Naoyuki Koike

Tokyo University of Science koike@ma.kagu.tus.ac.jp

December 19, 2013

Contents

- 14. The mean curvature flow for an isoparametric submanifold (Liu-Terng's result)
- 15. The outline of the proof of Liu-Terng's result
- 16. The mean curvature flow for an equifocal submanifold
- 17. An isoparametric submanifold in a Hilbert space
- 18. The mean curvature flow for a regularizable proper Fredholm submanifold
- 19. The outline of the proof of the results

14. The mean curvature flow for an

isoparametric submanifold (Liu-Terng's result)

M: an n-dimensional manifold

 $f:M\hookrightarrow \mathbb{R}^{n+r}\;:\;$ an embedding

We identify M with f(M).

Definition

M: an isoparametric submanifold

- $\iff \begin{cases} \bullet & \text{the normal holonomy group of } M \text{ is trivial} \\ \bullet & \text{for any parallel normal vec. fd. } v \text{ of } M, \\ & \text{the principal curvatures for } v_x \text{ are independent} \\ & \text{of } x \in M \end{cases}$

M: an isoparametric submanifold

Fix
$$x_0 \in M$$
.

The focal set of M at x_0 consists of finite pieces of hyperplanes $(\{l_1,\cdots,l_k\})$ in $T_{x_0}^\perp M$. The reflections w.r.t. l_i 's generate a Weyl group. Fundamental domains of this group are called the Weyl domain of M.

M : a compact isoparametric submanifold in \mathbb{R}^{n+r}

 $M_t \, (0 \leq t < T)$: the mean curvature flow for M

Theorem 14.1(Liu-Terng(Duke M.J.-2009)).

- (i) $M_t (0 \le t < T)$ are parallel submanifolds of M
- (ii) $T < \infty$
- (iii) $F := \lim_{t \to T} M_t$ is a focal submanifold of M
- (iv) If the natural fibration $\operatorname{pr}:M \to F$ is spherical, then $M_t \ (0 \le t < T)$ is of type I singularity

$$\left(egin{array}{ll} ext{i.e., } \sup_{t \in [0,T)} \left((T-t) \max_{v \in S^{\perp}M_t} ||A_v^t||^2
ight) < \infty \ \left(egin{array}{ll} A^t : ext{the shape tensor of } M_t \ S^{\perp}M_t : ext{the unit normal bd of } M_t \end{array}
ight)$$

Remark

$$\operatorname{pr}:M o F \Longleftrightarrow \operatorname{pr}(f(x)):=\lim_{t o T}f_t(x)\;(x\in M)$$

The mean curvature flow for an isoparametric submanifold (Liu-Terng's result)

The mean curvature flow for an isoparametric submanifold

Question 2.

How does the m.c. flow for F collapse in the case where F is not minimal?

$$\widetilde{C}\left(\subset T_{x_0}^{\perp}M
ight)$$
 : a Weyl domain

$$C := \exp^{\perp}(\widetilde{C}) (= x_0 + \widetilde{C})$$

$$\sigma$$
: a simplex of ∂C (dim $\sigma \geq 1$)

F: a focal submanifold of M through $\overset{\circ}{\sigma}$

 $F_t \, (0 \le t < T)$: the mean curvature flow for F

Theorem 14.2(Liu-Terng(Duke M.J.-2009)).

- (i) $F_t \, (0 \leq t < T)$ are focal submanifolds of M thr. $\overset{\circ}{\sigma}$
- (ii) $T < \infty$
- (iii) $F':=\lim_{t o T}F_t$ is a focal submanifold of M thr. $\partial\sigma$
- (iv) If the natural fibration $pr : F \to F'$ is spherical then F_t (0 $\leq t \leq T$) is of type I singularity.

