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The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

M : an n-dimensional manifold

f: M < R™" : an embedding

We identify M with f(M).

M : an isoparametric submanifold

e the normal holonomy group of M is trivial
e for any parallel normal vec. fd. v of M,

the principal curvatures for v, are independent
of t e M

<
def




The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

M :an isoparametric submanifold
Fix xo € M.

The focal set of M at xq consists of finite pieces
of hyperplanes ({l1,--: ,lt}) in T;BM.

The reflections w.r.t. [;'s generate a Weyl group.
Fundamental domains of this group are called
the Weyl domain of M.



The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

Weyl domain




The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

M : a compact isoparametric submanifold in R™*"

M; (0 <t <T) :the mean curvature flow for M



The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

Theorem 14.1(Liu-Terng(Duke M.J.-2009)).

(i) M (0 <t < T) are parallel submanifolds of M
(i) T < o0
(iii) F := th_)n% M, is a focal submanifold of M
(iv) If the natural fibration pr : M — F is spherical,
then M; (0 < t < T) is of type | singularity
i.e., sup ((T —t) max [|A} ||2> < o
te[o,T) vESL M,
At : the shape tensor of M;
SJ‘Mt : the unit normal bd of M,

Remark
r: M — F <= pr(f(z)) := lim fi(z) (z € M)



The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

M

| pr_l(pr(zcg)) = Sk

> |+ TwJB M
r"/
=1/

> -

pr : M — F' :spherical



The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

F
. ,M

pr(pr(z0)) # S*

i TEM
v/
=/

> -

pr : M — F :not spherical



The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

How does the m.c. flow for F' collapse

in the case where F' is not minimal ?




The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

C(c T;(-)M) : a Weyl domain

C := exp™(C)(= z0 + O)

o :a simplex of 9C (dimo > 1)

F :a focal submanifold of M through o

F; (0 <t <T) :the mean curvature flow for F’



The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

Theorem 14.2(Liu-Terng(Duke M.J.-2009)).

(i) F: (0 <t < T) are focal submanifolds of M thr. o

(i) T < o

(iii) F’ := th—>n% F; is a focal submanifold of M thr. 9o

(iv) If the natural fibration pr : FF — F” is spherical
then F; (0 < t < T) is of type | singularity.




The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

F! — F?

FF1 5 Ipt
¢ (t—)Tk){p}

F! : a focal submanifold of M
F' : a focal submanifold of F*~! (t=2,---,k—1)
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The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

M : an isoparametric submanifold in R*+"

M; (0 <t <T) : the mean curvature flow for M



The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

xg € M

C (C T;(-)M) : the fund. domain of the Weyl group
of M containing xg

X :a tangent vector field on C
X 1= (H®)zo4w (w € C)

“ : the mean curv. vec. of ng (M)

H
<
def < N ¢ the end — point map for

ap.n v. f.ws.t wy, =w




The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result




The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

{¢+} : a local one-parameter transf. gr. of X
£(t) := v:(0) (O :the zero vector of T,- M)

£(t) :the parallel n.v.f. of M s.t. 5(Nt)m0 = £(t)

M; = ng('t)(M)

Thus the statement (i) of Theorem 14.1 is shown.



The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result




The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

Lem 15.1
X ———> &) ———> M,

Thus we suffice to analyze X in order to analyze the mean
curvature flow M;.



The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

A :the shape tensor of M
T.M = @ E (common eigensp. decomp. of A,’s
iel,
(v € T;-M))

AP TEM — R = Aylpr = A (v)id (ve T:-M)

AT € (T,FM)* \




The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

By ordering E¥’s (x € M) suitably, we may assume that
VieI(:=1),
E; : £ — EF (x € M) : C°-distribution
curvature distribution
Xi € T((T+M)Y) = Nz := A (z € M)
e

principal curvature
n; € D(T+M) = A= (ni,) GEI

e

curvature normal



The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

'LeJI(Ai);l(l) = "the focal set of M at z=”
K

C={weTEM|(N\)zo(w) < 1 (i €I)}




The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

m;:=dimE; (¢ € I)

o = 2 T e )

el

Xy =0 <= ng(M) : minimal
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The outline of the proof of Liu-Terng’s result

Proof of (ii) of Theorem 14.1

& € iQI()\i);Ol(l)
From Lemma 15.2, we have

IIE®) — €l = 2(6/(9),€(0) — o)
= 2(X¢), &(t) — o) = —2n (n := dim M)

On the other hand, we can show the following fact:

d® : a polynomial map of T;;M onto R" (7 := codim M)
st <I>|E(: C — R") : into homeomorphism
o ®,.X : a polynomial vec. fd.



