Âτ )x|| < ∞.

Therefore, by the induction, it follows that

sup(x,τ)∈M×[0,∞) ||∇̂m(Âτ )x|| < ∞
for any m ∈ N.



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

Hence, by the standard discussion based on

the Arzera-Ascoli’s theorem, we can show that

there exists a seq. {τi}∞i=1 divergenting to ∞
such that f̂τi converges to a C∞-map f̂∞.



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

(Step II) We shall show that

f̂τ converges to a self-similar immersion as τ → ∞.

Define a function ρτ by

ρτ (x) := exp

(
−

1

2
||f̂τ (x)||2

)
.

Then, we can show the following monotonicity formula:

d

dτ

∫
M

ρτdv̂τ ≤ −
∫
M

||Ĥτ + f̂τ · ξ̂τ ||2ρτdv̂τ (≤ 0),

where Ĥτ , ξ̂τ and dv̂τ are the m. c. v., the u. n. v. f. and

the vol. elem. of f̂τ , respcetively.



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

By using this monotonicity formula, it is shown that

lim
τ→∞

||Ĥτ + f̂τ · ξ̂τ || = 0

and that

{f̂τ} converges to the C∞ map f̂∞.

Since ||Ĥ∞ + f̂∞ · ξ̂∞|| = 0, f̂∞|U is a

self-similar immersion, where U = M or U is a

neighborhood of p0 in M .



Type I singularity of the mean curvature flow for a mean convex hypersurface (Euclidean case)

Type I singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

On the other hand, we can show that f̂∞|U satisfies

(∗) sup
x∈U

||(Â∞)x||
||(Ĥ∞)x||

< ∞.

Hence, according to to the classification of a self-similar

immersions satisfying (∗) (Huisken(JDG-1990)), it follows

that one of the statements (a), (b) or (c) in Theorem 10.1

holds.

q.e.d.



11. Type II singularity of the mean curvature

flow for a mean convex hypersurface
(Euclidean-case)



Type II singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type II singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean case)

M : an n-dimensional compact manifold

f : an immersion of M into Rn+1

ft : M ↪→ Rn+1 (0 ≤ t < T ) : the m.c.f. for f



Type II singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type II singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

Take a seq. {(xk, tk)}∞k=1 in M × [0, T ) s.t. tk ≤ 1
k
and

||(Htk)xk||2
(
T −

1

k
− tk

)
= max

(x,t)∈M×[0,T− 1
k
]
||(Ht)x||2

(
T −

1

k
− t

)
Set Ck := ||(Htk)xk||2.



Type II singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type II singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

The rescaled m.c.f. (f̂k)τ : M → Rn+1 (τ ∈ (ak, bk)) at

pk := ftk(xk) is defined by

(f̂k)τ (x) := Ck

(
f
C

−2
k τ+tk

(x) − ftk(xk)
)

(x ∈ M).



Type II singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

.
Theorem 11.1(Huisken-Sinestrari(Calc.Var.-1999)).
..

......

Assume that ft (0 ≤ t < T ) is of type II singularity

and that f is mean convex.

Then the following statements (i) and (ii) hold.

(i) lim
k→∞

ak = −∞ and lim
k→∞

bk = ∞ holds and,

for each τ ∈ (−∞,∞), the seq. {(f̂k)τ}∞k=kτ
has

a subseq. {(f̂ki)τ}∞i=1 converging to a smooth immersion

(f̂∞)τ , where kτ is a positive integer s.t. τ ∈ (ak, bk)

(∀ k ≥ kτ ). Furthermore, the flow f̂∞ (τ ∈ (−∞,∞))

is a mean curvature flow.

(ii) For the limit flow f̂∞, the following (a) or (b) hold:

(a) (f̂∞)τ (M) is of positive scalar curvature for all τ .

(b) (f̂∞)τ (U) is congruent to γτ × Rn−1 for all τ ,

where γτ ’s are grim reapers and U is open in M .



Type II singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type II singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

A grim reaper is the only translating immersion in R2.

y = ln cosx



Type II singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type II singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

The outline of the proof of (i) of Theorem 11.1

First we show the fact similar to the uniformly boundedness

of the norms of the higher derivatives of the s.f.f. of (f̂k)τ ’s

(k ∈ N), where τ is fixed. Under this fact, we can show

that there exists a subseq. {(f̂ki)τ}∞i=1 converging to

a smooth immersion (f̂∞)τ by the standard discussion

based on the Arzela-Ascoli’theorem. Furhtermore, we can

show the flow f̂∞ : τ 7→ (f̂∞)τ is a mean curvature flow.

q.e.d.



Type II singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type II singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

The outline of the proof of (ii) of Theorem 11.1

Âτ : the shape operator of (f̂∞)τ

Ĥτ : the mean curvature vector of (f̂∞)τ

First we show that

||Âτ ||2 ≤ ||Ĥτ ||2 (∀ τ ).