M : an isoparametric submanifold in \mathbb{R}^{n+r}

 $M_t \, (0 \leq t < T) \, : \,$ the mean curvature flow for M

$$x_0 \in M$$

 $\widetilde{C} \ (\subset T_{x_0}^{\perp} M)$: the fund. domain of the Weyl group of M containing x_0

Definition

$$X : \text{a tangent vector field on } \widetilde{C}$$

$$\begin{cases} X_w := (H^w)_{x_0 + w} \ (w \in \widetilde{C}) \\ \left(\begin{array}{c} H^w : \text{ the mean curv. vec. of } \eta_{\widetilde{w}}(M) \\ \left(\begin{array}{c} \eta_{\widetilde{w}} : \text{ the end - point map for} \\ \text{a p. n. v. f. } \widetilde{w} \text{ s.t. } \widetilde{w}_{x_0} = w \end{array} \right) \end{cases}$$

$$\{\psi_t\}$$
 : a local one-parameter transf. gr. of X

$$\xi(t) := \psi_t(0) \quad ig(0 : ext{the zero vector of } T_{x_0}^ot Mig)$$

$$\widetilde{\xi(t)}$$
 : the parallel n.v.f. of M s.t. $\widetilde{\xi(t)}_{x_0} = \xi(t)$

Lemma 15.1.

$$M_t = \eta_{\widetilde{\xi(t)}}(M)$$

Thus the statement (i) of Theorem 14.1 is shown.

$$X \, --->\, \xi(t) \, {{
m Lem}\, {}^{15.1} \over --->} \, M_t$$

Thus we suffice to analyze X in order to analyze the mean curvature flow M_t .

A: the shape tensor of M

$$T_x M = \mathop{\oplus}\limits_{i \in I_x} E_i^x$$
 (common eigensp. decomp. of A_v 's
$$(v \in T_x^\perp M))$$

$$\lambda_i^x:\, T_x^\perp M o \mathbb{R} \iff A_v|_{E_i^x} = \lambda_i^x(v) \mathrm{id} \ \ (v \in T_x^\perp M)$$

Fact 1.

$$\lambda_i^x \in (T_x^{\perp}M)^*$$

By ordering E_i^x 's $(x \in M)$ suitably, we may assume that

$$orall i\in I(:=I_x),$$
 $E_i:x\mapsto E_i^x\;(x\in M):C^\infty ext{-distribution}$ curvature distribution

$$\lambda_i \in \Gamma((T^{\perp}M)^*) \iff (\lambda_i)_x := \lambda_i^x \ (x \in M)$$
 principal curvature

$$\mathrm{n}_i \in \Gamma(T^\perp M) \iff \lambda_i = \langle \mathrm{n}_i, \cdot
angle \ (i \in I)$$
 curvature normal

Fact 2.

$$\mathop{\cup}\limits_{i\in I}(\lambda_i)_x^{-1}(1)=$$
 "the focal set of M at x "

Fact 3.

$$\widetilde{C} = \{ w \in T_{x_0}^{\perp} M \, | \, (\lambda_i)_{x_0}(w) \, < \, 1 \ \ (i \in I) \}$$

$$m_i := \dim E_i \ (i \in I)$$

Lemma 15.2.

$$X_w = \sum_{i \in I} rac{m_i}{1 - (\lambda_i)_{x_0}(w)} (\mathrm{n}_i)_{x_0}$$

Remark.

$$X_w = 0 \iff \eta_{\widetilde{w}}(M) : \text{minimal}$$

Proof of (ii) of Theorem 14.1

$$\xi_0 \in \mathop{\cap}\limits_{i \in I} (\lambda_i)_{x_0}^{-1}(1)$$

From Lemma 15.2, we have

$$egin{aligned} & rac{d}{dt} ||\xi(t) - \xi_0||^2 = 2 \langle \xi'(t), \xi(t) - \xi_0 \rangle \ &= 2 \langle X_{\xi(t)}, \xi(t) - \xi_0 \rangle = -2n \quad (n := \dim M) \end{aligned}$$

On the other hand, we can show the following fact:

$$\exists \, \Phi \, : \, ext{a polynomial map of} \, \, T_{x_0}^\perp M \, \, ext{onto} \, \, \mathbb{R}^r \, \, (r := \operatorname{codim} M) \ ext{s.t.} \, \left\{ egin{array}{l} \Phi|_{\overline{\widetilde{C}}}(: \, \overline{\widetilde{C}}
ightarrow \mathbb{R}^r) \, : \, ext{into homeomorphism} \ \Phi_* X \, : \, ext{a polynomial vec. fd.} \end{array}
ight.$$

From these facts, it is shown that

$$\xi(t)$$
 converges to a point w_1 of $\partial \widetilde{C}$ as $t o T(< \infty)$.