The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

4 j / Flows of X |¢

Y
(The extension of ®,(X))



The outline of the proof of Liu-Terng's result

The outline of the proof of Liu-Terng’s result

From these facts, it is shown that
&(t) converges to a point w; of oC
ast — T(< o0).
Since M; = Netoy (M) by Lemma 15.1,
M, collapses to the focal submanifold 7z, (M)
as t — T(< o0).

g.e.d.
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The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

(N,(, )) : a Riemannian manifold

M : an embedded submanifold in NV

exp® : the normal exponential map of M

UOGT:;E)M

Definition

so :a focal radius along ~,,
<ﬁ> Yvo(S0) : a focal point of M along ~,,
e

(<= (Ker eXpi_sOv) N (Tso'v(TJ_M) \ Vsou) # {0})
(Vsov :the vertical space of T-M at sgv)




The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

G /K :a symmetric space of compact type

M :

an embedded submanifold in G/ K

Definition(Terng-Thorbergsson(JDG-1995))

M .

e
def

an equifocal submanifold

(o M is compact

e the normal holonomy group of M is trivial
e M has flat section
e for any parallel normal vec. fd. v of M,

the focal radii along ~,_ are indep. of x € M

v




The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

M has flat section
{ﬁ} for any x € M, X, := epr‘(T;‘M) is
€
totally geodesic and flat.



The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

M :an equifocal submanifold in G/ K
xrg €E M

The focal set of M at x¢ consists of the images of
finite pieces of infinite parallel families of hyperplanes
(Lo :=A{lili €Z} (a=1,---,k)) in T;- M by
the normal exponential map.

The reflections w.r.t. [;;’s generate a discrete group,
that is, a Coxeter group.

This group is called the Coxeter group of M.



The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

AV 4 AV NZ

TAVAN

Lo



The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

G/K :a symmetric space of compact type
M :a non-minimal equifocal submanifold in G/K

M; (0 <t <T) :the mean curvature flow for M



The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

Theorem 16.1(K. (Asian J.M.-2011)).
(i) M. (0 <t < T) are parallel submanifolds of M
(i) T < o
(iii) F := th_)rr% M, is a focal submanifold of M
(iv) If M is irreducible, if codim M > 2,
and if the natural fibration pr : M — F is spherical,
then M, (0 <t < T) is of type | singularity.




The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

How does the mean curvature flow for F' collapse ?




The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

Cc(c T;;M) : a fundamental domain (s.t. 0 € C)
of the Coxeter group of M

C := expt(C)
o :a stratum of 9C (dimo > 1)
F : a non-minimal focal submanifold through o

F; (0 <t <T) : the mean curvature flow for F’



The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

Theorem 16.2(K. (Asian J.M.-2011)).

(i) F: (0 <t < T) are focal submanifolds of M
through o
(i) T < o0
(iii) F’ := th_)rr% F} is a focal submanifold of M through 9o
(iv) If M is irreducible, if codim M > 2
and if the natural fibration pr : F — F’ is spherical,
then F; (0 < t < T) is of type | singularity.




The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

M, — F!

(t—T1) mnon—min.

F! — F?

(t—T2) non—min.

FfF~' — F*
(t—T) min.

F! : a focal submanifold of M

F' : a focal submanifold of F*~! (i =2,...,k)



The mean curvature flow for an equifocal submanifold

M:: (ﬂ'oqb)_l(M) — HO([Oa 1]ag)
¢
G

l
M — G/K

M : equifocal < M : isoparametric
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Isoparametric submanifolds in a Hilbert space

Isoparametric submanifolds in a Hilbert space

V : an oo-dimensional (separable) Hilbert space

f: M — V : an immersion of finite codimension

Definition(Terng(JDG-1989)).

f: M — V : aproper Fredholm submanifold
e expt |BL1(M) : proper map
< 1. n
def e exp;, : Fredholm op. (Vv € T M)
exp’ : the normal exponential map of M
B11(M) : the unit normal bnndle map of M

4



Isoparametric submanifolds in a Hilbert space

Isoparametric submanifolds in a Hilbert space

The shape operator of a proper Fredholm submanifold

is compact operator.

Definition(Terng(JDG-1989)).

f: M — V : an isoparametric submanifold
e the normal holonomy group of M is trivial

e For any parallel normal vec. fd. v of M,
def the principal curvature’s for v,

are independent of x € M

N,




Isoparametric submanifolds in a Hilbert space

Isoparametric submanifolds in a Hilbert space

f: M — V : an isoparametric submanifold
xg €E M

The focal set of M at x( consists of finite pieces of
infinite parallel families of hyperplanes in TmJBM.

(Lo :={lili€Z} (a=1,---,k))
The reflections w.r.t. [;;’s generate a discrete group,
that is, a Coxeter group.
This group is called the Coxeter group of M.



