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1. Complex focal radius
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Complex focal radius

Complex focal radius

G/K : a symmetric space of non-compact type
M : a submanifold in G/K

W : T+*M — M : the normal bundle of M
exp® : the normal exponential map of M

v : a unit normal vec. of M at x

~» : the normal geod. s.t. v/ (0) = v
(i-e., o (s) := expt(sv))
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Complex focal radius

Complex focal radius

When v, (Ker expy;., ) 7# {0},

expL (rv)is called a focal point of M along 7,
r is called a focal radius of M along ~,,

1« (Ker expy., ) is called the nullity sp. for » and
its dimension is called the multiplicity of .
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Complex focal radius

TL-M

0—sectipn

T-M

Puro(X) # 0

expfm(X) =0
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Complex focal radius

’I"’l{ U‘. B TJ_M
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Complex focal radius

.’F’Rff\t/l’v : the set of all focal radii of M along ~,

-7:11\1/1@ : the tangential focal set of M at

Friw= U FRy T, M
( M,z ve:rwuws.t.||u||:1{rv|rG M’”}> (C T, M)
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Complex focal radius

Complex focal radius

M C G/K

The case of G/K = H™(c)

FRY ., = { arctanh Y | A € Spec A, s.t. |[A| > \/—c}
’ —c
"Th lit fi ! tanh Y " = K (Ay — Aid)
e nullity sp. for arctan = Ker — Ai
y sp — v



Complex focal radius
000000e00000000000000

Complex focal radius

Complex focal radius

M = S™1(&) C H™(c)
Ssm=1(g)

H™(c)
(H™(c))(o0)

~-.Jacobi field

focal point

A=+vC—c(>+/—c)



Complex focal radius
0000000e0000000000000

Complex focal radius

Complex focal radius

M =R™1 c H™(c)

Rm—l

H™(c)
(H™(c))(o0)

A=+vc

No focal radius along ~, exists.
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Complex focal radius

Complex focal radius

M = H™ () C H™(c)

Hm—l (E)

H™(c)

(H™(c))(o0)
Jacobi field

Yo

A= +VE—c(< Vo)

No focal radius along ~, exists.
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Complex focal radius

Complex focal radius

From these facts, we recognize the following fact:

When a submfd M in a symmetric sp. G/K of
non-compact type deforms as || A|| decreases,
the focal set of M vanishes beyond the ideal
boundary (G/K)(oc) of G/K.

From this fact, it is considered that the focal radii of M
along a normal geodesic should be defined in C.
So the notion of a complex focal radius was introduced.
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Complex focal radius

Complex focal radius

G /K :a symmetric sp. of non-compact type
M : a C“-submanifold in G/K

M¢ C G°/K® : the complexification of M (C G/K)

Definition (K, 2005)

z = s+ ti : a complex focal radius of M along ~,
= Ysv+tJv(1) : a focal point of M along Ysy4tjv
e
(J :the complex structure of G°/K*¢)
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Complex focal radius

Complex focal radius

g¢ = €€ 4 p° :the canonical decomp. ass. with (G, K¢)
B(: g° x g¢ — C) : the Killing form of g°¢
By :=2ReB (: g° X g° = R)

(, ) : the G°inv. neutral metric of G°/K?¢ arising
from B |pexpe

J : the G®-inv. complex str. of G°/ K¢ arising from
the complex str. of p°

e (J,(, )) is an anti-Kaehler structure of G°/K*
(i.e., (JX,JY) = —(X,Y) (VX,Y), VJ =0).

e (G°/K¢<,(, )) is a semi-simple pseudo-Riemannian
symmetric space.
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Complex focal radius

G ~ G°/K¢° (This is a Hermann action.)

o G(eK°) = G/K

o exp(Th.G(eK®)) = G*/K
(the compact dual of G/K)
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Complex focal radius

The case of G/K = H™(c)

expL(T;KC(G(eKC))) =G*/K = S™(—c)
. Gop

eK°©

C G(eK®) = G/K

»/ = H™(c)

the right-half part C T(G/K)
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Complex focal radius

Ysv+tJv

s+ ti : a complex focal radius along ~,
Im~¢ =~ R? or S* xR
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Complex focal radius

