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25. The mean curvature flow for
a regularizable submanifold



The mean curvature flow for a regularizable submanifold

The mean curvature flow for
a regularizable submanifold

V : an oco-dimensional (separable) Hilbert space

f: M —V : aproper Fredholm submanifold
e codim M < oo,
e expt |BJ_1(M) : proper map
° expi‘v : Fredholm op. (Vv € T+ M)



The mean curvature flow for a regularizable submanifold

The mean curvature flow for
a regularizable submanifold

Furthermore, assume that f is regularizable, that is,

Vv e T+M,
3Tr, A, (< 00), ITr(A2) (< o)
oo

’I‘rrAv = Z(Az + Nz)
=1
(Spec Ay = {j1 < p12 <+ <0< < As < A1)
oo
Tr(A2) := Z v;
=1

(Spec A2 = {v; > v >--- > 0})



The mean curvature flow for a regularizable submanifold

The mean curvature flow for
a regularizable submanifold

Definition(regularized mean curvature vector).

H <= (H,v) = Tr, A, (Vv € T+ M)
e
This normal vector field H is called
the regularized mean curvature of f.

Arf ﬁ (Arf, ’U) == TI'T((Vdf)('v ')7 'U>ﬂ
(Vv € T+M)
V : the Riemannian connection of )

the metric of M induced by f
Then we have H = A, f.



The mean curvature flow for a regularizable submanifold

The mean curvature flow for
a regularizable submanifold

ft: M —>V(0<t<T) : C>-family of regularizable

submanifolds

F: Mx][0,T)—>V
ﬁ F(z,t) := fi(z) ((z,t) € M x [0,T))



The mean curvature flow for a regularizable submanifold

The mean curvature flow for
a regularizable submanifold

Definition

ft (0 <t < T) :a (regularized) mean curvature flow

<:>6F_ 0<t<T
= gr - 0= )

For any regularizable submanifold f, does the mean

curvature flow for f uniquely exist in short time?




The mean curvature flow for a regularizable submanifold

The mean curvature flow for
a regularizable submanifold

G : a Hilbert Lie group

G ~ V : an almost free isometric action such that
the orbits are minimal regularizable
submanifolds

V/G : the orbit space of the G-action (which is an orbifold)

¢:V — V/G : the orbit map of the G-action



The mean curvature flow for a regularizable submanifold

The mean curvature flow for
a regularizable submanifold

M : a Hilbert manifold

f: M — V : aregularizable submanifold

If f(M) is G-invariant and if (¢ o f)(M) is compact,
then the mean curvature flow for f uniquely exists

in short time.




The mean curvature flow for a regularizable submanifold

The mean curvature flow for
a regularizable submanifold

Example
(G, K) :a compact symmetric pair
T' : a discrete subgroup of G

P(G,T x K) :={g € H'([0,1],G) |((9(0),9(1)) €
I'x K}



The mean curvature flow for a regularizable submanifold

The mean curvature flow for
a regularizable submanifold

P(G,T x K) acts on H°([0,1], g) isometrically and
almost freely as the Gauge action (on the space of the

connections) and its orbits are minimal regularizable

submanifolds.

Also, we have H°(]0,1],9)/P(G,T x K) =T \G/K.



2. The mean curvature flow
for a Riemannian suborbifold



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

M : a paracompact Hausdorff space

(U, ¢,U/T) : a triple s.t.
(i) U is an open set of M
(i) U is an open set of R™
(iii) T is a finite subgroup of Diff>(U)
(iv) ¢ is a homeomorphism of U onto U /T

Such a triple (U, ¢, ﬁ/I‘) is called an n-dimensional orbifold
chart.



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for
a Riemannian suborbifold

Let O := {(Ux, éx,U/Tx) | A € A} be
a family of n-dimensional orbifold charts of M s.t.
(01) {Ux | X € A} is an open covering of M
(02) For A\, p € A with UxNU, # 0,
there exists an n-dimensional orbifold chart
(W, v, W/I") s.t. C°°—embedd|ngs px: W < Uy
and p,, : Wf—)U s.t. ¢>>\ onr, 0 px =Pt omp

and gbu omr, 0 py =9 tomp,




The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

where 71, , wr, and ©r are the orbit maps of
I'x, 'y, and I, respectively.

Such a family O is called

an n-dimensional (C°°-)orbifold atlas of M
and the pair (M, O) is called

an n-dimensional (C°°-)orbifold.



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for
a Riemannian suborbifold

(Ux, o2, ﬁA/I‘A) : an n-dimensional orbifold chart
around x € M.