Isoparametric submanifolds in a Hilbert space

Isoparametric submanifolds in a Hilbert space

AV 4 AV NZ

TAVAN

Lo



Isoparametric submanifolds in a Hilbert space

Isoparametric submanifolds in a Hilbert space

f:M — V : aproper Fredholm submanifold

Definition(Heintze-Liu-Olmos(2006)).
f: M — V : aregularizable submanifold

(Vv € TJ‘M,
3Tr, A, (< 00), ITr(A2) (< o0)

Tr,A, := Z(Az aF IJJz)

= =1

dek (SpeCAvI{Nl Sp2 <~ <0< <A <At}
Tr(A2) := Z Vi

(SpecA2:{1/ > vy > - > 0})
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The mean curvature flows for a regularizable submanifold

The mean curvature flows for a regularizable submanifold

V : an oco-dimensional (separable) Hilbert space

f : M — V : aregularizable submanifold

Definition(Heintze-Liu-Olmos(2006)).

H <= (H,v) = Tr, A, (Vv € T+ M)
e
This normal vector field H is called

a regularized mean curvature vector.
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The mean curvature flows for a regularizable submanifold

ft: M —V(0<t<T) : aC>-family of regularizable

submanifolds

f:Mx[0,T) >V
= f(z,1) := fiz) ((,1) € M x [0, T))



The mean curvature flows for a regularizable submanifold

The mean curvature flows for a regularizable submanifold

Definition(K. (Asian J.M.-2011))

ft (0 <t < T) :the (regularized) mean curvature flow
of
<— —=H, (0<t<T
def Ot ¢ ( — i )
(H: :the regularized mean curv. vec. of f)

For any regularlizable submanifold f, does the mean

curvature flow for f uniquely exist in short time?
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The mean curvature flows for a regularizable submanifold

In order to solve this question affirmatively, we must show
the Hilbert vector bundle version of the Hamilton’s theorem
for the evolution of a section of a (finite dim.) vector bundle.
However, since a regularizable submanifold can be not
compact, we must assume a certain kind of compactness

for the submanifold.
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The mean curvature flows for a regularizable submanifold

G/K : a symmetric space of compact type
M : a compact submanifold in G/K
¢ : H°([0,1],9) — G :the parallel transport map for G

= b(u) = gu(1) (u € H((0,1],0)),
where g, is the element of H'([0,1],G) s.t.
gu(0) = e and (Ry, 1)) (g,,(t)) = u(t) (V¢ € [0,1])
7 : G — G/K :the natural projection
Set ¢ := m o ¢.
M := ¢~1(M) (— H°([0,1],9))



The mean curvature flows for a regularizable submanifold

The mean curvature flows for a regularizable submanifold

e Misa regularizable submanifold.

e There uniquely exists the mean curvature flow Mt
for M in short time.
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The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

M : a non-minimal equifocal submanifold in G/ K

M; (0 <t <T) : the mean curvature flow for M



The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

Theorem 16.1(K. (Asian J.M.-2011)).
(i) M. (0 <t < T) are parallel submanifolds of M
(i) T < o
(iii) F := th_)rr% M, is a focal submanifold of M
(iv) If M is irreducible, if codim M > 2,
and if the natural fibration pr : M — F is spherical,
then M, (0 <t < T) is of type | singularity.
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The outline of the proof of Theorems 16.1 and 16.2

M := (wo¢) (M) — H°([0,1],g)

1@
G
l
M — G/K
M : equifocal — — — > M : regularizable isoparametric

M; : the mean curvature flow for M

M, : the mean curvature flow for M
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The outline of the proof of Theorems 16.1 and 16.2

M; = (w0 ¢)~1(My)

According to this fact, the investigation of the flow M,
is reduced to that of the flow M;.
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The outline of the proof of Theorems 16.1 and 16.2

xg €E M
uo € (w0 ¢) " (o) (C M)

C (C TUJBM) : the fund. domain of the Coxeter group
of M containing ug

X :a vector field on C

Xy 1= (H Juotw (W € C)
H™ : the reg. mean curv. vec. of ng(M)

def

H
o
N ¢ the end — point map for
ap.n v. f.wst. w,, =w
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The outline of the proof of Theorems 16.1 and 16.2




The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

{1} : a local one-parameter transformation gr. of X
£(t) := 1¢(0) (O :the zero vector of TuLO]\N/[)

5?[) : the parallel normal vec. fd. of M s.t. £A(Jt)u0 =£(t)

Mt = n@(ﬁ)

Proof of (i) of Theorem 16.1.

