The mean curvature flow for an invariant hypersurface in a Hilbert space with an almost free group action

Naoyuki Koike

Tokyo University of Science koike@ma.kagu.tus.ac.jp

December 20, 2013

Contents

- 25. The mean curvature flow for a regularizable submanifold
- 26. The mean curvature flow for a Riemannian suborbifold
- 27. The evolutions of the geometric quantities
- 28. The maximum principle
- 29. The horizontally strictly convexity-preservability theorem

V: an ∞ -dimensional (separable) Hilbert space

 $f:M\hookrightarrow V$: a proper Fredholm submanifold

- $\left(\begin{array}{l} \bullet \ \operatorname{codim} M < \infty, \\ \bullet \ \operatorname{exp}^{\perp}|_{B^{\perp_1}(M)} : \operatorname{proper\ map} \\ \bullet \ \operatorname{exp}^{\perp}_{*v} : \operatorname{Fredholm\ op.} \ (\forall \, v \in T^{\perp}M) \end{array}\right)$

Furthermore, assume that f is regularizable, that is,

$$\left\{egin{aligned} orall v \in T^{\perp}M,\ rac{\exists\operatorname{Tr}_rA_v\left(<\infty
ight),\ \exists\operatorname{Tr}(A_v^2)\left(<\infty
ight)}{\operatorname{Tr}_rA_v:=\sum\limits_{i=1}^{\infty}(\lambda_i+\mu_i)}\ \left(\operatorname{Spec}A_v=\{\mu_1\leq\mu_2\leq\cdots\leq0\leq\cdots\leq\lambda_2\leq\lambda_1\}
ight)\ \operatorname{Tr}(A_v^2):=\sum\limits_{i=1}^{\infty}
u_i\ \left(\operatorname{Spec}A_v^2=\{
u_1\geq
u_2\geq\cdots>0\}
ight) \end{aligned}
ight..$$

Definition(regularized mean curvature vector).

$$H \iff \langle H,v
angle = \mathrm{Tr}_r A_v \ (orall \ v \in T^\perp M)$$
 This normal vector field H is called the regularized mean curvature of f .

$$f_t: M \hookrightarrow V \ (0 \leq t < T) \ : \ C^{\infty}$$
-family of regularizable submanifolds

$$F: M imes [0,T) o V \ \iff F(x,t) := f_t(x) \; ((x,t) \in M imes [0,T))$$

Definition

$$f_t \ (0 \le t < T)$$
 : a (regularized) mean curvature flow $\iff \frac{\partial F}{\partial t} = H_t \ (0 \le t < T)$

Question.

For any regularizable submanifold f, does the mean curvature flow for f uniquely exist in short time?

G: a Hilbert Lie group

 $G \curvearrowright V$: an almost free isometric action such that the orbits are minimal regularizable submanifolds

V/G: the orbit space of the G-action (which is an orbifold)

 $\phi:V o V/G$: the orbit map of the G-action

M: a Hilbert manifold

 $f:M\hookrightarrow V$: a regularizable submanifold

Fact

If f(M) is G-invariant and if $(\phi \circ f)(M)$ is compact, then the mean curvature flow for f uniquely exists in short time.

Example

(G,K): a compact symmetric pair

 Γ : a discrete subgroup of G

$$P(G, \Gamma \times K) := \{ g \in H^1([0, 1], G) \, | ((g(0), g(1)) \in \Gamma \times K \}$$

 $P(G, \Gamma \times K)$ acts on $H^0([0,1],\mathfrak{g})$ isometrically and almost freely as the Gauge action (on the space of the connections) and its orbits are minimal regularizable submanifolds.

Also, we have $H^0([0,1],\mathfrak{g})/P(G,\Gamma\times K)=\Gamma\setminus G/K$.

M: a paracompact Hausdorff space

$$(U,\phi,\widehat{U}/\Gamma)$$
 : a triple s.t.

- $\left\{ \begin{array}{l} \text{(i) U is an open set of M} \\ \text{(ii) \widehat{U} is an open set of \mathbb{R}^n} \\ \text{(iii) Γ is a finite subgroup of $\mathrm{Diff}^\infty(\widehat{U})$} \\ \text{(iv) ϕ is a homeomorphism of U onto \widehat{U}/Γ} \end{array} \right.$

Such a triple $(U,\phi,\widehat{U}/\Gamma)$ is called an *n*-dimensional orbifold chart.