Next we show that

||Âτ ||2 < ||Ĥτ ||2 (∀ τ ) or ||Âτ ||2 = ||Ĥτ ||2 (∀ τ ).



Type II singularity of the mean curvature flow for a mean convex hypersurface (Euclidean-case)

Type II singularity of the mean curvature flow

for a mean convex hypersurface (Euclidean-case)

In case of ||Âτ ||2 < ||Ĥτ ||2 (∀ τ ),

(f̂∞)τ (M)’s are of positive scalar curvature.

In case of ||Âτ ||2 = ||Ĥτ ||2 (∀ τ ),

(f̂∞)τ (U)’s are congruent to Γτ × Rn−1’s,

where Γτ ’s are grim reaper curves y = −ln cosx + τ .

Therefore we obtain (ii) of Theorem 11.1. q.e.d.



12. The evolutions of geometric quantities
(higher codimension-case)



The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities

(higher codimension-case)

M : an n-dimensional compact manifold

(N, 〈 , 〉) : an (n+ r)-dimensional complete Riemannian

manifold

f : M ↪→ N : an immersion

ft (0 ≤ t < T ) : the mean curvature flow for f

gt : the induced metric by ft

ht : the second fundamental form of ft (for ξt)

At : the shape tensor of ft (for ξt)

Ht : the mean curvature vector of ft (for ξt)



The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities

(higher codimension-case)

T⊥tM : the normal bundle of ft

T⊥F M : the subbundle of F ∗TN defined by

(T⊥F M)(x,t) := T⊥t
x M ((x, t) ∈ M × [0, T ))



The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities

(higher codimension-case)

g : the section of π∗
M(T (0,2)M) given by gt’s

h : the section of π∗
M(T (0,2)M) ⊗ T⊥F M given by ht’s

H : the section of T⊥F M given by Ht’s

A : the section of (T⊥F M)∗ ⊗ π∗
M(T (1,1)M)

given by At’s



The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities

(higher codimension-case)

∇ : the Riemannain connection of (N, 〈 , 〉)

R : the curvature tensor of (N, 〈 , 〉)

∇t : the Riemannain connection of gt

∇ : the connection of π∗
M(TM) given by ∇t’s (∇XY )(x,t) := (∇t

XY )x, (∇ ∂
∂t
Y )(x,t) =

dY(x,·)

dt
(X, Y ∈ Γ(π∗

M(TM)))





The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities

(higher codimension-case)

∇⊥t : the normal connections of ft

∇⊥ : the connection of T⊥F M given by ∇⊥t’s (∇⊥
Xξ)(x,t) := (∇⊥t

X ξ(·,t))x, (∇⊥
∂
∂t

ξ)(x,t) := ((∇ ∂
∂t
ξ)⊥)(x,t)

(X ∈ Γ(π∗
M(TM)), ξ ∈ Γ(T⊥F M))

((·)⊥ : the T⊥F M−component of (·))


Remark

(F ∗TN)(x,t) = (ft)∗(TxM) ⊕ (T⊥F M)(x,t)



The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities

(higher codimension-case)

∇̂ : the connection of (T⊥F M)(r
′,s′) ⊗ π∗

M(T (r,s)M)

defined by ∇ and ∇⊥

4̂ : the Laplace op. defined by ∇̂
(4̂S)(x,t) :=

n∑
i=1

∇̂ei∇̂eiS

(S ∈ Γ((T⊥F M)(r
′,s′) ⊗ π∗

M(T (r,s)M)))

((e1, · · · , en) : an orthonormal base of TxM w.r.t. (gt)x)





The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities

(higher codimension-case)

.
Proposition 12.1.
..

......

•
∂g

∂t
(X,Y ) = −2〈AHX,Y 〉

•
∂h

∂t
(X,Y ) = (4̂h)(X,Y ) + Tr•gTr

·
g〈h(X,Y ), h(•, ·)〉h(•, ·)

+Tr•gTr
·
g〈h(Y, ·), h(•, ·)〉h(X, •)

−2Tr•gTr
·
g〈h(X, •), h(Y, ·)〉h(•, ·)

+2Tr•gTr
·
g〈R(X, •)Y, ·〉h(•, ·)

−Tr•gTr
·
g〈R(•, Y )•, ·〉h(X, ·)

−Tr•gTr
·
g〈R(•, X)•, ·〉h(Y, ·)

+(Tr•g(R(•, h(X,Y ))•))⊥
−2(Tr•g(R(X, •)h(Y, •))⊥



The evolutions of geometric quantities (higher codimension-case)

The evolutions of geometric quantities

(higher codimension-case)

.
Proposition 12.1(continued).
..