(Ta)z :={beTx|bZ) =7z}

The conjugate class of (I'y)z is called the local group at .

If (I'x)z is not trivial, then x is called a singular point of
(M, 0).

Denote by Sing (M) the set of all singular points of (M, O).



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

(M, Onr), (N,OnN) : orbifolds
f : amap from M to N

If, for each x € M and each pair of an orbifold chart

(Ux, $x, Ux/T») of (M, Op) around x and an orbifold
chart (V,,, ¥y, Vu/T),) of (N, On) around f(x)

(f(Ux) C V,.), there exists a C*-map fi,, : Ux — V,, with
fooytomr, = to 7y, O f)\,“, then f is called a

©w
C*-orbimap.



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

Also f\)\,” is called a local lift of f with respect to
(Ux, &2, Ur/Tx) and (Vu, php, Vo /T7).

Furthermore, if each local lift fA,u is an immersion, then f is
called a C*-orbiimmersion and (M, Oyy) is called a
C*-(immersed) suborbifold in (N, On,g). Similarly, if each
local lift ]?)\,,L is a submersion, then f is called a
C*-orbisubmersion.



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

For an orbifold (M, ©), the orbitangent bundle T,,, M and
the (7, s)-orbitensor bundle T M over (M, O) are

orb
defined naturally.

pr :the natural proj. of To., M (or T(T’S)M) onto M

orb

A Ck—orbimap X : M — TopM s.t. pro X =id is called a
C*-orbitangent vector field on (M, Ops) and a C*-orbimap
S:M — T™)M s.t. proS =id is called a

(r, s)-orbitensor field of class C* on (M, Opy).



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for
a Riemannian suborbifold

Definition.
If a (r, s)-orbitensor field g of class C* on (M, Oyy)
is positive definite and symmetric, then we call g
a C*-Riemannian orbimetric and (M, O, g)
a C*-Riemannian orbifold.




The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

f : a C°°-orbiimmersion of C*°-orbifold (M, Opr)
into C'°°-Riemannian orbifold (N, On, g)

Then, the orbinormal bundle ch;bM of f and the orbitensor

bundle T(E:]f)M ® TOJ;bM are defined naturally.



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for
a Riemannian suborbifold

: the induced metric of f|nn\sing(rr)

: the second fundamental form of f|y\ ging(ar)

g

h

A : the shape operator of f|y\sing(n1)

H : the mean curvature vec. of f|M\Sing(M)
¢

a unit normal vec. fd. of f|yn\sing(ar)

It is easy to show that g, h, A, H extend a (0, 2)-orbitensor
field of class C™ on (M, Oys), a C*-section of

To(fgz)M ® T35 M, a C*-section of Té:gl)M ® (Tgk, M)©1)
and a C*°-orbinormal vector field on (M, Oypy).



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for
a Riemannian suborbifold

We denote these extensions by the same symbols. We call
these extensions g, h, A and H the induced orbimetric, the
second fundamental orbiform, the shape orbitensor and the
mean curvature orbivector of f.

Here we note that £ does not necessarily extend a
C*°-orbinormal vector field on (M, O).



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

N : an (n 4+ r)-dimensional Riemannian orbifold
M : an n-dimensional orbifold
f: M — N : an orbiimmersion

ft (0<t<T) : aC>-family of orbiimmersions
of M into N s.t. fo=7Ff
Tt M : the normal orbibundle of It

orb

To-fM : the orbisubbundle of F*(To.,N) given by
Tt M’s

orb

H; : the mean curvature orbivector of f;

H : the section of T-F M given by H,’s

orb



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

Definition
ft (0 <t < T) :a mean curvature flow

<~— oF =H MCFE
def Ot ( )




The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

Example 1. f}u

O ) @
f>\vl’» 4 4 \ ,S

~N—— e M : f{\)"”
(a local lift of f|y,) (a local lift of H)

-1 -1
l‘ﬁ) O 7Try l "‘bu © 7y,

f|UA

v (ﬁ
U,




The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for
a Riemannian suborbifold

Frou(Ox) (F)au(Tr) (t > 0)

(t>0)



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

Example 2. ‘7”
Un
I, —~
~—_ “ ‘/\—# \"S: H)\,“
(a local lift of f|gs,) (a local lift of H)
l('b;l o T, l "7[’;1 o 7y,

-« flUA

U,




The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for
a Riemannian suborbifold

Frou(Oy) (F)ru(Or) (t > 0)

CHO) () (> 0)




The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

Assume that M is compact. Then, for any orbiimmersion
f of M into N, the mean curvature flow for f uniquely
exists in short time.