Let $\mathcal{O} := \{(U_{\lambda}, \phi_{\lambda}, \widehat{U}/\Gamma_{\lambda}) \mid \lambda \in \Lambda\}$ be

where $\pi_{\Gamma_{\lambda}}, \, \pi_{\Gamma_{\mu}}$ and $\pi_{\Gamma'}$ are the orbit maps of $\Gamma_{\lambda}, \, \Gamma_{\mu}$ and Γ' , respectively.

Such a family $\mathcal O$ is called an n-dimensional (C^{∞} -)orbifold atlas of M and the pair $(M,\mathcal O)$ is called an n-dimensional (C^{∞} -)orbifold.

$$(U_\lambda,\phi_\lambda,\widehat U_\lambda/\Gamma_\lambda)$$
 : an n -dimensional orbifold chart around $x\in M$.

$$(\Gamma_{\lambda})_{\widehat{x}} := \{ b \in \Gamma_{\lambda} \, | \, b(\widehat{x}) = \widehat{x} \}$$

The conjugate class of $(\Gamma_{\lambda})_{\widehat{x}}$ is called the local group at x. If $(\Gamma_{\lambda})_{\widehat{x}}$ is not trivial, then x is called a singular point of (M, \mathcal{O}) .

Denote by $\operatorname{Sing}(M)$ the set of all singular points of (M, \mathcal{O}) .

 $(M,\mathcal{O}_M),\,(N,\mathcal{O}_N)\,:\, ext{orbifolds}$ $f\,:\, ext{a map from }M ext{ to }N$

If, for each $x\in M$ and each pair of an orbifold chart $(U_\lambda,\phi_\lambda,\widehat{U}_\lambda/\Gamma_\lambda)$ of (M,\mathcal{O}_M) around x and an orbifold chart $(V_\mu,\psi_\mu,\widehat{V}_\mu/\Gamma'_\mu)$ of (N,\mathcal{O}_N) around f(x) $(f(U_\lambda)\subset V_\mu)$, there exists a C^k -map $\widehat{f}_{\lambda,\mu}:\widehat{U}_\lambda\to\widehat{V}_\mu$ with $f\circ\phi_\lambda^{-1}\circ\pi_{\Gamma_\lambda}=\psi_\mu^{-1}\circ\pi_{\Gamma'_\mu}\circ\widehat{f}_{\lambda,\mu}$, then f is called a C^k -orbimap.

Also $\widehat{f}_{\lambda,\mu}$ is called a local lift of f with respect to $(U_{\lambda},\phi_{\lambda},\widehat{U}_{\lambda}/\Gamma_{\lambda})$ and $(V_{\mu},\psi_{\mu},\widehat{V}_{\mu}/\Gamma'_{\mu})$. Furthermore, if each local lift $\widehat{f}_{\lambda,\mu}$ is an immersion, then f is called a C^k -orbimmersion and (M,\mathcal{O}_M) is called a C^k -(immersed) suborbifold in (N,\mathcal{O}_N,g) . Similarly, if each local lift $\widehat{f}_{\lambda,\mu}$ is a submersion, then f is called a C^k -orbisubmersion.

For an orbifold (M,\mathcal{O}) , the orbitangent bundle $T_{\mathrm{orb}}M$ and the (r,s)-orbitensor bundle $T_{\mathrm{orb}}^{(r,s)}M$ over (M,\mathcal{O}) are defined naturally.

 $\begin{array}{l} \mathrm{pr}: \text{the natural proj. of } T_{\mathrm{orb}}M \text{ (or } T_{\mathrm{orb}}^{(r,s)}M) \text{ onto } M \\ \text{A } C^k\text{-orbimap } X: M \to T_{\mathrm{orb}}M \text{ s.t. } \mathrm{pr} \circ X = \mathrm{id} \text{ is called a } \\ \frac{C^k\text{-orbitangent vector field on } (M,\mathcal{O}_M) \text{ and a } C^k\text{-orbimap } \\ S: M \to T^{(r,s)}M \text{ s.t. } \mathrm{pr} \circ S = \mathrm{id} \text{ is called a } \\ \frac{(r,s)\text{-orbitensor field of class } C^k \text{ on } (M,\mathcal{O}_M). \end{array}$

Definition.