Since
$$M_t=\eta_{\widetilde{\xi(t)}}(M)$$
 by Lemma 15.1,
$$M_t \text{ collapses to the focal submanifold } \eta_{\widetilde{w}_1}(M)$$
 as $t \to T(<\infty)$.

q.e.d.

for an equifocal submanifold

16. The mean curvature flow

 $(N,\langle\;,\;
angle)$: a Riemannian manifold

 $M\,:\,$ an embedded submanifold in N

 \exp^{\perp} : the normal exponential map of M

$$v_0 \in T_{x_0}^\perp M$$

Definition

 $s_0:$ a focal radius along γ_{v_0} $\iff \gamma_{v_0}(s_0):$ a focal point of M along γ_{v_0} $\iff (\operatorname{Ker}\ \exp^{\perp}_{*s_0v})\cap (T_{s_0v}(T^{\perp}M)\setminus \mathcal{V}_{s_0v})\neq \{0\})$ $(\mathcal{V}_{s_0v}:$ the vertical space of $T^{\perp}M$ at $s_0v)$

G/K: a symmetric space of compact type

M: an embedded submanifold in G/K

Definition(Terng-Thorbergsson(JDG-1995))

M: an equifocal submanifold

- $\iff \begin{cases} \bullet \ M \text{ is compact} \\ \bullet \text{ the normal holonomy group of } M \text{ is trivial} \\ \bullet \ M \text{ has flat section} \\ \bullet \text{ for any parallel normal vec. fd. } v \text{ of } M, \\ \text{ the focal radii along } \gamma_{v_x} \text{ are indep. of } x \in M \end{cases}$

M has flat section

M : an equifocal submanifold in G/K

$$x_0 \in M$$

The focal set of M at x_0 consists of the images of finite pieces of infinite parallel families of hyperplanes $(\mathcal{L}_a:=\{l_{ai}\,|\,i\in\mathbb{Z}\}\;(a=1,\cdots,k))$ in $T_{x_0}^\perp M$ by the normal exponential map.

The reflections w.r.t. l_{ai} 's generate a discrete group, that is, a Coxeter group.

This group is called the Coxeter group of M.

G/K: a symmetric space of compact type

M: a non-minimal equifocal submanifold in G/K

 $M_t \, (0 \leq t < T)$: the mean curvature flow for M

Theorem 16.1(K. (Asian J.M.-2011)).

- (i) M_t (0 $\leq t < T$) are parallel submanifolds of M
- (ii) $T < \infty$
- (iii) $F := \lim_{t o T} M_t$ is a focal submanifold of M
- (iv) If M is irreducible, if $\operatorname{codim} M \geq 2$, and if the natural fibration $\operatorname{pr}: M \to F$ is spherical, then $M_t \ (0 \leq t < T)$ is of type I singularity.

Question.

How does the mean curvature flow for F collapse ?

$$\widetilde{C}(\subset T_{x_0}^\perp M)$$
 : a fundamental domain (s.t. $0\in\widetilde{C}$) of the Coxeter group of M

$$C:=\exp^{\perp}(\widetilde{C})$$

$$\sigma$$
: a stratum of ∂C (dim $\sigma \geq 1$)

F : a non-minimal focal submanifold through $\overset{\circ}{\sigma}$

 $F_t \, (0 \leq t < T)$: the mean curvature flow for F

Theorem 16.2(K. (Asian J.M.-2011)).