The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

Proof

Let f : M — IN be an orbiimmersion.

Since M is compact,

there exists a finite open covering {U; |z =1, , k:}
of M s.t. each f|y, admits a local lift fi:U; < V,.

Take the mean curvature flow (f;); (0 < t < T5) for f;.

Let (f;): (0 <t < T;) be the mean curvature flow for f;
arising from (f;): (0 < t < T5).



The mean curvature flow for a Riemannian suborbifold

The mean curvature flow for

a Riemannian suborbifold

Set T := min{T;|i=1,--- ,k}.

By patching (f;): (0 <t <T)’s (¢=1,---,k), we obtain
the mean curvature flow f; (0 <t < T) for f. g.e.d.



27. The evolutions of the geometric quantities



The evolutions of the geometric quantities

The evolutions of the geometric quantities

V' : an oco-dimensional (separable) Hilbert space

G : a Hilbert Lie group

G ~ V : an almost free isometric action s.t.
the orbits are minimal regularizable
submanifolds

V/G : the orbit space of the G-action (which is an orbifold)

¢:V — V/G : the orbit map of the G-action



The evolutions of the geometric quantities

The evolutions of the geometric quantities

f : M — V : aG-invariant regularizable submanifold
such that (¢ o f)(M) is compact

ft: M —V(0<t<T) : the mean curvature flow for f

F: Mx][0,T)—>V
— F(z,t) := fi(x) ((z,t) € M x [0,T))



The evolutions of the geometric quantities

The evolutions of the geometric quantities

H; : the horizontal distribution of the Riemannian
submersion ¢ o fi (: M — (¢ o fi)(M))

#H : the subbundle of 7}, (T M) given by #;'s

pry : the bundle orthog. proj. of 7} ,(T' M) onto H



The evolutions of the geometric quantities

The evolutions of the geometric quantities

g¢ : the metric of M induced by f;

h: : the second fundamental form of f;

A : the shape tensor of f;

g : the section of 7%, (T(%?) M) given by g;'s
h : the section of 7%, (T(*?) M) given by h;’s

A : the section of 7}, (T(*Y) M) given by A;'s



The evolutions of the geometric quantities

The evolutions of the geometric quantities

g#, hy, Ay : the horizontal components of g, h, A

gn =g o (pry X pry), hy := ho (pry X pry),
Az i=pry o Aopry



The evolutions of the geometric quantities

The evolutions of the geometric quantities

V : the connection of 7} ,(T M) given by the Riem. conn.
Vs of g4

dY,.
(VxY) ) = (Vs Y)uw (VoY)uy = #
(X, Y €T(x},(TM)))

V* : the connection of # given by V's

adyY,.
(V?;Y)(“’t) = pr’Ht((VtXY)u)a (Vléy)(u,t) = #

(X e(my, (TM)), Y €T'(H))



The evolutions of the geometric quantities

The evolutions of the geometric quantities

Denote by the same symbol V the connection of
7% (T(™*) M) induced from V.

Similarly, denote by the same symbol V?* the connection
of H("®induced from V#,

Ay : the Laplace operator defined in terms of V*

(838 gy = 33 VIVES (8 € T}, (T4 M)))
i=1

((e1,-++ ,en) : an orthon. base of H, ) w.r.t. (gt)u)



The evolutions of the geometric quantities

The evolutions of the geometric quantities

A? : the O’Neill’ fundamental tensor of the Riemannian
orbisubmersion ¢
(A? is the obstruction of the integrability of
the horizontal distribution H? of ¢)

A : the section of 7%, (T2 M) induced from
the O’Neill’s fundamental tensors A;'s of
the Riemannian orbisubmersions ¢ o f;'s



The evolutions of the geometric quantities

The evolutions of the geometric quantities

g
—— = 2||H||h
e || H|[hy

o||H|
at

= Ayl |HI| + || H||Tr(A3)* — 3||H||Tr((Af)%)x




The evolutions of the geometric quantities

The evolutions of the geometric quantities

Theorem 27.1(continued)
o O (X,Y) = (Baha) (X,Y) = 21 Hllha (A X, Y)
+Tr (422 = (A)?) h(X, Y)
—3||H||g#((A)*(X),Y) — 2Tr) h(AX, AY)
+TS, h(As(AX),Y) + Trl, h(Au(AY), X)
—TrS h((VeA)eX,Y) — Trd h((VeA).Y, X)
(X, Y e H)

Ogn Ohy

Remark ot = V%gﬂ, v = V%hﬂ.



