Certain kind of isoparametric submanifolds in symmetric spaces of non-compact type and Hermann actions

Naoyuki Koike

Tokyo University of Science koike@ma.kagu.tus.ac.jp

2 February, 2012

Content

- Complex focal radius
- Complex equifocal submanifolds
- Isoparametric submanifolds
- Focal point on the ideal boundary
- Opening in the property of the principal orbits of Hermann actions
- Results
- Infinite dimensional proper anti-Kaehler isoparametric submanifolds
- Outline of proof of the main result
- On Step II in outline of proof
- On Step III in outline of proof
- Classifications

G/K: a symmetric space of non-compact type

M: a submanifold in G/K

$$\psi: T^\perp M o M \,: ext{ the normal bundle of } M$$

 \exp^{\perp} : the normal exponential map of M

 $v\,:\,$ a unit normal vec. of M at x

$$\gamma_v$$
: the normal geod. s.t. $\gamma_v'(0) = v$ (i.e., $\gamma_v(s) := \exp^{\perp}(sv)$)

Definition

When $\psi_*(\operatorname{Ker} \exp_{*rv}^{\perp}) \neq \{0\}$, $\exp^{\perp}(rv)$ is called a focal point of M along γ_v , r is called a focal radius of M along γ_v , $\psi_*(\operatorname{Ker} \exp_{*rv}^{\perp})$ is called the nullity sp. for r and its dimension is called the multiplicity of r.

 $\exp_{*rv}^{\perp}(X)=0$

 $T^{\perp}M$

 $T^{\perp}M$

 $\mathcal{F}_{M,x}^{\mathrm{R}}$: the tangential focal set of M at x

$$\left(\mathcal{F}_{M,x}^{\mathrm{R}} = igcup_{v \in T_x^\perp M} igcup_{\mathrm{s.t.} \; ||v||=1} \{rv \, | \, r \in \mathcal{FR}_{M,v}^{\mathrm{R}}\}
ight) \; (\subset T_x^\perp M)$$

$$M \subset G/K$$

The case of $G/K = H^m(c)$

$$\mathcal{FR}_{M,v}^{\mathrm{R}} = \left\{ \left. \frac{1}{\sqrt{-c}} \mathrm{arctanh} \frac{\sqrt{-c}}{\lambda} \right| \ \lambda \in \mathrm{Spec} \, A_v \, \, \mathrm{s.t.} \, \, |\lambda| > \sqrt{-c}
ight\}$$

"The nullity sp. for
$$\dfrac{1}{\sqrt{-c}} \mathrm{arctanh} \dfrac{\sqrt{-c}}{\lambda}$$
" $= \mathrm{Ker} \left(A_v - \lambda \operatorname{id} \right)$

$$M = \mathbb{R}^{m-1} \subset H^m(c)$$

No focal radius along γ_v exists.

$$M=H^{m-1}(ar{c})\subset H^m(c)$$
 $H^{m-1}(ar{c})$ $H^m(c)$ ($H^m(c)$)(∞) Jacobi field

$$\lambda = \sqrt{\bar{c} - c} (< \sqrt{-c})$$

No focal radius along γ_v exists.

From these facts, we recognize the following fact:

When a submfd M in a symmetric sp. G/K of non-compact type deforms as ||A|| decreases, the focal set of M vanishes beyond the ideal boundary $(G/K)(\infty)$ of G/K.

From this fact, it is considered that the focal radii of M along a normal geodesic should be defined in $\mathbb C$. So the notion of a complex focal radius was introduced.

G/K: a symmetric sp. of non-compact type

M : a C^ω -submanifold in G/K

 $M^{\mathrm{c}} \subset G^{\mathrm{c}}/K^{\mathrm{c}}$: the complexification of $M(\subset G/K)$

Definition (K, 2005)