- (i) $F_t \, (0 \leq t < T)$ are focal submanifolds of M through $\overset{\circ}{\sigma}$
- (ii) $T < \infty$
- (iii) $F':=\lim_{t o T}F_t$ is a focal submanifold of M through $\partial\sigma$
- (iv) If M is irreducible, if $\operatorname{codim} M \geq 2$ and if the natural fibration $\operatorname{pr}: F \to F'$ is spherical, then F_t (0 < t < T) is of type I singularity.

$$egin{aligned} \widetilde{M} := (\pi \circ \phi)^{-1}(M) &\hookrightarrow H^0([0,1],\mathfrak{g}) \ &\downarrow \phi \ &G \ &\downarrow \pi \ &M &\hookrightarrow G/K \end{aligned}$$

 $M: \mathsf{equifocal} \; \Leftrightarrow \; \widetilde{M}: \mathsf{isoparametric}$

in a Hilbert space

17. Isoparametric submanifolds

V: an ∞ -dimensional (separable) Hilbert space

 $f:M\hookrightarrow V$: an immersion of finite codimension

$\begin{array}{c} \operatorname{Definition}(\operatorname{Terng}(\operatorname{JDG-1989})). \\ f: M \hookrightarrow V : \text{a proper Fredholm submanifold} \\ & \rightleftharpoons \left\{ \begin{array}{c} \bullet \ \operatorname{exp}^{\perp} \mid_{B^{\perp_1}(M)} : \operatorname{proper map} \\ \bullet \ \operatorname{exp}^{\perp}_{*v} : \operatorname{Fredholm op.} \ (\forall \, v \in T^{\perp}M) \\ \end{array} \right. \\ \left(\begin{array}{c} \exp^{\perp} : \text{the normal exponential map of } M \\ B^{\perp_1}(M) : \text{the unit normal bundle map of } M \end{array} \right) \end{array}$

Fact

The shape operator of a proper Fredholm submanifold is compact operator.

Definition(Terng(JDG-1989)).

 $f:M\hookrightarrow V$: an isoparametric submanifold

 \bullet the normal holonomy group of M is trivial

• For any parallel normal vec. fd. v of M, the principal curvature's for v_x are independent of $x \in M$

$$f:M\hookrightarrow V$$
: an isoparametric submanifold

$$x_0 \in M$$

The focal set of M at x_0 consists of finite pieces of infinite parallel families of hyperplanes in $T_{x_0}^{\perp}M$.

$$(\mathcal{L}_a := \{l_{ai} \,|\, i \in \mathbb{Z}\} \;(a=1,\cdots,k))$$

The reflections w.r.t. l_{ai} 's generate a discrete group, that is, a Coxeter group.

This group is called the Coxeter group of M.

 $T_{x_0}^{\perp}M$

 $f:M\hookrightarrow V$: a proper Fredholm submanifold

$$f: M \hookrightarrow V \quad : \text{ a regularizable submanifold} \\ \begin{cases} \forall \ v \in T^\perp M, \\ \exists \ \mathrm{Tr}_r A_v \ (<\infty), \quad \exists \ \mathrm{Tr}(A_v^2) \ (<\infty) \end{cases} \\ \Leftrightarrow \det \begin{cases} \begin{cases} \forall \ v \in T^\perp M, \\ \exists \ \mathrm{Tr}_r A_v \ (<\infty), \quad \exists \ \mathrm{Tr}(A_v^2) \ (<\infty) \end{cases} \\ (\operatorname{Spec} A_v := \sum_{i=1}^\infty (\lambda_i + \mu_i) \\ (\operatorname{Spec} A_v = \{\mu_1 \leq \mu_2 \leq \cdots \leq 0 \leq \cdots \leq \lambda_2 \leq \lambda_1\}) \\ \operatorname{Tr}(A_v^2) := \sum_{i=1}^\infty \nu_i \\ (\operatorname{Spec} A_v^2 = \{\nu_1 \geq \nu_2 \geq \cdots > 0\}) \end{cases}$$

V: an ∞ -dimensional (separable) Hilbert space

 $f:M\hookrightarrow V:$ a regularizable submanifold

Definition(Heintze-Liu-Olmos(2006)).