If a (r,s)-orbitensor field g of class C^k on (M,\mathcal{O}_M) is positive definite and symmetric, then we call g a C^k -Riemannian orbimetric and (M,\mathcal{O}_M,g) a C^k -Riemannian orbifold.

f: a C^∞ -orbimmersion of C^∞ -orbifold (M,\mathcal{O}_M) into C^∞ -Riemannian orbifold (N,\mathcal{O}_N,g)

Then, the orbinormal bundle $T_{\mathrm{orb}}^{\perp}M$ of f and the orbitensor bundle $T_{\mathrm{orb}}^{(r,s)}M\otimes T_{\mathrm{orb}}^{\perp}M$ are defined naturally.

g : the induced metric of $f|_{M\setminus \mathrm{Sing}(M)}$

h : the second fundamental form of $f|_{M \setminus \operatorname{Sing}(M)}$

A: the shape operator of $f|_{M\setminus \mathrm{Sing}(M)}$

H: the mean curvature vec. of $f|_{M\setminus \mathrm{Sing}(M)}$

 ξ : a unit normal vec. fd. of $f|_{M\setminus \operatorname{Sing}(M)}$

It is easy to show that g,h,A,H extend a (0,2)-orbitensor field of class C^{∞} on (M,\mathcal{O}_M) , a C^k -section of $T_{\mathrm{orb}}^{(0,2)}M\otimes T_{\mathrm{orb}}^{\perp}M$, a C^k -section of $T_{\mathrm{orb}}^{(1,1)}M\otimes (T_{\mathrm{orb}}^{\perp}M)^{(0,1)}$ and a C^{∞} -orbinormal vector field on (M,\mathcal{O}_M) .

We denote these extensions by the same symbols. We call these extensions g, h, A and H the induced orbimetric, the second fundamental orbiform, the shape orbitensor and the mean curvature orbivector of f.

Here we note that ξ does not necessarily extend a C^{∞} -orbinormal vector field on (M, \mathcal{O}) .

 $N\,:\,$ an (n+r)-dimensional Riemannian orbifold

M: an n-dimensional orbifold

 $f:M\hookrightarrow N$: an orbiimmersion

 $f_t \ (0 \leq t < T) \ : \ {
m a} \ C^{\infty}$ -family of orbimmersions of M into N s.t. $f_0 = f$

 $T_{\mathrm{orb}}^{\perp_t} M$: the normal orbibundle of f_t

 $T_{
m orb}^{\perp_F}M$: the orbisubbundle of $F^*(T_{
m orb}N)$ given by $T_{
m orb}^{\perp_t}M$'s

 H_t : the mean curvature orbivector of f_t

H: the section of $T_{\mathrm{orb}}^{\perp_F}M$ given by H_t 's

Definition

Fact

Assume that M is compact. Then, for any orbimmersion f of M into N, the mean curvature flow for f uniquely exists in short time.

Proof

Let $f: M \hookrightarrow N$ be an orbimmersion.

Since M is compact,

there exists a finite open covering $\{U_i\,|\,i=1,\cdots,k\}$ of M s.t. each $f|_{U_i}$ admits a local lift $\widetilde{f}_i:\widetilde{U}_i\hookrightarrow\widetilde{V}_i$.

Take the mean curvature flow $(\widetilde{f}_i)_t$ $(0 \le t < T_i)$ for \widetilde{f}_i .

Let $(f_i)_t$ $(0 \le t < T_i)$ be the mean curvature flow for f_i arising from $(\widetilde{f_i})_t$ $(0 \le t < T_i)$.

Set
$$T:=\min\{T_i\,|\,i=1,\cdots,k\}.$$

By patching $(f_i)_t$ $(0 \le t < T)$'s $(i = 1, \dots, k)$, we obtain the mean curvature flow f_t $(0 \le t < T)$ for f. q.e.d.