Complex focal radius

Ysv+tJv (1)
Yo
Ysv+tJv V%
G/K
1/
\
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Complex focal radius

.’F’Rg/f’v : the set of all complex focal radii of M along ~,

We define Fy , (C T, (M°®)) by

.7:C = U av bJ’U a bi E ]:RC
Mz " et M st ||’u||:1{ T la+ M)

This set is equal to the tangential focal set of M€ at .
We call this set tangential complex focal set of M at x.
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Complex focal radius

The case of G/K = H™(c)

.’F’R%/I’v is equal to the following set:

1 =
Wer: (arctanh X c —|—j7ri> AES,, jJ€E Z} U
1 1
Wer: <arctanh\/__c + (7 + 2)7ri> ’ AES_, JE Z}

St :={X € SpecA,| |\ > +V—c}
S_:={XN € SpecA,| |\ < vV—c}
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Complex focal radius

M = §™1(&) C H™(c)

Yo
Ssm=1(g)
H™(c) Yo(Z2541)
(H™(c))(o0)
Yo (225)
VYo

Zj:

1
arctanh
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Complex focal radius

M =R™ ! C H™(c) Vo
Rm—l

Yo (00)
H™(c)

(H™(c))(0)

A a complex focal radius along ~,
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Complex focal radius

M = H™ () c H™(c)
Yo(22;) s

Yo(225+1)
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Complex equifocal submanifolds

Complex equifocal submanifolds

G /K :a symmetric space of non-compact type
M : a complete embedded submanifold in G/K

Definition (K, 2004)

M : complex equifocal submanifold
(i) M has flat section,
<= ¢ (ii) the normal holonomy group of M is trivial,

def
(iii) M has parallel complex focal structure.

Remark " M has parallel complex focal structure” means

"F](\j/l’m’s (x € M) maps to one another by the parallel
translations w.r.t. the complexified normal connection.”
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Complex equifocal submanifolds

Complex equifocal submanifolds

Complex equifocal submanifold should be called an
equi-complex focal submanifold becasuse it has
parallel complex focal structure.
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3. Isoparametric submanifolds
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Isoparametric submanifold

Isoparametric submanifold

N : a complete Riemannian manifold

M : a complete embedded submanifold in IV

Definition (Heintze-Liu-Olmos, 2006)

M :isoparametric submnaifold
(i) M has flat section,

(ii) the normal holonomy group of M is trivial,

def (iii) sufficiently close parallel submanifolds of M
are CMC w.r.t. the radial direction.
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Isoparametric submanifold

Isoparametric submanifolds

ns(M) M

the radial direction
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Isoparametric submanifold

Isoparametric submanifolds

G/K :a symmetric space of non-compact type
M : a complete submanifold with flat section in G/ K

M :isoparametric —> M :complex equifocal
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Isoparametric submanifold

Isoparametric submanifolds

Definition (Berndt-Vanhecke, 1992)

M : curvature-adapted submanifold

(i) Rv)(TeM)CTyM (Nxe M, VveT,M)
def { (ii) [Ay,R(v)]=0 (Vv € TM)

R :the curvature tensor of G/ K

R(v) := R(:,v)v

A, :the shape operator of M

When M is curvature-adapted,

M :isoparametric <= M :complex equifocal
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Focal points on the ideal boundary

Focal points on the ideal boundary

vET;‘M.

Definition (K, 2010)

v (00) : focal point of M on the ideal boundary
of G/K along ~,
3Y : M-Jacobi field along ~,
=1

st. lim YOI — g

S—>00
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Focal points on the ideal boundary

Focal points on the ideal boundary

Definition (K, 2010)
~»(00) : non-Euclidean type focal point of M

on the ideal boundary of G/ K along ~,

<

{ 3Y : M-Jacobi field along ~,
def

st.  lim YOl — o & Sec(v, Y(0)) # 0

S§—00
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Focal points on the ideal boundary

Focal points on the ideal boundary

M = S™=1(g) C H™(c)
Sm_l(é)

H™(c)
(H™(c))(o0)

~-.Jacobi field

~»(00) is not a focal point of M on (H™(c))(o0) along ~,.
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Focal points on the ideal boundary