 $z=s+t{
m i}$: a complex focal radius of M along γ_v

 $\displaystyle \iff \gamma_{sv+tJv}(1)$: a focal point of M^{c} along γ_{sv+tJv}

(J: the complex structure of $G^{
m c}/K^{
m c})$

$$\mathfrak{g}^{\mathrm{c}}=\mathfrak{k}^{\mathrm{c}}+\mathfrak{p}^{\mathrm{c}}$$
 :the canonical decomp. ass. with $(G^{\mathrm{c}},K^{\mathrm{c}})$

$$B(:\mathfrak{g}^{\mathrm{c}} imes \mathfrak{g}^{\mathrm{c}} o \mathbb{C}) :$$
 the Killing form of $\mathfrak{g}^{\mathrm{c}}$

$$B_A := 2 \mathrm{Re} B \, (: \mathfrak{g}^\mathrm{c} imes \mathfrak{g}^\mathrm{c} o \mathbb{R})$$

$$\langle \; , \;
angle \;$$
 : the $G^{
m c}$ -inv. neutral metric of $G^{
m c}/K^{
m c}$ arising from $B_A|_{{\mathfrak p}^{
m c} imes{\mathfrak p}^{
m c}}$

- J : the $G^{
 m c}$ -inv. complex str. of $G^{
 m c}/K^{
 m c}$ arising from the complex str. of ${\mathfrak p}^{
 m c}$
- $(J,\langle\;,\;\rangle)$ is an anti-Kaehler structure of $G^{\rm c}/K^{\rm c}$ (i.e., $\langle JX,JY\rangle=-\langle X,Y\rangle$ $(\forall\;X,Y),\;\nabla J=0).$
- ullet $(G^{
 m c}/K^{
 m c},\langle\;,\;
 angle)$ is a semi-simple pseudo-Riemannian symmetric space.

 $G \curvearrowright G^{
m c}/K^{
m c}$ (This is a Hermann action.)

- $G(eK^c) = G/K$
- $ullet \exp^{\perp}(T_{eK^{\mathrm{c}}}^{\perp}G(eK^{\mathrm{c}})) = G^*/K$ (the compact dual of G/K)

The case of
$$G/K = H^m(c)$$

$$\exp^{\perp}(T_{eK^{\mathrm{c}}}^{\perp}(G(eK^{\mathrm{c}}))) = G^*/K = S^m(-c)$$
 $G \cdot p$ $G(eK^{\mathrm{c}}) = G/K$ $= H^m(c)$

 $s+t{
m i}$: a complex focal radius along γ_v ${
m Im}\,\gamma_v^{
m c}\,pprox\,{\Bbb R}^2\,\,{
m or}\,\,S^1 imes{\Bbb R}$

$$\mathcal{FR}_{M,v}^{\mathrm{C}}$$
 : the set of all complex focal radii of M along γ_v

We define $\mathcal{F}_{M,x}^{\mathrm{C}}~(\subset T_x^\perp(M^\mathrm{c}))$ by

$$\mathcal{F}_{M,x}^{ ext{C}} := igcup_{v \in T_x^\perp M} igcup_{ ext{s.t. } ||v||=1} \{av + bJv \, | \, a + b ext{i} \in \mathcal{FR}_{M,v}^{ ext{C}} \}$$

This set is equal to the tangential focal set of M^c at x. We call this set tangential complex focal set of M at x.

The case of $G/K = H^m(c)$

 $\mathcal{FR}_{M,v}^{\mathrm{C}}$ is equal to the following set:

$$egin{aligned} \left\{ rac{1}{\sqrt{-c}} \left(\operatorname{arctanh} rac{\sqrt{-c}}{\lambda} + j\pi \mathrm{i}
ight) \middle| \ \lambda \in \mathrm{S}_+, \ j \in \mathbb{Z}
ight\} \ \left\{ rac{1}{\sqrt{-c}} \left(\operatorname{arctanh} rac{\lambda}{\sqrt{-c}} + (j + rac{1}{2})\pi \mathrm{i}
ight) \middle| \ \lambda \in \mathrm{S}_-, \ j \in \mathbb{Z}
ight\} \ \left(egin{aligned} \mathrm{S}_+ &:= \{\lambda \in \operatorname{Spec} A_v \mid |\lambda| > \sqrt{-c} \} \ \mathrm{S}_- &:= \{\lambda \in \operatorname{Spec} A_v \mid |\lambda| < \sqrt{-c} \} \end{aligned}
ight) \end{aligned}$$

$M = S^{m-1}(\bar{c}) \subset H^m(c)$

$$z_j = rac{1}{\sqrt{-c}} \left(\mathrm{arctanh} rac{\sqrt{-c}}{\sqrt{ar{c}-c}} + j\pi \sqrt{-1}
ight)$$