 $H \iff \langle H,v
angle = \mathrm{Tr}_r A_v \ (orall \ v \in T^\perp M)$ This normal vector field H is called a regularized mean curvature vector.

$$f_t: M \hookrightarrow V \ (0 \leq t < T) \ : \ {
m a} \ C^{\infty}$$
-family of regularizable submanifolds

$$\widetilde{f}: M imes [0,T) o V \ \iff \widetilde{f}(x,t) := f_t(x) \; ((x,t) \in M imes [0,T))$$

Definition(K. (Asian J.M.-2011))

$$f_t \ (0 \leq t < T)$$
 :the (regularized) mean curvature flow

$$\stackrel{f}{\Longleftrightarrow} rac{\partial \widetilde{f}}{\partial t} = H_t \; (0 \leq t < T)$$
 $(H_t:$ the regularized mean curv. vec. of $f_t)$

Question.

For any regularlizable submanifold f, does the mean curvature flow for f uniquely exist in short time?

In order to solve this question affirmatively, we must show the Hilbert vector bundle version of the Hamilton's theorem for the evolution of a section of a (finite dim.) vector bundle. However, since a regularizable submanifold can be not compact, we must assume a certain kind of compactness for the submanifold.

G/K: a symmetric space of compact type

 $M\,:\,$ a compact submanifold in G/K

 $\phi: H^0([0,1],\mathfrak{g}) o G$: the parallel transport map for G

$$\left(\begin{array}{c} \Longleftrightarrow \phi(u) := g_u(1) \ (u \in H^0([0,1],\mathfrak{g})), \\ \text{where } g_u \text{ is the element of } H^1([0,1],G) \text{ s.t.} \\ g_u(0) = e \text{ and } (R_{g_u(t)})_*^{-1}(g_u'(t)) = u(t) \ (\forall \, t \in [0,1]) \end{array} \right)$$

 $\pi:G o G/K$: the natural projection

Set $\widetilde{\phi} := \pi \circ \phi$.

$$\widetilde{M} := \widetilde{\phi}^{-1}(M) \ (\hookrightarrow \ H^0([0,1],\mathfrak{g}))$$

Fact.

- ullet M is a regularizable submanifold.
- ullet There uniquely exists the mean curvature flow M_t for \widetilde{M} in short time.

 $M\,:\,$ a non-minimal equifocal submanifold in G/K

 $M_t \, (0 \leq t < T)$: the mean curvature flow for M

Theorem 16.1(K. (Asian J.M.-2011)).

- (i) M_t (0 $\leq t < T$) are parallel submanifolds of M
- (ii) $T < \infty$
- (iii) $F := \lim_{t o T} M_t$ is a focal submanifold of M
- (iv) If M is irreducible, if $\operatorname{codim} M \geq 2$, and if the natural fibration $\operatorname{pr}: M \to F$ is spherical, then $M_t \, (0 < t < T)$ is of type I singularity.

$$egin{aligned} \widetilde{M} := (\pi \circ \phi)^{-1}(M) &\hookrightarrow H^0([0,1],\mathfrak{g}) \ &\downarrow \phi \ &G \ &\downarrow \pi \ &M &\hookrightarrow G/K \end{aligned}$$

 $M: {\it equifocal} \ ---> \ \widetilde{M}: {\it regularizable} \ {\it isoparametric}$

 M_t : the mean curvature flow for M

 \widetilde{M}_t : the mean curvature flow for \widetilde{M}

Lemma 19.1.

$$\widetilde{M}_t = (\pi \circ \phi)^{-1}(M_t)$$

According to this fact, the investigation of the flow M_t is reduced to that of the flow \widetilde{M}_t .

$$x_0 \in M$$

$$u_0 \in (\pi \circ \phi)^{-1}(x_0) \ (\subset \widetilde{M})$$

 $\widetilde{C}~(\subset T^{\perp}_{u_0}\widetilde{M})~:~$ the fund. domain of the Coxeter group of \widetilde{M} containing u_0