27. The evolutions of the geometric quantities

The evolutions of the geometric quantities

V: an ∞ -dimensional (separable) Hilbert space

G: a Hilbert Lie group

 $G \curvearrowright V$: an almost free isometric action s.t. the orbits are minimal regularizable submanifolds

 $V/G\,:\,$ the orbit space of the G-action (which is an orbifold)

 $\phi:V o V/G$: the orbit map of the G-action

The evolutions of the geometric quantities

$$f:M\hookrightarrow V$$
: a G -invariant regularizable submanifold such that $(\phi\circ f)(M)$ is compact $f_t:M\hookrightarrow V\ (0\le t< T)$: the mean curvature flow for f
$$F:M\times [0,T)\to V$$
 $\iff F(x,t):=f_t(x)\ ((x,t)\in M\times [0,T))$

 \mathcal{H}_t : the horizontal distribution of the Riemannian submersion $\phi\circ f_t\,(:M o (\phi\circ f_t)(M))$

 $\mathcal{H}:$ the subbundle of $\pi_M^*(TM)$ given by \mathcal{H}_t 's

 $\operatorname{pr}_{\mathcal{H}}$: the bundle orthog. proj. of $\pi_M^*(TM)$ onto \mathcal{H}

 g_t : the metric of M induced by f_t

 h_t : the second fundamental form of f_t

 A_t : the shape tensor of f_t

g : the section of $\pi_M^*(T^{(0,2)}M)$ given by g_t 's

h : the section of $\pi_M^*(T^{(0,2)}M)$ given by h_t 's

A : the section of $\pi_M^*(T^{(1,1)}M)$ given by A_t 's

$$\begin{split} g_{\mathcal{H}}, \, h_{\mathcal{H}}, \, A_{\mathcal{H}} \, : \, & \text{the horizontal components of} \, g, h, A \\ \left(\begin{array}{c} g_{\mathcal{H}} := g \circ (\mathrm{pr}_{\mathcal{H}} \times \mathrm{pr}_{\mathcal{H}}), \, \, h_{\mathcal{H}} := h \circ (\mathrm{pr}_{\mathcal{H}} \times \mathrm{pr}_{\mathcal{H}}), \\ A_{\mathcal{H}} := \mathrm{pr}_{\mathcal{H}} \circ A \circ \mathrm{pr}_{\mathcal{H}} \\ \end{array} \right) \end{split}$$

abla : the connection of $\pi_M^*(TM)$ given by the Riem. conn. $abla^t$'s of g_t

$$\left(\begin{array}{c} (\nabla_X Y)_{(u,t)} := (\nabla_X^t Y)_u, \ (\nabla_{\frac{\partial}{\partial t}} Y)_{(u,t)} = \frac{dY_{(u,\cdot)}}{dt} \\ (X,\,Y \in \Gamma(\pi_M^*(TM))) \end{array}\right)$$

 $abla^{\mathcal{H}}:$ the connection of ${\mathcal{H}}$ given by $abla^t$'s

$$\left(\begin{array}{c} (\nabla_X^{\mathcal{H}}Y)_{(u,t)} := \operatorname{pr}_{\mathcal{H}_t}((\nabla_X^tY)_u), \ \ (\nabla_{\frac{\partial}{\partial t}}^{\mathcal{H}}Y)_{(u,t)} = \frac{dY_{(u,\cdot)}}{dt} \\ (X \in \Gamma(\pi_M^*(TM)), \ Y \in \Gamma(\mathcal{H})) \end{array}\right)$$

Denote by the same symbol ∇ the connection of $\pi_M^*(T^{(r,s)}M)$ induced from ∇ .

Similarly, denote by the same symbol $\nabla^{\mathcal{H}}$ the connection of $\mathcal{H}^{(r,s)}$ induced from $\nabla^{\mathcal{H}}$.

 $riangle_{\mathcal{H}}:$ the Laplace operator defined in terms of $abla^{\mathcal{H}}$

$$\left(\begin{array}{c} (\triangle_{\mathcal{H}}S)_{(u,t)} := \sum\limits_{i=1}^n \nabla^{\mathcal{H}}_{e_i} \nabla^{\mathcal{H}}_{e_i} S \ \left(S \in \Gamma(\pi^*_M(T^{(r,s)}M))\right) \\ ((e_1,\cdots,e_n) : \text{an orthon. base of } \mathcal{H}_{(u,t)} \text{ w.r.t. } (g_t)_u) \end{array}\right)$$

- $\mathcal{A}^{\phi}:$ the O'Neill' fundamental tensor of the Riemannian orbisubmersion ϕ (\mathcal{A}^{ϕ} is the obstruction of the integrability of the horizontal distribution \mathcal{H}^{ϕ} of ϕ)
- ${\mathcal A}:$ the section of $\pi_M^*(T^{(1,2)}M)$ induced from the O'Neill's fundamental tensors ${\mathcal A}_t$'s of the Riemannian orbisubmersions $\phi\circ f_t$'s