 $oldsymbol{eta}$ a complex focal radius along $oldsymbol{\gamma_v}$

2. Complex equifocal submanifolds

Complex equifocal submanifolds

G/K: a symmetric space of non-compact type

M: a complete embedded submanifold in G/K

Definition (K, 2004)

M: complex equifocal submanifold

- $\iff \left\{ \begin{array}{l} \text{(i)} \quad M \text{ has flat section,} \\ \text{(ii)} \quad \text{the normal holonomy group of } M \text{ is trivial,} \\ \text{(iii)} \quad M \text{ has parallel complex focal structure.} \end{array} \right.$

Remark "M has parallel complex focal structure" means

" $\mathcal{F}_{M.x}^{\mathrm{C}}$ is $(x \in M)$ maps to one another by the parallel translations w.r.t. the complexified normal connection." Complex equifocal submanifolds

Complex equifocal submanifolds

Complex equifocal submanifold should be called an equi-complex focal submanifold becasuse it has parallel complex focal structure.

3. Isoparametric submanifolds

N: a complete Riemannian manifold

M: a complete embedded submanifold in N

Definition (Heintze-Liu-Olmos, 2006)

Isoparametric submanifold

M: isoparametric submnaifold

- - are CMC w.r.t. the radial direction.

Isoparametric submanifolds

G/K: a symmetric space of non-compact type M: a complete submanifold with flat section in G/K

Fact(K, 2005)

M: isoparametric $\implies M:$ complex equifocal

Definition (Berndt-Vanhecke, 1992)

M: curvature-adapted submanifold

$$\iff \left\{ \begin{array}{l} \text{(i)} \quad R(v)(T_xM) \subset T_xM \quad (\forall \, x \in M, \,\, \forall \, v \in T_xM) \\ \text{(ii)} \quad [A_v,R(v)] = 0 \quad (\forall \, v \in TM) \\ \\ \left\{ \begin{array}{l} R : \text{the curvature tensor of } G/K \\ R(v) := R(\cdot,v)v \\ \\ A_v : \text{the shape operator of } M \end{array} \right. \end{array} \right.$$

Fact (K, 2005)

When M is curvature-adapted,

M: isoparametric $\iff M:$ complex equifocal

$$v \in T_x^{\perp}M$$
.

Definition (K, 2010)

Focal points on the ideal boundary

$$\gamma_v(\infty)$$
: focal point of M on the ideal boundary of G/K along γ_v

$$\stackrel{\displaystyle \longleftrightarrow}{\stackrel{\displaystyle \longleftarrow}{\det}} \left\{egin{array}{ll} \exists \ Y : M ext{-Jacobi field along } \gamma_v \ & ext{s.t. } \lim_{s
ightarrow \infty} rac{||Y(s)||}{s} = 0 \end{array}
ight.$$

Focal points on the ideal boundary

Definition (K, 2010)

$$\gamma_v(\infty)$$
 : non-Euclidean type focal point of M on the ideal boundary of G/K along γ_v

$$\begin{tabular}{ll} \Longleftrightarrow \\ \hline \det \end{array} \left\{ \begin{array}{l} \exists \ Y \ : \ M\text{-Jacobi field along} \ \gamma_v \\ & \text{s.t.} \quad \lim_{s \to \infty} \frac{||Y(s)||}{s} = 0 \ \& \ \mathrm{Sec}(v,Y(0)) \neq 0 \end{array} \right.$$

Focal points on the ideal boundary

$$M=S^{m-1}(ar{c})\subset H^m(c)$$

$$S^{m-1}(ar{c})$$

$$(H^m(c))(\infty)$$
 γ_v Jacobi field

 $\gamma_v(\infty)$ is not a focal point of M on $(H^m(c))(\infty)$ along γ_v .

$M=\mathbb{R}^{m-1}\subset H^m(c)$

 $\gamma_v(\infty)$ is a non-Euclidean type focal point of M on $(H^m(c))(\infty)$ along γ_v .

Focal points on the ideal boundary

$$M=H^{m-1}(ar{c})\subset H^m(c)$$
 $H^{m-1}(ar{c})$ $H^m(c)$ ($H^m(c)$)(∞) Jacobi field

 $\gamma_v(\infty)$ is not a focal point of M on $(H^m(c))(\infty)$ along γ_v .