Definition

X : a vector field on \widetilde{C}

$$\left\{ \begin{array}{l} X_w := (\widetilde{H}^w)_{u_0+w} \; (w \in \widetilde{C}) \\ \left(\begin{array}{l} \widetilde{H}^w : \text{ the reg. mean curv. vec. of } \eta_{\widetilde{w}}(\widetilde{M}) \\ \left(\begin{array}{l} \eta_{\widetilde{w}} : \text{ the end - point map for} \\ \text{a p. n. v. f. } \widetilde{w} \; \text{s.t. } \widetilde{w}_{u_0} = w \end{array} \right) \end{array} \right.$$

 $\{\psi_t\}$: a local one-parameter transformation gr. of X

$$\xi(t) := \psi_t(0) \quad ig(0 : ext{the zero vector of } T_{u_0}^\perp \widetilde{M}ig)$$

$$\widetilde{\xi(t)}$$
 : the parallel normal vec. fd. of \widetilde{M} s.t. $\widetilde{\xi(t)}_{u_0}=\xi(t)$

Lemma 19.2.

$$\widetilde{M}_t = \eta_{\widetilde{arepsilon(t)}}(\widetilde{M})$$

Proof of (i) of Theorem 16.1.

$$egin{aligned} M_t &= (\pi \circ \phi)(\widetilde{M}_t) = (\pi \circ \phi)(\eta_{\widetilde{\xi(t)}}(\widetilde{M})) \ &= \eta_{(\pi \circ \phi)_*(\widetilde{\xi(t)})}(M) \end{aligned}$$

q.e.d.

$$X - --> \xi \stackrel{{
m Lem \, 19.2}}{--->} \widetilde{M}_t \stackrel{{
m Lem \, 19.1}}{--->} M_t$$

M: equifocal --->M: reg. isoparametric

 $\widetilde{A}\,$: the shape tensor of $\widetilde{M}\,$

$$T_u\widetilde{M}=\overline{igoplus_{i\in I_u}E_i^u}$$
 (common eigensp. decomp. of \widetilde{A}_v 's

$$(v\in T_u^\perp\widetilde{M}))$$

$$\lambda_i^u\,:\,T_u^\perp\widetilde{M} o\mathbb{R}\iff \widetilde{A}_v|_{E_i^u}=\lambda_i^u(v)\mathrm{id}\ \ (v\in T_u^\perp\widetilde{M})$$

Fact.

$$\lambda_i^u \in (T_u^\perp \widetilde{M})^*$$

By choosing E_i^u 's $(u \in \widetilde{M})$ suitably, we may assume that

$$orall i\in I(:=I_u),$$
 $E_i:u\mapsto E_i^u\;(u\in\widetilde{M}):C^\infty ext{-distribution}$ curvature distribution

$$\lambda_i \in \Gamma((T^\perp \widetilde{M})^*) \iff (\lambda_i)_u := \lambda_i^u \ (u \in \widetilde{M})$$
 principal curvature

$$\mathrm{n}_i \in \Gamma(T^\perp \widetilde{M}) \iff \lambda_i = \langle \mathrm{n}_i, \cdot
angle \ \ (i \in I)$$
 curvature normal

 $\Lambda\,$: the set of all principal curvatures of \widetilde{M}

Fact

$$\mathop{\cup}\limits_{\lambda\in\Lambda}\lambda_u^{-1}(1)=$$
 "the focal set of \widetilde{M} at u "

Fact

The focal set of M at u consists of finite pieces of infinite families of parallel hyperplanes in $T_u^\perp \widetilde{M}$.