Theorem 27.1.

$$ullet rac{\partial g_{\mathcal{H}}}{\partial t} = -2||H||h_{\mathcal{H}}|$$

$$\bullet \ \frac{\partial ||H||}{\partial t} = \triangle_{\mathcal{H}} ||H|| + ||H|| \operatorname{Tr}(A_{\mathcal{H}})^2 - 3||H|| \operatorname{Tr}((\mathcal{A}_{\xi}^{\phi})^2)_{\mathcal{H}}$$

Theorem 27.1(continued)

$$\bullet \frac{\partial h_{\mathcal{H}}}{\partial t}(X,Y) = (\triangle_{\mathcal{H}} h_{\mathcal{H}})(X,Y) - 2||H||h_{\mathcal{H}}(A_{\mathcal{H}}X,Y)$$

$$+ \operatorname{Tr}\left((A_{\mathcal{H}})^2 - (\mathcal{A}_{\xi}^{\phi})^2\right) h(X,Y)$$

$$- 3||H||g_{\mathcal{H}}((\mathcal{A}_{\xi}^{\phi})^2(X),Y) - 2\operatorname{Tr}_{g_{\mathcal{H}}}^{\bullet} h(\mathcal{A}_{\bullet}X,\mathcal{A}_{\bullet}Y)$$

$$+ \operatorname{Tr}_{g_{\mathcal{H}}}^{\bullet} h(\mathcal{A}_{\bullet}(\mathcal{A}_{\bullet}X),Y) + \operatorname{Tr}_{g_{\mathcal{H}}}^{\bullet} h(\mathcal{A}_{\bullet}(\mathcal{A}_{\bullet}Y),X)$$

$$- \operatorname{Tr}_{g_{\mathcal{H}}}^{\bullet} h((\nabla_{\bullet}\mathcal{A})_{\bullet}X,Y) - \operatorname{Tr}_{g_{\mathcal{H}}}^{\bullet} h((\nabla_{\bullet}\mathcal{A})_{\bullet}Y,X)$$

$$(X,Y \in \mathcal{H})$$

$$rac{\mathsf{Remark}}{\partial t} \quad rac{\partial g_{\mathcal{H}}}{\partial t} :=
abla_{rac{\partial}{\partial t}} g_{\mathcal{H}}, \quad rac{\partial h_{\mathcal{H}}}{\partial t} :=
abla_{rac{\partial}{\partial t}} h_{\mathcal{H}}.$$

The outline of the proof

$$\xi$$
: the section of $\Gamma(F^*(TV)) (= C^\infty(M \times [0,T),V))$ given by the unit normal vector fields ξ_t 's of f_t 's

For
$$X \in \Gamma(TM)$$
,

$$\overline{X} \in \Gamma(\pi_M^*(TM)) \iff \overline{X}_{(u,t)} := X_u \ ((u,t) \in M \times [0,T))$$

Then we have

$$\left[rac{\partial}{\partial t},\overline{X}
ight]=0,\;\;\left[rac{\partial}{\partial t},\overline{X}_{\mathcal{H}}
ight]=2||H||\mathcal{A}^{\phi}_{m{\xi}}\overline{X}_{\mathcal{H}}$$

Also we have

$$A\overline{X} = A_{\mathcal{H}}\overline{X} + \mathcal{A}_{\xi}^{\phi}\overline{X},$$

 $(A^2)_{\mathcal{H}}\overline{X} = (A_{\mathcal{H}})^2\overline{X} - (\mathcal{A}_{\xi}^{\phi})^2\overline{X}$

$$\begin{split} \frac{\partial h_{\mathcal{H}}}{\partial t}(X,Y) &= \frac{\partial}{\partial t}(h_{\mathcal{H}}(\overline{X},\overline{Y})) - h_{\mathcal{H}}(\left[\frac{\partial}{\partial t},\overline{X}\right],\overline{Y}) \\ &- h_{\mathcal{H}}(\overline{X}, \left[\frac{\partial}{\partial t},\overline{Y}\right]) \\ &= \frac{\partial}{\partial t} \langle \xi, \, \bar{X}_{\mathcal{H}}(\bar{Y}_{\mathcal{H}}F) \rangle \\ &= \langle \frac{\partial \xi}{\partial t}, \, \bar{X}_{\mathcal{H}}(\bar{Y}_{\mathcal{H}}F) \rangle + \langle \xi, \, \bar{X}_{\mathcal{H}}\left(\left[\frac{\partial}{\partial t},\overline{Y}_{\mathcal{H}}\right]F\right) \rangle \\ &+ \langle \xi, \, \left[\frac{\partial}{\partial t},\overline{X}_{\mathcal{H}}\right](\bar{Y}_{\mathcal{H}}F) \rangle \end{split}$$

(Here we use that V is a linear space.)