 γ_v

5. Principal orbits of Hermann actions

G/K: a symmetric space of non-compact type

Definition

$$H \cap G/K$$
: Hermann action

Principal orbits of Hermann actions

Fact

Principal orbits of Hermann actions are curvature-adapted isoparametric submanifolds and they have no non-Euclidean type focal point on the ideal boundary of G/K.

6. Results

G/K: a symmetric space of non-compact type

Theorem 6.1.(K, 2012)

Let M be an irreducible curvature-adpated isoparametric C^{ω} -submanifold of codimension greater than one in G/K. If M has no non-Euclidean type focal point on the ideal boundary of G/K, then it is a principal orbit of a Hermann action on G/K.

Results

Remark In this theorem, are indispensable both the conditions of curvature-adaptedness and the non-existenceness of a non-Euclidean type focal point on the ideal boundary of G/K. In fact, we can give examples showing that the conditions are indispensable as principal orbits of subgroup actions of the solvable part AN in the Iwasawa's decomposition G=KAN of G.

Results

Theorem 6.2.(K, 2012)

Let M be as in Theorem 6.1. Furthermore, if M is compact, then it is a principal orbit of the isotropy action on G/K.

$$\widetilde{M}^{\mathrm{c}} := (\pi^{\mathrm{c}} \circ \phi^{\mathrm{c}})^{-1}(M^{\mathrm{c}}) \hookrightarrow H^0([0,1], \mathfrak{g}^{\mathrm{c}})$$
 proper anti – Kaeh. isoparametric $\downarrow \phi^{\mathrm{c}}$ G^{c} $\downarrow \pi^{\mathrm{c}}$ $M \hookrightarrow G/K \longrightarrow M^{\mathrm{c}} \hookrightarrow G^{\mathrm{c}}/K^{\mathrm{c}}$ as in Theorem 6.1

Results

 $\widetilde{M}^{\mathrm{c}}$: homogeneous

+

M: homogeneous

 \downarrow

M: a principal orbit of a Hermann action

7. Infinite dimensional proper anti-Kaehler isoparametric submanifolds

V: an ∞ -dimensional topological vector space

 $\langle \; , \;
angle :$ a continuous non-degenerate bilinear form of V

 ${\it J}\,$: a continuous linear operator of ${\it V}\,$ s.t.

$$J^2 = -\mathrm{id}, \ \langle JX, JY \rangle = -\langle X, Y \rangle \ (\forall X, Y \in V)$$

Definition

$$(V,\langle\;,\;\rangle,J):$$
 ∞ -dim. anti-Kaehler space

$$\displaystyle \iff \exists \, V = V_- \oplus V_+ \; ext{(orthog. time-space decomp.)}$$

s.t.
$$(V,\langle\;,\;\rangle_{V_\pm})$$
: Hilbert space & $JV_-=V_+$ $\left(\;\langle\;,\;\rangle_{V_\pm}:=-\pi^*_{V_-}\langle\;,\;\rangle+\pi^*_{V_+}\langle\;,\;\rangle\right)$ $(\pi_{V_\pm}:$ the orthog. proj. onto $V_\pm)$

$$\begin{array}{l} V = V_- \oplus V_+ : \text{an orthogonal time-space decomposition} \\ & \left\{ \begin{array}{l} \langle \;,\; \rangle|_{V_- \times V_+} = 0 \\ \\ \langle \;,\; \rangle|_{V_- \times V_-} : \text{ negative definite} \\ \\ \langle \;,\; \rangle|_{V_+ \times V_+} : \text{ positive definite} \end{array} \right. \end{array}$$

$$M \hookrightarrow (V, \langle , \rangle, J)$$
 (∞ -dim. anti-Kaehler sp.)