Fact

The set Λ is described as $\Lambda = igcup_{a=1}^{ar{r}} \left\{ rac{\lambda_a}{1+b_a j} \,\middle|\, j \in \mathbb{Z}
ight\}$

for some $\lambda_a \in \Gamma((T^\perp \widetilde{M})^*)$ and some constant

$$b_a > 1 \ (a = 1, \cdots, \bar{r}).$$

Fact

$$\widetilde{C} = \{w \in T_{u_0}^\perp \widetilde{M} \, | \, (\lambda_a)_{u_0}(w) \, < \, 1 \ \, (a=1,\cdots,\bar{r})\}$$

$$egin{aligned} E_{aj} &:= \operatorname{Ker}\left(\widetilde{A}_{\cdot} - rac{\lambda_{a}(\cdot)}{1 + b_{a}j} \mathrm{id}
ight) \ m_{a}^{e} &:= \dim E_{a,2j}, \qquad m_{a}^{o} &:= \dim E_{a,2j+1} \end{aligned}$$

 $T_{u_0}^{\perp}\widetilde{M}$

Lemma 19.3.

$$egin{aligned} X_w &= \sum_{a=1}^r \left(m_a^e \cot rac{\pi}{b_a} (1 - (\lambda_a)_{u_0}(w)))
ight. \ & \left. - m_a^o an rac{\pi}{b_a} (1 - (\lambda_a)_{u_0}(w))
ight) rac{\pi}{2 b_a} (ext{n}_a)_{u_0} \ & \left(ext{n}_a \iff \langle ext{n}_a, \cdot
angle = \lambda_a (\cdot)
ight) \end{aligned}$$

Remark.

$$X_w = 0 \iff \eta_{\widetilde{w}}(\widetilde{M}) : \text{minimal}$$

Proof of (ii) and (iii) of Theorem 16.1

$$\begin{split} \rho &\in C^{\infty}(\widetilde{C}) \\ & \iff \rho(w) := -\sum_{a=1}^{\bar{r}} \left(m_a^e \log \sin \frac{\pi}{b_a} (1 - (\lambda_a)_{u_0}(w))) \right. \\ & \left. + m_a^o \log \cos \frac{\pi}{b_a} (1 - (\lambda_a)_{u_0}(w)) \right) \quad (w \in \widetilde{C}) \end{split}$$

Then we have

$$\operatorname{grad} \rho = X$$
 and ρ : downward convex

Also we have

$$ho(w) \; o \; \infty \; (w \; o \; \partial \widetilde{C})$$

Hence we see that

ho has the only minimal point.

Denote by w_0 this point. Clearly we have $X_{w_0} = 0$ On the other hand, we can show the following fact:

$$\begin{array}{l} \exists\,\Phi\,:\,\mathrm{a}\,\,C^{\infty}-\mathrm{map}\,\,\mathrm{of}\,\,T_{u_0}^{\perp}\widetilde{M}\,\,\mathrm{onto}\,\,\mathbb{R}^r\,\,(r:=\mathrm{codim}\,M)\\ \mathrm{s.t.}\,\,\left\{\begin{array}{l} \Phi|_{\overline{\widetilde{C}}}(:\,\overline{\widetilde{C}}\to\mathbb{R}^r)\,:\,\mathrm{into}\,\,\mathrm{homeomorphism}\\ \Phi_*X\,:\,\mathrm{a}\,\,C^{\infty}-\mathrm{vec.}\,\,\mathrm{fd.} \end{array}\right. \end{array}$$

From these facts, we see that

ullet the flow of X starting from a point other than w_0 converges to a point of $\partial \widetilde{C}$ in finite time.

Since $oldsymbol{M}$ is not minimal, we can show

• $0 \neq w_0$ and the flow $\xi(t)$ of X starting from 0 converges to a point w_1 of $\partial \widetilde{C}$ in finite time T.

Since
$$M_t = \eta_{(\pi \circ \phi)_*(\widetilde{\xi(t)})}(M)$$
,

 M_t collapses to the focal submanifold $\eta_{(\pi \circ \phi)_*(\widetilde{w}_1)}(M)$ in the time T.

q.e.d.

$$F := \eta_{(\pi \circ \phi)_*(\widetilde{w}_1)}(M)$$

(iv) of Theorem 16.1.