Furthermore, by using the previous relations, we obtain

$$\frac{\partial h_{\mathcal{H}}}{\partial t}(X,Y) = (\nabla d||H||)(X,Y) - ||H||g((A_{\mathcal{H}})^2 X, Y)$$
$$-4||H||g((\mathcal{A}_{\xi}^{\phi})^2 X, Y)$$

On the other hand, we have

$$\begin{split} &(\triangle_{\mathcal{H}}h_{\mathcal{H}})(X,Y)\\ &= (\nabla d||H||)(X,Y) + ||H||g((A_{\mathcal{H}})^2X,Y) - ||H||g((\mathcal{A}_{\xi}^{\phi})^2X,Y)\\ &- \mathrm{Tr}((A_{\mathcal{H}})^2 - (\mathcal{A}_{\xi}^{\phi})^2)h(X,Y)\\ &+ 2\mathrm{Tr}_{g_{\mathcal{H}}}^{\bullet}((\nabla_{\bullet}h)(\mathcal{A}_{\bullet}X,Y)) + 2\mathrm{Tr}_{g_{\mathcal{H}}}^{\bullet}((\nabla_{\bullet}h)(\mathcal{A}_{\bullet}Y,X))\\ &- \mathrm{Tr}_{g_{\mathcal{H}}}^{\bullet}h(\mathcal{A}_{\bullet}(\mathcal{A}_{\bullet}X),Y) - \mathrm{Tr}_{g_{\mathcal{H}}}^{\bullet}h(\mathcal{A}_{\bullet}(\mathcal{A}_{\bullet}Y),X)\\ &+ \mathrm{Tr}_{g_{\mathcal{H}}}^{\bullet}h((\nabla_{\bullet}\mathcal{A})_{\bullet}X,Y) + \mathrm{Tr}_{g_{\mathcal{H}}}^{\bullet}h((\nabla_{\bullet}\mathcal{A})_{\bullet}Y,X)\\ &+ 2\mathrm{Tr}_{g_{\mathcal{H}}}^{\bullet}h(\mathcal{A}_{\bullet}X,\mathcal{A}_{\bullet}Y) \end{split}$$

From these relations, we obtain the desired evolution eq.

q.e.d.

$$ho_t: G imes M o M$$
 : the action on M induced from the action $G \curvearrowright V$ by f_t

Set
$$G_t := \rho_t(G)$$
.

Then we have

Fact

 g_t and h_t are C^{∞} -families of G_t -invariant symmetric (0,2)-tensor fields on M.

G: a Hilbert Lie group

M: a Hilbert manifold

 $g_t \, (t \in [0,T)): \ {
m a} \ C^\infty$ -family of G-invariant Riemannian metrics of M

g: the section of $\pi_M^*(T^{(0,2)}M)$ given by g_t 's

For
$$B\in \Gamma(\pi_M^*(T^{(r_0,s_0)}M))$$
, define $\psi_{B\otimes}:\Gamma(\pi_M^*(T^{(r,s)}M)) o \Gamma(\pi_M^*(T^{(r+r_0,s+s_0)}M))$ by $\psi_{B\otimes}(S):=B\otimes S \quad (S\in \Gamma(\pi_M^*(T^{(r,s)}M))).$ Define $\psi_{\otimes^k}:\Gamma(\pi_M^*(T^{(r,s)}M)) o \Gamma(\pi_M^*(T^{(kr,ks)}M))$ by $\psi_{\otimes^k}(S):=S\otimes\cdots\otimes S \ (k ext{-times}) \quad (S\in \Gamma(\pi_M^*(T^{(r,s)}M))).$