Definition

$$\begin{array}{l} M \,:\, \mathsf{Fredholm} \,\, \mathsf{anti-Kaehler} \,\, \mathsf{submanifold} \\ & \iff \int (T.M) = T.M \,\,\, \& \,\, \mathsf{codim} \,\, M < \infty \\ & \iff \forall \, v \in T^\perp M, \,\, A_v \,:\, \mathsf{cpt} \,\, \mathsf{op.} \,\, \mathsf{w.r.t.} \,\, \langle \,\,,\,\, \rangle_{V_\pm} \end{array}$$

Definition

$$a+b\mathrm{i}(\in\mathbb{C}): extit{J-eigenvalue of A_v} \Leftrightarrow \exists \, X(
eq 0) \in T_x M ext{ s.t. } A_v X = aX+bJX ext{Also, X is called a J-eigenvector of A_v for $a+b\mathrm{i}$.}$$

Definition

M: anti-Kaehler isoparametric submanifold

 $\iff \begin{cases} \bullet \ M : \text{Fredholm anti-Kaehler} \\ \bullet \ \text{the normal holonomy gr. of } M : \text{trivial} \\ \bullet \ \forall \, v \in \Gamma(T^\perp M) \text{ s.t. } \nabla^\perp v = 0, \\ \operatorname{Spec}_J A_{v_x} : \text{indep. of } x \in M \end{cases}$

 $\Big(egin{array}{c} \operatorname{Spec}_J A_{v_x} : ext{the set of all J-eigenvalues of A_{v_x}} \Big)$

Definition

Definition

M: proper anti-Kaehler isoparametric submanifold

 $\iff \begin{cases} \bullet \ M \ : \ \mathsf{anti-Kaehler} \ \mathsf{isoparametric} \\ \bullet \ \forall \ v \in T^\perp M, \ \ A_v \ : \ \mathsf{diagonalizable} \ \mathsf{w.r.t.} \\ \mathsf{a} \ \mathit{J}\text{-orthon.} \ \mathsf{base} \end{cases}$

Remark

Geatti-Gorodski defined the notion of an isoparametric submanifold with diagonalizable Weingarten maps in a pseudo-Euclidean space.

[Geatti-Gorodski, J. Algebra (2008)].

Proper anti-Kaehler isoparametric submanifolds belong to the class of infinite dimensional version of this notion.

 $M \hookrightarrow V$: proper anti-Kaehler isoparametric

$$x \in M$$

Fact

 A_v 's $(v \in T_x^{\perp}M)$ are simultaneously diagonalizable with respect to a J-orthonormal base.

$$T_xM=E_0^x\oplus\left(igoplus_{i\in I_x}E_i^x
ight)\ \left(E_0^x:=igcap_{v\in T_x^\perp M}\operatorname{Ker} A_v
ight)$$
 (common J-eigenspace decomposition of A_v 's)

$$\exists 1 \; \lambda_i^x \in (T_x^\perp M)^{*_\mathrm{c}} \; \mathrm{s.t.} \; A_v|_{E_i^x} = \mathrm{Re}(\lambda_i^x(v)) \mathrm{id} + \mathrm{Im}(\lambda_i^x(v)) J \ (orall \; v \in T_x^\perp M)$$

By reordering E_i^{x} 's $(x \in M \ i \in I)$ if necessary, we may assume that

$$x\mapsto \lambda_i^x,\ x\mapsto n_i^x$$
 and $x\mapsto E_i^x$ are smooth.

Definition

$$\lambda_i \in \Gamma((T^{\perp}M)^{*c}) \iff (\lambda_i)_x := \lambda_i^x \ (x \in M)$$

J-principal curvature

$$\mathrm{n}_i \in \Gamma(T^{\perp}M) \iff \lambda_i(\cdot) = \langle \mathrm{n}_i, \cdot \rangle - \sqrt{-1} \langle J \mathrm{n}_i, \cdot \rangle$$

J-curvature normal

$$E_i$$
: a distribution on $M \iff (E_i)_x := E_i^x \ (x \in M)$

J-curvature distribution

$$E_0$$
: a distribution on $M \iff (E_0)_x := E_0^x \ (x \in M)$

J-curvature distribution

Fact

- ullet The focal set of M at x is equal to $\mathop{\cup}_{i\in I}(\lambda_i)_x^{-1}(1)$.
- ullet E_i is tot. geod. and each leaf of E_i is a complex sphere.
- \bullet E_0 is tot. geod. and each leaf of E_0 is an anti-Kaeh. sp.

Outline of the proof of Theorem 6.1.