......

−2(Tr•g(R(Y, •)h(X, •))⊥
+(Tr•g(∇•R)(•, X)Y )⊥
−(Tr•g(∇XR)(Y, •)•)⊥

(X,Y ∈ TM)

•
∂H

∂t
= 4̂H + Tr•gTr

·
g〈H, h(•, ·)〉h(•, ·)

−Tr•gTr
·
gTr

∗
g〈h(∗, ·), h(•, ·)〉h(∗, •)

+Tr•g(R(•,H)•))⊥ − 4Tr•gTr
·
g(R(·, •)h(·, •))⊥



13. The mean curvature flow for
a submanifold in a Euclidean space

(Andrews-Baker’s result)



The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold

in a Euclidean space (Andrews-Baker’s result)

M : an n-dimensional compact manifold

f : M ↪→ Rn+r : an immersion

ft (0 ≤ t < T ) : the mean curvature flow for f



The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold

in a Euclidean space (Andrews-Baker’s result)

.
Theorem 13.1(Andrews-Baker(JDG-2010)).
..

......

Assume that ||H0|| > 0 and ||h0||2 ≤ Cn||H0||2 hold,

where Cn is given by

Cn :=


4

3n
(2 ≤ n ≤ 4)

1

n − 1
(n ≥ 4).

Then ft converges to a constant map as t → T .



The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold

in a Euclidean space (Andrews-Baker’s result)

The outline of the proof of Theorem 13.1

(Step I) We show that, for some δ ∈ (0, 1
2
),

(1)

sup
0≤t<T

max
x∈M

(
||(At)x||2 −

1

n
||(Ht)x||2

)
/||(Ht)x||2−δ

< ∞,

where we use the assumption

||h0||2 ≤ Cn||H0||2.



The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold

in a Euclidean space (Andrews-Baker’s result)

(Step II) We show that

lim
t→T

max
x∈M

||(At)x|| = ∞.

Hence we obtain

(2) lim
t→T

max
x∈M

||(Ht)x|| = ∞.

(Step III) We show that

(3) lim
t→T

maxx∈M ||(Ht)x||
minx∈M ||(Ht)x||

= 1.



The mean curvature flow for a submanifold in a Euclidean space (Andrews-Baker’s result)

The mean curvature flow for a submanifold

in a Euclidean space (Andrews-Baker’s result)

(Step IV) From (1), (2) and (3), we obtain

(4) lim
t→T

( ||(At)x||
||(Ht)x||

−
1

n

)
= 0.

From (2) and (4), it follows that

the diameter of ft(M) converges to zero as t → T ,

that is, ft converges to a constant map.

q.e.d.
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Assume that ||H0|| > 0 and ||h0||2 ≤ Cn||H0||2 hold.

Let ( lim
t→T

ft)(M) = {p0}.

.
Definition(The rescaled mean curvature flow).
..

......

We define f̂τ : M ↪→ Rn+r (0 ≤ τ < ∞) by

f̂τ (x) :=
1√

2n(T − φ−1(τ ))

(
fφ−1(τ)(x) − p0

)
((x, τ ) ∈ M × [0,∞)),

where φ is defined by

τ = φ(t) := −
1

2n
log

(
T − t

T

)
.
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The mean curvature flow for a convex hypersurface in a

Euclidean space

.
Theorem 13.2(Andrews-Baker(JDG-2010)).
..

......

Assume that ||H0|| > 0 and ||h0||2 ≤ Cn||H0||2 hold,

where Cn is given by

Cn :=


4

3n
(2 ≤ n ≤ 4)

1

n − 1
(n ≥ 4).

Then the rescaled mean curvature flow f̂τ converges

to a totally umbilic embedding as τ → ∞.
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The outline of the proof of Theorem 13.2

ĥτ : the second fundamental form of f̂τ

Âτ : the shape operator of f̂τ

Ĥτ : the mean curvature vector of f̂τ

(Step I) First we show that

maxx∈M ||(Ĥτ )x||
minx∈M ||(Ĥτ )x||

→ 1 (τ → ∞).
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(Step II) By using this fact and discussing deicately,

we show that∫
M

(
||Âτ ||2 −

||Ĥτ ||2

n

)
dv̂τ ≤ Ce−δτ .

Furthermore, by using the Sobolev inequality and discussing

delicately, we show that

||Âτ ||2 −
||Ĥτ ||2

n
≤ Ce−δτ .
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Furthermore, by discussing delicately, we show that

max
x∈M

||(Ĥτ )x|| − min
x∈M

||(Ĥτ )x|| ≤ Ce−δτ

max
x∈M

||(∇mÂτ )x|| ≤ Cme−δ′τ (∀m ∈ N)

From these facts, it follows that

f̂τ converges to a totally umbilic embedding as τ → ∞.

q.e.d.