Also, define

$$egin{aligned} \psi_{g_{\mathcal{H}},ij} : \Gamma(\pi_M^*(T^{(r,s)}M)) &
ightarrow \Gamma(\pi_M^*(T^{(r,s-2)}M)) ext{ by } \ &(\psi_{g_{\mathcal{H}},ij}(S))_{(x,t)}(X_1,\cdots,X_{s-2}) \ &:= \sum_{k=1}^n S_{(x,t)}(X_1,\cdots,e_k,\cdots,e_k,\cdots,X_{s-2}) \ &(S \in \Gamma(\pi_M^*(T^{(r,s)}M)), \ \ X_1,\cdots,X_{s-2} \in T_xM), \end{aligned}$$

where $\{e_1, \dots, e_n\}$ is an orthon. base of $\mathcal{H}_{(x,t)}$ w.r.t. $(g_{\mathcal{H}})_t$.

Also, define

$$\begin{split} \psi_{\mathcal{H},i} : \Gamma(\pi_M^*(T^{(r,s)}M)) &\to \Gamma(\pi_M^*(T^{(r-1,s-1)}M)) \text{ by} \\ & (\psi_{\mathcal{H},i}(S))_{(x,t)}(X_1,\cdots,X_{s-1}) \\ :&= \mathrm{Tr}(\mathrm{pr}_{\mathcal{H}_{(x,t)}} \circ S_{(x,t)}(X_1,\cdots,X_{i-1},\bullet,X_i,\cdots,X_{s-1})|_{\mathcal{H}_{(x,t)}}) \\ & (S \in \Gamma(\pi_M^*(T^{(r,s)}M)), \ \ X_1,\cdots,X_{s-1} \in T_xM). \end{split}$$

$$P$$
 : a map from $\Gamma(\pi_M^*(T^{(r,s)}M))$ to
$$\Gamma(\pi_M^*(\oplus_{r',s'=0}^\infty T^{(r',s')}M))$$

Definition(a map of polynomial type).

If P is given as the sum of the compositions of the above five types of maps $\psi_{B\otimes},\ \psi_{\otimes B},\ \psi_{\otimes k},\ \psi_{g_{\mathcal{H}},ij},\ \psi_{\mathcal{H},i}$, then we say that P is of polynomial type.

P : a map of polynomial type from $\Gamma(\pi_M^*(T^{(0,2)}M))$ to oneself

Definition(horizontally null vector condition).

Assume that, for any $S \in \Gamma(\pi_M^*(T^{(0,2)}M))$ and any $(x,t) \in M imes [0,T)$,

$$X \in \operatorname{Ker}(S_{\mathcal{H}})_{(x,t)} \implies P(S)_{(x,t)}(X,X) \ge 0.$$

Then we say that

 ${\it P}$ satisfies the horizontally null vector condition.

$$P$$
 : a map of polynomial type from $\Gamma(\pi_M^*(M imes \mathbb{R}))$ to oneself

Definition(null vector condition (function version)).

Assume that, for any $ho\in\Gamma(\pi_M^*(M imes\mathbb{R}))$ and any $(x,t)\in M imes[0,T)$,

$$\rho(x,t) = 0 \implies P(\rho)(x,t) \ge 0.$$

Then we say that P satisfies the null vector condition.

$$abla^t \left(0 \leq t < T
ight) \; : \;$$
 the Riemannian connection of g_t

 ∇ : the connection of $\pi_M^*(TM)$ defined by ∇^t 's

S : an element of $\Gamma(\pi_M^*(T^{(0,2)}M))$ s.t. $S_t \ (0 \le t < T)$ are G-invariant and symmetric

Theorem 28.1(Maximum principle).

Assume that S satisfies

$$rac{\partial \widetilde{S}_{\mathcal{H}}}{\partial t} = riangle_{\mathcal{H}} S_{\mathcal{H}} +
abla_{ar{X}_0}^{\mathcal{H}} S_{\mathcal{H}} + P(S)_{\mathcal{H}}$$

- X_0 : an element of $\Gamma(TM)$
- ullet P: a map of polynomial type of $\Gamma(\pi_M^*(T^{(0,2)}M))$ to oneself satisfying the horizontally null vector condition

If
$$(S_{\mathcal{H}})_{(\cdot,0)} \geq 0$$
 (resp. $(S_{\mathcal{H}})_{(\cdot,0)} > 0$), then $(S_{\mathcal{H}})_{(\cdot,t)} \geq 0$ (resp. $(S_{\mathcal{H}})_{(\cdot,t)} > 0$) holds for all $t \in [0,T)$.

$$ho$$
 : an element of $\Gamma(\pi_M^*(M imes \mathbb{R}))$ s.t. $ho_t\,(0 \leq t < T)$ are G -invariant

Theorem 28.2(Maximum principle).