If M is irreducible, if $\operatorname{codim} M \geq 2$, and if the natural fibration $\operatorname{pr}: M \to F$ is spherical, then $M_t \ (0 \leq t < T)$ is of type I singularity.

$$\left(egin{array}{ll} ext{i.e.,} & \sup_{t \in [0,T)} \left((T-t) \max_{v \in S^\perp M_t} ||A_v^t||^2
ight) < \infty \ \left(egin{array}{ll} A^t : ext{the shape tensor of } M_t \ S^\perp M_t : ext{the unit normal bd of } M_t \end{array}
ight)$$

Proof of (iv) of Theorem 16.1.

$$\widetilde{F}=\eta_{\widetilde{w}_1}(\widetilde{M})$$

 A^t (resp. \widetilde{A}^t) : the shape tensor of M_t (resp. \widetilde{M}_t)

Since $\operatorname{pr}:M\to F$ is spherical,

$$\exists 1 \ a_0 \in \{1, \dots, \bar{r}\} \text{ s.t. } w_1 \in ((\lambda_{a_0})_{u_0}^{-1}(1) \cap \partial \widetilde{C})^{\circ}$$

Hence

$$\lim_{t \to T - 0} ||\widetilde{A}_{v}^{t}||_{\infty}^{2} (T - t) = \lim_{t \to T - 0} \frac{(\lambda_{a_{0}})_{u_{0}}(v)^{2}}{(1 - (\lambda_{a_{0}})_{u_{0}}(\xi(t)))^{2}} (T - t)$$

$$\vdots$$

$$= \frac{(\lambda_{a_{0}})_{u_{0}}(v)^{2}}{2m_{a_{0}}^{2} ||(n_{a_{0}})_{u_{0}}||^{2}} \cdot \cdot \cdot \cdot \cdot (1)$$

$$M: \operatorname{irr.} \& \operatorname{codim} M \geq 2$$

-->M: curvature-adapted

$$-->\lim_{t\to T-0}||\tilde{A}_v^t||_{\infty}^2(T-t)=\lim_{t\to T-0}||A_{(\pi\circ\phi)_*(v)}^t||_{\infty}^2(T-t)$$

$$\cdots \cdots (2)$$

From (1) and (2), we have

$$\lim_{t o T - 0} \max_{v \in S^{\perp}_{\exp^{\perp}(\xi(t))} M_t} ||A^t_{(\pi \circ \phi)_*(v)}||^2_{\infty}(T - t) = rac{1}{2m^e_{a_0}} < \infty$$

Thus M_t is of type I singularity.

q.e.d.

 σ : a stratum of ∂C s.t. $\dim \sigma \geq 1$

F : a non-minimal focal submanifold of M thr. $\overset{\circ}{\sigma}$

 F_t : the mean curvature flow for F

Theorem 16.2.

- (i) $F_t \, (0 \leq t < T)$ are focal submanifolds of M through $\overset{\circ}{\sigma}$
- (ii) $T < \infty$
- (iii) $F':=\lim_{t o T}F_t$ is a focal submanifold of M through $\partial\sigma$
- (iv) If M is irreducible, if $\operatorname{codim} M \geq 2$ and if the natural fibration $\operatorname{pr}: F \to F'$ is spherical, then F_t (0 < t < T) is of type I singularity.

$$\widetilde{\sigma}$$
 : the simplex of $\partial \widetilde{C}$ s.t. $\exp^{\perp}(\widetilde{\sigma}) = \sigma$

$$w \in (\widetilde{\sigma})^{\circ}$$

 \widetilde{F}_w : the focal submanifold of \widetilde{M} through w

(i.e.,
$$\widetilde{F}_w := \eta_{\widetilde{w}}(\widetilde{M})$$
)

 \widetilde{H}^w : the mean curvature vector of \widetilde{F}_w

Fact.

$$(\widetilde{H}^w)_{u_0+w}$$
 :tangent to $\widetilde{\sigma}$

Definition

$$X^{\widetilde{\sigma}}:$$
 a tangent vector field on $\overset{\circ}{\widetilde{\sigma}}$ $X_w^{\widetilde{\sigma}}:=(\widetilde{H}^w)_{u_0+w}\;(w\in\overset{\circ}{\widetilde{\sigma}})$

By analyzing $X^{\widetilde{\sigma}}$, we can show the satements of Theorem 16.2.