 $M\subset G/K$: as in Theorem 6.1

 $\phi: H^0([0,1],\mathfrak{g}^{\mathrm{c}}) o G^{\mathrm{c}}$: the parallel transport map for G^{c}

 $\pi:G^{\mathrm{c}} \ o \ G^{\mathrm{c}}/K^{\mathrm{c}} \ : \ \mathrm{the \ natural \ projection}$

$$\widetilde{M}^{\mathrm{c}} := (\pi \circ \phi)^{-1}(M^{\mathrm{c}})$$

- (Step I) We show that \widetilde{M}^c is a proper anti-Kaehler isoparametric submanifold (i.e., an anti-Kaehler isoparametric submanifold with J-diagonalizable shape operators).
- (Step II) By using the fact in (Step I) and using the fact that $H^0([0,1],\mathfrak{g}^c)$ is a linear space, we show that $\widetilde{M^c}$ is homogeneous.

We refer the proof of the homogeneity of inifinite dimensional isoaparametric submanifolds in the Hilbert space [Heintze-Liu, Ann. of Math. (1999)].

(Step III) By using the homogeneity of $M^{\rm c}$ and refering the discussions in [Christ, J.D.G. (2002)] and [Gorodski-Heintze, J. Fixed Point Theory Appl. (2012)], we show that M is homogeneous.

By using the homogeneity theorem by Heintze-Liu, Christ proved the homogeneity of irreducible equifocal submanifolds of codeminesion greater than one in a symmetric space of compact type. Recently Gorodski-Heintze has filled a gap in the proof by Christ.

(Step IV) From the homogeneity of M, it is shown that M is a principal orbit of a (complex) hyperpolar action. Furthermore, we show that the action admits a totally geodesic orbit. As its result, it is shown that the action is orbit equivalent to a Hermann action.

Outline of proof of the main result

```
 \begin{array}{ll} \mbox{complex polar action} & = \mbox{polar action with complex poles} \\ & \neq \mbox{the complexifocation of polar action} \end{array}
```

complex hyperpolar action = special complex polar action

 $\lambda_i \, (i \in I) \, : \, J ext{-principal curvatures of } \widetilde{M^{\operatorname{c}}}$

 $\mathrm{n}_{i}\,(i\in I)\,:\,J ext{-curvature normals of }\widetilde{M^{\mathrm{c}}}$

 $E_i \, (i \in I \cup \{0\}) \, : \, J ext{-curvature distributions of } \widetilde{M^{\operatorname{c}}}$

 $L_u^{E_i}$: the leaf of E_i through u (focal leaf)

$$v_0 \in l_i \setminus \left(igcup_{j \in I \setminus \{i\}} l_j
ight) \quad (l_j := ((\lambda_i)_{u_0})^{-1}(1))$$

v : the parallel normal vector field $\,$ s.t. $\,v_{u_0}=v_0$

 f_v : the focal map for v

$$F_v := f_v(\widetilde{M^{\operatorname{c}}})$$
 (focal submanifold)

Fact

$$L_u^{E_i} = f_v^{-1}(f_v(u))$$

Set
$$V := H^0([0,1], \mathfrak{g}^c)$$
.

Take
$$u_1 \in L_{u_0}^{E_{i_0}}$$
.

$$\gamma$$
 : a geodesic in $L_{u_0}^{E_{i_0}}$ with $\gamma(0)=u_0$ and $\gamma(1)=u_1$

Definition.

$$B_{\gamma}: T_{u_0}V
ightarrow T_{u_1}V \ \stackrel{ ext{def}}{\Longrightarrow} \left\{egin{array}{l} au_{\gamma} & (ext{on } (E_{i_0})_{u_0}) \ (au_{f_i\circ\gamma})_{*u_0}|_{(E_i)_{u_0}} & (ext{on } (E_i)_{u_0} \ (i
eq i_0)) \ (au_{\gamma})_{*u_0} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c}) \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l} au_{\gamma} & (ext{on } T_{u_0})^{\perp} \widetilde{M^c} \ \end{array}
ight. \ \left\{egin{array}{l$$

Definition.

$$\psi_{\gamma} \in I(V) \iff (\psi_{\gamma})_{*u_0} = B_{\gamma}$$

Remark.

Since V is an anti-Kaehler space (hence a linear space), there uniquely exists the above (holom.) isometry ψ_{γ} .