Assume that ho satisfies $rac{\partial
ho}{\partial t} = riangle_{\mathcal{H}}
ho + d
ho(ar{X}_0) + P(
ho)$

- X_0 : an element of $\Gamma(TM)$
- ullet P: a map of polynomial type of $\Gamma(\pi_M^*(M imes \mathbb{R}))$ to oneself satisfying the null vector condition ullet .

If $\rho_0 \geq 0$ (resp. $\rho_0 > 0$), then $\rho_t \geq 0$ (resp. $\rho_t > 0$) holds for all $t \in [0, T)$.

G: a Hilbert Lie group

V: a Hilbert space

 $G \curvearrowright V$: an almost free isometric action s.t. the orbits are minimal regularizable submanifolds

 $\phi:V o V/G$: the orbit map

$$f:M\hookrightarrow V$$
 : a regularizable hypersurface such that
$$f(M) \text{ is } G\text{-invariant and } (\phi\circ f)(M)$$
 is compact

 $f_t \ (0 \leq t < T)$: the mean curvature flow for f

Define
$$K \in \Gamma((\mathcal{H}^{\phi})^{(0,4)})$$
 by
$$K(X,Y,Z,W) \\ := (\widetilde{\nabla}_X \mathcal{A}^{\phi})_Y (\mathcal{A}_Z^{\phi}W) + \mathcal{A}_Y^{\phi} ((\widetilde{\nabla}_X \mathcal{A}^{\phi})_Z W) \\ + (\widetilde{\nabla}_X \mathcal{A}^{\phi})_Z (\mathcal{A}_W^{\phi}Y) + \mathcal{A}_Z^{\phi} ((\widetilde{\nabla}_X \mathcal{A}^{\phi})_W Y) \\ -2 (\widetilde{\nabla}_X \mathcal{A}^{\phi})_W (\mathcal{A}_Y^{\phi}Z) \\ -2 \mathcal{A}_W^{\phi} ((\widetilde{\nabla}_X \mathcal{A}^{\phi})_Y Z) \\ (X,Y,Z,W \in \mathcal{H}^{\phi})$$

Set $L:=\sup_{u\in V}||K_u||.$ Assume that $L<\infty.$

Theorem 29.1(Horizontally strictly convexity-preservability th.).

Assume that

$$||H_0||^2(h_{\mathcal{H}})_{(\cdot,0)} > 2n^2L(g_{\mathcal{H}})_{(\cdot,0)}.$$

Then $T < \infty$ and

$$||H_t||^2 (h_{\mathcal{H}})_{(\cdot,t)} > 2n^2 L(g_{\mathcal{H}})_{(\cdot,t)}$$

holds for any $t \in [0, T)$.

This statement is proved in terms of the evolution equations in Theorem 27.1 and the maximum principle (Theorems 28.1 and 28.2).

Set
$$N := V/G$$
 and $n := \dim N - 1$.

 $\overline{M}:$ a n-dimensional compact manifold

$$\overline{f}:\overline{M}\hookrightarrow N$$
 : an orbiimmersion

 $\overline{f}_t \ (0 \leq t < T) \ :$ the mean curvature flow for \overline{f}

 $\overline{g}_t,\,\overline{h}_t,\,\overline{H}_t\,:\,$ the quantities for \overline{f}_t

 \overline{R} : the curvature orbitensor of N

 $\overline{
abla}$: the Riemannian orbiconnection of the orbimetric of N

Set $\overline{L}:=\sup_{x\in N}||\overline{\nabla R}||$. Assume that $\overline{L}<\infty$.

Theorem 29.2(Strictly convexity-preservability theorem).

Assume that

$$||\overline{H}_0||^2\overline{h}_0>n^2\overline{L}\overline{g}_0.$$

Then $T<\infty$ and

$$||\overline{H}_t||^2\overline{h}_t > n^2\overline{L}\overline{g}_t$$

holds for any $t \in [0, T)$.

This statement is proved by applying Theorem 29.1 to the lift of \overline{f}_t by ϕ .