The evolutions of the geometric quantities

The evolutions of the geometric quantities

The outline of the proof

¢ : the section of I'(F*(TV))(= C*°(M x [0,T),V))
given by the unit normal vector fields &;’s of f;'s

For X € T'(TM),

X € T(n},(TM)) <= Xuy = Xu ((u,t) € Mx[0,T))
(<

Then we have

[;,X} =0, [;,Xﬂ] = 2||H|| A X3
Also we have

AX = Ay X + A?X,

(A?)3 X = (An)?X — (AD)*X



The evolutions of the geometric quantities

The evolutions of the geometric quantities




The evolutions of the geometric quantities

The evolutions of the geometric quantities




The evolutions of the geometric quantities

The evolutions of the geometric quantities

Ohy o ~ v 9 | v
09 = i) ol X] )
—hﬂ(f, [at,Y:|)
) o
= 5(5, X3 (YyF))

= <a§’ Xy (YnF)) + (€, X <[8,Yu] F))

5 ot
HE | 50 Xou| (TP
(Here we use that V is a linear space.)

Furthermore, by using the previous relations, we obtain



The evolutions of the geometric quantities

The evolutions of the geometric quantities

aaht%(X, Y) = (Vd||H||)(X,Y) — ||H||g((Ax)*X,Y)

—4||H|lg((A?)*X,Y)

On the other hand, we have
(Auha)(X,Y)

= (Vd||H||)(X,Y) + || H||g((A%)*X,Y) — || H||g((A)*X,Y)
—Tr((Az)? — (A9)*)h(X,Y)
+2Tr} ((Veh)(AeX,Y)) + 2Tr} ((Voh)(ALY, X))
—Try, h(A(AX), V) = Tr), h(Au(ALY), X)
+TrS h((VeA)eX,Y) + TrS h((VeA)Y, X)
+2Tr; h(AeX, AY)

From these relations, we obtain the desired evolution eq.

g.e.d.



The evolutions of the geometric quantities

The evolutions of the geometric quantities

pt : G X M — M : the action on M induced from
the action G ~ V by f;

Set G := pt(G).

Then we have

g¢ and h; are C'°°-families of G¢-invariant symmetric

(0, 2)-tensor fields on M.




28. The maximum principle



The maximum principle

The maximum principle

G : a Hilbert Lie group
M : a Hilbert manifold

gt (t € [0,T)) : a C°°-family of G-invariant Riemannian
metrics of M

g : the section of 7%, (T(%?) M) given by g;’s



The maximum principle

The maximum principle

For B € T'(w},(T(m-%0) M)), define
Vi : T(w (T9M)) — T(mh, (TC+0:5+50) M) by

YBe(S):=B®S (S € I(m} (T™)M))).

Define gr : T'(wh (T M)) — T'(ns,(T*"F)M)) by

PYer(S) == S®---®S (k—times) (S € T(w}, (T M))).



The maximum principle

The maximum principle

Also, define
Vaarij : D(wh (T M)) — T(} (T2 M) by
(’wg’n,ij(s))(m,t) (Xla Tty Xs—2)
= Z Sty (X1 1€ky 5 Chy "t y Xs—2)
k=1 ?

J
(S € I‘(Tr}“w(T(r,S)M)), Xi,-++ , Xq 2 € TmM),

where {ej,--- ,e,} is an orthon. base of H(, ;) w.r.t.
(g#)t-



The maximum principle

The maximum principle

Also, define
i T(wy (T M) = Dy (TCL=DM)) by

(¢7{,i(s))(w,t)(X17 e aXs—l)
= 'I‘r(pr’H(w’t) o S(a:,t) (X17 MR} Xi—17 o, Xia Tty Xs—l)l’H(w,t))
(S € F(”?\/I(T(T’S)M))’ Xla ot ,Xs—l S TmM)



The maximum principle

The maximum principle

P : amap from (7%, (T(™*) M)) to
]_"(71-""‘\4(@:?’3,=0 T(r’,s')M))

Definition(a map of polynomial type).

If P is given as the sum of the compositions of the above

five types of maps ¥pg, V@B, Yeks Wawijs Wi then
we say that P is of polynomial type.




The maximum principle

The maximum principle

P : a map of polynomial type from
T(7%,(T©2M)) to oneself

Definition(horizontally null vector condition).