Focal points on the ideal boundary

M = R™=1 C H™(c)

Rm—l

H™(c)
(H™(c))(o0)

~»(00) is a non-Euclidean type focal point
of M on (H™(c))(oco) along ~,.
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Focal points on the ideal boundary

Focal points on the ideal boundary

M = H™ (&) C H™(c)

H™ 1(g)

H™(c)

(H™(c))(o0)
Jacobi field

Yv

~v»(00) is not a focal point of M on (H™(c))(oc) along ~s.
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Principal orbits of Hermann actions

G/K : a symmetric space of non-compact type

Definition

H ~ G/K :Hermann action
— (G, H) : a symmetric pair
€




Principal orbits of Hermann actions

Principal orbits of Hermann actions

Principal orbits of Hermann actions are curvature-adapted
isoparametric submanifolds and they have no non-Euclidean
type focal point on the ideal boundary of G/ K.
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Results

G/K : a symmetric space of non-compact type

Theorem 6.1.(K, 2012)

Let M be an irreducible curvature-adpated isoparametric
C*“-submanifold of codimension greater than one in G/ K.
If M has no non-Euclidean type focal point on the ideal
boundary of G/ K, then it is a principal orbit of a
Hermann action on G/ K.




Results

Results

Remark In this theorem, are indispensable both the

conditions of curvature-adaptedness and the non-existe-
nceness of a non-Euclidean type focal point on the ideal
boundary of G/ K. In fact, we can give examples showing
that the conditions are indispensable as principal orbits

of subgroup actions of the solvable part AN in the
Iwasawa’s decomposition G = KAN of G.
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Results

Theorem 6.2.(K, 2012)
Let M be as in Theorem 6.1. Furthermore, if M is

compact, then it is a principal orbit of the isotropy
action on G/ K.




Results

Results

Strategy of proof of Theorem 6.1.

M¢ := (%0 ¢°) "1 (M°) — H([0,1],¢°)

proper anti — Kaeh. isoparametric 1 @°
GC
4 7
M — G/K +coevveenns — M° — G°/K°

as in Theorem 6.1



Results

Results

M€ : homogeneous

1

M : homogeneous

1

M : a principal orbit of a Hermann action



7. Infinite dimensional proper anti-Kaehler
isoparametric submanifolds
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Proper anti-Kaehler isoparametric submanifolds

V : an oco-dimensional topological vector space
(', ) :a continuous non-degenerate bilinear form of V'

J :a continuous linear operator of V s.t.
J? = —id, (JX,JY)=—(X,Y) (VX,Y €V)
Definition
(V,(, );J) : co-dim. anti-Kaehler space
(ﬁ) 3V = V_ @ V, (orthog. time-space decomp.)
s.t. (V,(, )vy) :Hilbert space & JV_ =V,
( (o e ==y (6 )+, () )

(mv, : the orthog. proj. onto V)
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Proper anti-Kaehler isoparametric submanifolds

V = V_ @ V4 :an orthogonal time-space decomposition
(s Mvixvy =0
— (', Ylv_xv_ : negative definite
e
(» )Mvyxv, : positive definite
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Proper anti-Kaehler isoparametric submanifolds

M — (V,(, ),J) (co-dim. anti-Kaehler sp.)

M : Fredholm anti-Kaehler submanifold
e J('M)=TM & codimM < oo

def eVveT+M, A, : cpt op. w.r.t. (, Yy

a + bi(e C) : J-eigenvalue of A,
ﬁ IX(#0) e T,M s.t. A, X =aX +bJX
Also, X is called a J-eigenvector of A, for a + bi.