Lemma 9.1.

$$\psi_{\gamma}(\widetilde{M^{\rm c}}) = \widetilde{M^{\rm c}}$$

 $Q(u_0)$: the set of all points of $\widetilde{M^{\mathrm{c}}}$ connected with u_0 by a piecewise smooth curve each of whose segment lies on a complex curvature sphere

From Lemma 9.1, we have

Lemma 9.2.

$$\forall u \in Q(u_0)$$
,

$$\exists \, \psi \in I(V) \text{ s.t. } "\psi(u_0) = u, \; \psi(\widetilde{M^{\mathrm{c}}}) = \widetilde{M^{\mathrm{c}}} "$$

Proof of Lemma 9.2.

For any $u \in Q(u_0)$,

 $\exists \alpha := \gamma_1 \cdot \cdots \cdot \gamma_k$: piecewise smooth curve s.t.

$$\bullet \ \alpha(0)=u_0, \ \alpha(1)=u$$

 $\begin{cases} \bullet \ \alpha(0) = u_0, \ \alpha(1) = u \\ \bullet \ \gamma_j \text{ is a geodesic in a complex curvature sphere} \end{cases}$ (1 < j < k)(1 < i < k)

Then
$$\psi_{lpha}:=\psi_{\gamma_k}\circ\cdots\circ\psi_{\gamma_1}$$
 is an isometry of V with $\psi_{lpha}(u_0)=u.$

q.e.d.

On the other hand, we have

Lemma 9.3.

$$\overline{Q(u_0)} = \widetilde{M^{\mathrm{c}}}$$

From Lemmas 9.1, 9.2 and 9.3, we have

Proposition 9.4.

$$orall \, u \in \widetilde{M^{\mathrm{c}}}$$
, $\exists \, \psi \in I(V) ext{ s.t. } "\psi(u_0) = u, \, \, \psi(\widetilde{M^{\mathrm{c}}}) = \widetilde{M^{\mathrm{c}}} "$ (i.e., $\widetilde{M^{\mathrm{c}}}$ is homogeneous.)

$$\widetilde{H}:=\{\psi\in I(V)\,|\,\psi(\widetilde{M^{\mathrm{c}}})=\widetilde{M^{\mathrm{c}}}\}$$

According to Proposition 9.4, we obtain

Fact.

$$\widetilde{H} \cdot u_0 = \widetilde{M^c}$$

 $\mathfrak{o}_{AK}(V)$: the Banach Lie algebla of all continuous (i.e., bounded) skew symmetric \mathbb{C} -linear maps

$$O_{AK}(V) := \exp(\mathfrak{o}_{AK}(V)) (\subset I(V))$$

$$I_b(V) := O_{AK}(V) \ltimes V (\subset I(V))$$

$$H^1([0,1],G^{
m c}) \curvearrowright V \quad ext{(the gauge action)}$$

$$ext{(Under this action, } H^1([0,1],G^{
m c}) \subset I(V) ext{)}$$

It is shown that $H^1([0,1],G^c)\subset I_b(V)$ holds.

$$\widetilde{H}_b := \widetilde{H} \cap I_b^b(V)$$

Outline of proof of homogeneity

(Step III \cdot 1) We show that the holomorphic Killing field ass. with one-parameter transformation gr. $\{\psi_{\gamma|_{[0,t]}}\}_{t\in\mathbb{R}}$ of holomorphic isometries constructed in (Step II) is defined on the whole of V (i.e., $\psi_{\gamma|_{[0,t]}}\in I_b(V)$). From this fact, we can show $\widetilde{H}_b\cdot u_0=\widetilde{M^c}$. (We refered work of Gorodski-Heintze)

Outline of proof of homogeneity

- (Step III \cdot 2) By using $H_b \subset I_b(V)$, we show $\widetilde{H}_b \subset H^1([0,1],G^{\mathrm{c}}).$ (We refered work of Christ)
- (Step III \cdot 3) By using $H_b \subset H^1([0,1],G^{\mathrm{c}})$, we find a subgroup H of G s.t. $H \cdot x_0 = M$. (We refered work of Christ)

11. Classifications

Classifications

G/K: irreducible symmetric space of non-compact type

M: isoparametric submanifold in G/K as in Theorem 6.1

Theorem 11.1.

M occurs as a principal orbit of one of Hermann actions $H \curvearrowright G/K$ as in Table 1 \sim 4.

Classifications

Thanks!