Assume that, for any S € T'(7%,(T(®?) M)) and any
(z,t) € M x [0,T),

X € Ker (S)(z,t)y = P(S)(a,1)(X, X) > 0.

Then we say that
P satisfies the horizontally null vector condition.




The maximum principle

The maximum principle

P : a map of polynomial type from
I'(7}3,(M x R)) to oneself

Definition(null vector condition (function version)).

Assume that, for any p € T'(w},(M X R)) and any
(x,t) € M x [0,T),

p(z,t) =0 = P(p)(z,t) > 0.

Then we say that P satisfies the null vector condition.




The maximum principle

The maximum principle

V(0 <t<T) : the Riemannian connection of g,

V : the connection of 7},(T'M) defined by V*'s



The maximum principle

The maximum principle

S : an element of T'(7},(T(®? M)) s.t.
St (0 < t < T) are G-invariant and symmetric

Theorem 28.1(Maximum principle).

Assume that S satisfies

Sn
5t Ay Sy + V}LOSH + P(S)n

e X : an element of I'(T'M)

e P : a map of polynomial type of I'(7%,(T(%2) M))
to oneself satisfying the horizontally null vector
condition

If (S’H)(-,O) > 0 (resp. (57{)(.,0) > 0), then

(S8%#)(.,t) = 0 (resp. (S#)(.,+) > 0) holds for all t € [0,T).




The maximum principle

The maximum principle

p : an element of I'(7}3,(M X R)) s.t.
pt (0 <t < T) are G-invariant

Theorem 28.2(Maximum principle).

7] _
Assume that p satisfies 8—5 = Ayup + dp(Xo) + P(p)

e Xy : an element of I'(T M)

e P : a map of polynomial type of I'(73,(M X R))
to oneself satisfying the null vector condition

If po > 0 (resp. po > 0), then p; > 0 (resp. p: > 0)

holds for all t € [0, T).




29. The horizontally strictly
convexity-preservability theorem



The horizontally strictly convexity-preservability theorem

The horizontally strictly convexity-preservability theorem

G : a Hilbert Lie group
V : a Hilbert space

G ~ V : an almost free isometric action s.t. the orbits
are minimal regularizable submanifolds

¢:V — V/G : the orbit map



The horizontally strictly convexity-preservability theorem

The horizontally strictly convexity-preservability theorem

f: M — V : aregularizable hypersurface such that
f(M) is G-invariant and (¢ o f)(M)
is compact

ft (0<t<T) : the mean curvature flow for f



The horizontally strictly convexity-preservability theorem

The horizontally strictly convexity-preservability theorem

Define K € T'((#%)(4) by

K(X, Y, Z, W)
1= (VxA®)y (AGW) + AL (VxA?)zW)
+(VxA?)2(ARY) + AL (VX A®)wY)
—2(VxA?)w (AL Z)
—2A4%, (VxA?)y Z)
(X,Y,Z,W € H?)

Set L := sup ||Ky||. Assume that L < ooc.
ueV



The horizontally strictly convexity-preservability theorem

The horizontally strictly convexity-preservability theorem

Theorem 29.1(Horizontally strictly convexity-preservability th.).

Assume that
[ Hol|?(ha)(..0) > 2n2L(g2) .,0)-
Then T' < oo and

|| He||? (h3e) (1) > 202 L(ga) (1)

holds for any ¢t € [0,T).

This statement is proved in terms of the evolution
equations in Theorem 27.1 and the maximum principle
(Theorems 28.1 and 28.2).



The horizontally strictly convexity-preservability theorem

The horizontally strictly convexity-preservability theorem

Set N:=V/G and n :=dim N — 1.

M : a n-dimensional compact manifold

f: M < N : an orbiimmersion

f: (0 <t <T) : the mean curvature flow for f

Gs» hi, Hy : the quantities for f,



The horizontally strictly convexity-preservability theorem

The horizontally strictly convexity-preservability theorem

R :the curvature orbitensor of NV
V :the Riemannian orbiconnection of the orbimetric of N

Set L := sup ||VR||. Assume that L < oo.
zEN



The horizontally strictly convexity-preservability theorem

The horizontally strictly convexity-preservability theorem

Theorem 29.2(Strictly convexity-preservability theorem).

Assume that

[Hol[*ho > n*Lg.
Then T' < oo and

[H¢||*ht > n*Lg,

holds for any t € [0,T).

This statement is proved by applying Theorem 29.1
to the lift of f, by ¢.



The horizontally strictly convexity-preservability theorem

The horizontally strictly convexity-preservability theorem
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