N
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Proper anti-Kaehler isoparametric submanifolds

Definition
M : anti-Kaehler isoparametric submanifold
e M : Fredholm anti-Kaehler
e the normal holonomy gr. of M : trivial
< n N
def e VveI'(T-M) s.t. V-v =0,
Specj A,, : indep. of x € M

( Spec; A, :the set of all J-eigenvalues of A, )
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Proper anti-Kaehler isoparametric submanifolds

Definition
A, : diagonalizable w.r.t. a J-orthonormal base

(or J-diagonalizable)
J{e;|t eI}
e ¢;’s: J-eigenvectors of A,
< . .
def s.t. o {e;|lieI}U{Je;|i €I}
: an orthon. base of T, M
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Proper anti-Kaehler isoparametric submanifolds

Definition
M : proper anti-Kaehler isoparametric submanifold
e M : anti-Kaehler isoparametric
<= e Vv € TJ-M, A, : diagonalizable w.r.t.

def
a J-orthon. base
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Proper anti-Kaehler isoparametric submanifolds

Remark
Geatti-Gorodski defined the notion of an isoparametric
submanifold with diagonalizable Weingarten maps in a
pseudo-Euclidean space.
[Geatti-Gorodski, J. Algebra (2008)].
Proper anti-Kaehler isoparametric submanifolds belong to
the class of infinite dimensional version of this notion.
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Proper anti-Kaehler isoparametric submanifolds

M < V : proper anti-Kaehler isoparametric

rxe M

Ay's (v € T} M) are simultaneously diagonalizable
with respect to a J-orthonormal base.

T,M = E3 & < o Ef) (Eg = N Ker Av>

(common J-eigenspace decomposition of A,’s)
31 AP € (T;-M)*e s.t. Ay|pe = Re(A?(v))id 4+ Im(A? (v))J
(Vv € T;-M)



Proper anti-Kaehler isoparametric submanifolds

By reordering E’s (x €, M i € I) if necessary,
we may assume that
z— A7, z+— ni and x — ET are smooth.

Definition

Ai € T((TTM)*) = (Ai)z 1= A7 (z € M)
J-principal curvature

n; € I‘(TJ‘M) ﬁ >\1,() =] (ni, ) — \/—_1<Jn7;,->

J-curvature normal

E; : a distribution on M = (Ei)g := Ef (x € M)
e

J-curvature distribution

Ey : a distribution on M = (Eo)s := Ef (x € M)
e

J-curvature distribution
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Proper anti-Kaehler isoparametric submanifolds

e The focal set of M at z is equal to %I()\i);l(l).
1

e E; is tot. geod. and each leaf of E; is a complex sphere.
e Ej is tot. geod. and each leaf of Ej is an anti-Kaeh. sp.
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Outline of proof of the main result

Outline of the proof of Theorem 6.1.

M C G/K : asin Theorem 6.1

¢ : H°([0,1],g°) — G© : the parallel transport
map for G°

w:G° — G°/K€¢ : the natural projection

M i= (m 0 ¢) ™} (M)



Outline of proof of the main result

Outline of proof of the main result

(Step 1) We show that Mc¢is a proper anti-Kaehler
isoparametric submanifold (i.e., an anti-Kaehler
isoparametric submanifold with .J-diagonalizable
shape operators).

(Step Il) By using the fact in (Step I) and using the fact
that H°([0,1], g°) is a linear space, we show that
M¢ is homogeneous.

We refer the proof of the homogeneity of inifinite dime-
nsional isoaparametric submanifolds in the Hilbert space
[Heintze-Liu, Ann. of Math. (1999)].
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Outline of proof of the main result

(Step I11) By using the homogeneity of M?¢ and refering the
discussions in [Christ, J.D.G. (2002)] and
[Gorodski-Heintze, J. Fixed Point Theory Appl. (2012)],

we show that M is homogeneous.
By using the homogeneity theorem by Heintze-Liu,

Christ proved the homogeneity of irreducible
equifocal submanifolds of codeminesion greater
than one in a symmetric space of compact type.
Recently Gorodski-Heintze has filled a gap in
the proof by Christ.
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Outline of proof of the main result

(Step IV) From the homogeneity of M, it is shown that
M is a principal orbit of a (complex) hyperpolar action.
Furthermore, we show that the action admits a totally
geodesic orbit. As its result, it is shown that the action is

orbit equivalent to a Hermann action.
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Outline of proof of the main result

complex polar action = polar action with complex poles
# the complexifocation of polar action

complex hyperpolar action = special complex polar action
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On (Step 1) in proof of the main theorem

Xi (i € I) : J-principal curvatures of M¢
n; (¢ € I) : J-curvature normals of Mc

E; (i € TU{0}) : J-curvature distributions of M¢



On (Step Il) in proof of the main theorem

On (Step 1) in proof of the main theorem

LE: :the leaf of E; through u (focal leaf)

u

e\ ([ U b)) (b= (M) )

v :the parallel normal vector field s.t. v,, = vo
fv ¢ the focal map for v

F, := f,(M°) (focal submanifold)
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On (Step 1) in proof of the main theorem

Set V := H([0, 1], g°).
Take u; € Lféo.