My = (m 0 ¢)(My) = ( 0 ¢)(ngg (M)

= Mwag). (&) M)
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The outline of the proof of Theorems 16.1 and 16.2




The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

Lem 19.2 —~ Lem19.1
X———>&(———->M———> M
M : equifocal — —— > M : reg. isoparametric

A :the shape tensor of M
TuM = @ E} (common eigensp. decomp. of fL,’s
i€l
(v € T-M))

V:ﬁMﬁR??LW:VMM@eﬁM)
()

AY € (TFM)* \




The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

By choosing E}*'s (u € ﬂ) suitably, we may assume that
VieI(:=1,),
E; : u— E} (u € M) : C*>-distribution
curvature distribution
i € T((T+M)*) = Mu =AY (u€ M)
e

principal curvature
n; € I(T+M) = A= () ((€T)

e

curvature normal



The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

A :the set of all principal curvatures of M

U A, (1) = "the focal set of M at u”
AEA

The focal set of M at u consists of finite pieces of
infinite families of parallel hyperplanes in Td‘M.




The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

(Fact .

The set A is de_scribed as

i a g
A:aL=J1 71+baj J EZ}
for some A € I'((T-M)*) and some constant
e 5 1 = Taea )

C={weTEM|N)u(w) <1 (a=1,---,7)}

E —K <~ Aa(') . )
aj = Ker (A, — ———id
1+ by
:= dim E, j, my = dim Eg 2511

e

m,
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The outline of the proof of Theorems 16.1 and 16.2

Q) D) (Aa)zl(+b)

1
T,:M
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The outline of the proof of Theorems 16.1 and 16.2

Lemma 19.3.

X = Z (mz cot b—(l — (Aa)uo (w)))

a=1 C

—m¢ tan b—a(l — (Aa)uo (w))) E(na)uo

(Pe 4z @) = 2a))

X, =0 <= ng(M) : minimal
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The outline of the proof of Theorems 16.1 and 16.2

Proof of (ii) and (iii) of Theorem 16.1

p € C=(C)

T

— p(w) := — Z <m2 log sin ;(:(1 — (Aa)uo(w)))

a=1

+mg logcos (1= (Aa)uo(w) ) (w € ©)

Then we have
gradp =X and p : downward convex
Also we have

p(w) — oo (w — 8C)



The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2




The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

Hence we see that
p has the only minimal point.
Denote by wg this point. Clearly we have X,,, = 0

On the other hand, we can show the following fact:

3® : a C°® — map of Tja]/\] onto R" (7 := codim M)
ot ‘i)|5(: C — R") : into homeomorphism
o P,.X : aC®® — vec. fd.



The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

From these facts, we see that
o the flow of X starting from a point other than
wp converges to a point of AC in finite time.
Since M is not minimal, we can show
e 0 # wq and the flow £(t) of X starting from 0
converges to a point w; of aC in finite time T.

Since M; = ’7(”0¢)*(£(At/))(M)'

M; collapses to the focal submanifold
77(7ro¢)*(ﬁ1)(M) in the time T.

g.e.d.



The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

F := N(rog). (@) (M)

(iv) of Theorem 16.1.
If M is irreducible, if codim M > 2,
and if the natural fibration pr : M — F is spherical,
then M; (0 <t < T) is of type | singularity.
. )12
i.e., tes[l(;_’lc;) (T —t) Igﬁ)& [| A, > < oo
< At : the shape tensor of M; )

S+M,; : the unit normal bd of M;




The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

Proof of (iv) of Theorem 16.1.

F = ng,(M)
At (resp. At) : the shape tensor of M; (resp. M;)

Since pr : M — F'is spherical,
Jdlag € {1,--- ,7} s.t. wy € ((Aao) 1) n 3C)°

Hence
v)2
i AT = 1) =l | Sl )
()‘ao)uo(.v)2 ...... (1)

2mg || (ag )uo |2



The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

M : irr. & codim M > 2
—— > M :curvature-adapted

——> lim [JAET—t) = Tim (|4}, )| (T—1)

t—T—
...... (2)
From (1) and (2), we have
M 00 = L < o
ao

epr—(ﬁ(t))

Thus M, is of type | singularity.



The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

o : a stratum of 9C s.t. dimo > 1
F : a non-minimal focal submanifold of M thr. &

F; : the mean curvature flow for F



The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

Theorem 16.2.

(i) F: (0 < t < T) are focal submanifolds of M
through o
(i) T < o0
(iii) F’ := tll_)II,} F; is a focal submanifold of M through do
(iv) If M is irreducible, if codim M > 2
and if the natural fibration pr : F — F’ is spherical,
then F; (0 <t < T) is of type | singularity.




The outline of the proof of Theorems 16.1 and 16.2

The outline of the proof of Theorems 16.1 and 16.2

& :the simplex of 8C s.t. exp () = o
w € (0)°

F,, :the focal submanifold of M through w
(i.e., Fy := ng(M))

H"Y™ :the mean curvature vector of F,,

(ﬁ“’)qurw : tangent to o \




The outline of the proof of Theorems 16.1 and 16.2

Definition

- (e]
X7 :a tangent vector field on o

= —_— o
= X7 = (H)ugtw (w € 0)

By analyzing X%, we can show the satements
of Theorem 16.2.