~ :a geodesic in Lfgo with v(0) = up and v(1) = u3



On (Step Il) in proof of the main theorem

B, : T,V = T,V

e (on (Eig)ue)

(TF o )suol(Bi)uy (00 (Ei)uo (i # i0))
def (h»-y)*'u,o (On (Eosz_(l)

T—}L (on Tj;MC)

7, : the parallel translation along ~
w.r.t. the conn. of LE;O

‘T;;O,Y : the parallel translation along f; o~y
w.r.t. the normal conn. of F;

h, : the isometry from Lfg to Lff
determined by ~

T,j‘ : the parallel translation along v

w.r.t. the normal conn. of M¢
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On (Step 1) in proof of the main theorem

Definition.

Py € I(V) = (dy)uuo = By

Remark.
Since V is an anti-Kaehler space (hence a linear space),
there uniquely exists the above (holom.) isometry 1),.

Py (Me) = M© \




On (Step Il) in proof of the main theorem

On (Step 1) in proof of the main theorem

Q(up) :the set of all points of Mc¢ connected with ug
by a piecewise smooth curve each of whose
segment lies on a complex curvature sphere

From Lemma 9.1, we have

Vu € Q(uo), e
Jp € I(V) s.t. "p(ug) = u, (M) = M<”




On (Step Il) in proof of the main theorem

On (Step 1) in proof of the main theorem

Proof of Lemma 9.2.

For any u € Q(uo),
dai=~1----- ~k : piecewise smooth curve s.t.
e a(0) =ugp, a(l) =u

® 7; is a geodesic in a complex curvature sphere
(1<5<k)

Then 9, := 1, 0--- 01, is an isometry of V
with ¥4 (ug) = wu.
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On (Step 1) in proof of the main theorem

On the other hand, we have

Q(uo) = M¢

From Lemmas 9.1, 9.2 and 9.3, we have

Proposition 9.4.

Vu € Mc,
¢ € I(V) s.t. "tp(uo) = u, p(M®) = M°"
(i.e., M¢ is homogeneous.)




On (Step Il) in proof of the main theorem

On (Step 1) in proof of the main theorem

H :={y € I(V)|$(M*) = M°}

According to Proposition 9.4, we obtain

,l-‘_l-"l.b()z_l\fc
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On (Step IIl) in proof of the main theorem

On (Step I11) in proof of the main theorem

04k (V) : the Banach Lie algebla of all continuous
(i.e., bounded) skew symmetric C-linear maps

Oak (V) :=exp(oax(V)) (C I(V))
Ib(V) = OAK(V) XV (C I(V))

H'([0,1],G®) ~ V (the gauge action)
(Under this action, H'([0,1],G®) C I(V))

It is shown that H'([0, 1], G®) C I(V) holds.

Hy:= HNIY(V)



On (Step IIl) in proof of the main theorem

Outline of proof of homogeneity

(Step 11l - 1) We show that the holomorphic Killing field
ass. with one-parameter transformation gr.
{%+110,,1 }ter of holomorphic isometries
constructed in (Step Il) is defined on
the whole of V' (i.e., ¥, , € Is(V)).
From this fact, we can show Hb ug = Me.
(We refered work of Gorodski-Heintze)



On (Step II1) in proof of the main theorem

Outline of proof of homogeneity

(Step 11l - 2) By using H, C I;(V),
we show H, C H1([0, 1], G°).
(We refered work of Christ)

(Step 11l - 3) By using H, C H'([0, 1], G°), we find
a subgroup H of G s.t. H-x9 = M.
(We refered work of Christ)
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Classifications

Classifications

G/K :irreducible symmetric space of non-compact type

M :isoparametric submanifold in G/K as in Theorem 6.1

M occurs as a principal orbit of one of Hermann actions
H ~ G/K as in Table 1~4.




Thanks!
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