
Survey on an equifocal submanifold

and a proper complex equifocal submanifold

Naoyuki Koike

Department of Mathematics, Faculty of Science, Tokyo University of Science,
1-3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
E-mail address: koike@ma.kagu.tus.ac.jp

Abstract

This is a survey for an equifocal submanifold in a symmetric space of compact type
and a proper complex equifocal submanifold in a symmetric space of non-compact
type.

Keywords: equifocal submanifold, proper complex equifocal submanifold,
isoparametric submanifold, proper complex isoparametric submanifold

1 Equifocal submanifolds and complex equifocal submani-
folds

In 1995, C.L. Terng and G. Thorbergsson [TT] introduced the notion of an equifocal
submanifold in a (Riemannian) symmetric space. This notion is defined as a compact
submanifold with flat section, trivial normal holonomy group and parallel focal structure.
Here ”with flat section” means that the images of the normal spaces of the submanifold by
the normal exponential map are flat totally geodesic submanifolds and the parallelity of
the focal structure means that, for any parallel normal vector field v of the submanifold,
the focal radii along the normal geodesic γvx with γ′

vx
(0) = vx are independent of the

choice of x (with considering the multiplicities), where γ′
vx

(0) is the velocity vector of γvx

at 0. Note that the focal radii of the submanifold along the normal geodesic γvx coincide
with the zero points of the real valued function

Fvx(s) := det

(
cos(s

√
R(vx)) −

sin(s
√

R(vx))√
R(vx)

◦ Avx

)
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over R defined in terms of the shape operator Avx and the normal Jacobi operator R(vx)(:=
R(·, vx)vx), where R is the curvature tensor of the ambient symmetric space. In particular,
in the case where G/K is a Euclidean space, we have Fvx(s) = det(id − sAvx) and hence
the focal radii along γvx coincide with the inverse numbers of the eigenvalues of Avx (i.e.,
the principal curvature radii of direction vx). Compact isoparametric submanifolds in
a Euclidean space and compact isoparametric hypersurfaces in a sphere or a hyperbolic
space are equifocal. When a non-compact submanifold M in a symmetric space G/K
of non-compact type variates as its principal curvatures approach to zero, its focal set
vanishes beyond the ideal boundary (G/K)(∞) of G/K (see Fig. 1).
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From this fact, we recognize that, for a non-compact submanifold in a symmetric space of
non-compact type, the parallelity of the focal structure is not an essential condition. So,
we ([Koi3]) introduced the notion of a complex focal radius of the submanifold along the
normal geodesic γvx as the zero points of the complex valued function F c

vx
over C defined

by

F c
vx

(z) := det

(
cos(z

√
R(vx)c) −

sin(z
√

R(vx)c)√
R(vx)c

◦ Ac
vx

)
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over C, where Ac
vx

and R(vx)c are the complexifications of Avx and R(vx), respectively.
Here we note that complex focal radii along γvx are directly calculated from datas of Avx

and R(vx) according to this definition. In the case where M is of class Cω (i.e., real
analytic), we can catch the geometrical essence of complex gfocal radii as follows. We
([Koi4]) defined the complexification Mc of M as an anti-Kaehlerian submanifold in the
anti-Kaehlerian symmetric space Gc/Kc, where we note that Gc/Kc is a space including
both G/K and its compact dual Gκ/K as submanifolds transversal to each other and that
it is interpreted as the complexification of both G/K and Gκ/K, where we note that the
induced metric on G/K coincides with the original metric of G/K and that the induced
metric on Gκ/K is the (−1)-multiple of the metric of Gκ/K. Also, we note that an anti-
Kaehlerian manifold means a manifold M equipped with a pseudo-Riemannian metric g
and a complex structure J satisfying g(JX, JY ) = −g(X, Y ) (∀X,Y ∈ TM) and ∇J = 0,
and an anti-Kaehlerian submanifold in the space means a J-invariant submanifold, where
∇ is the Levi-Civita connection of g. We ([Koi4]) showed that z is a complex focal radius
of M along γvx if and only if γc

vx
(z) is a focal point of Mc along the complexified geodesic

γc
vx

(see Fig. 2,3). Here γc
vx

is defined by γc
vx

(z) := γavx+bJvx(1) (z = a+b
√
−1 ∈ C), where

γavx+bJvx is the geodesic in Gc/Kc with γ′
avx+bJvx

(0) = avx + bJvx. Thus the complex
focal radii of M are the quantities indicating the positions of focal points of Mc.

When M variates as above and real analytically, its focal set vanishes beyond (G/K)(∞)
but the focal set of Mc (i.e., the complex focal set of M) does not vanish (see Fig. 4).
From this fact, for non-compact submanifolds in a symmetric space of non-compact type,
we recognize that the parallelity of the complex focal structure is an essential condition
(even if M is not of Cω). So, we [Koi3] defined the notion of a complex equifocal sub-
manifold as a (properly embedded) complete submanifold with flat section, trivial normal
holonomy group and parallel complex focal structure, where we note that this submani-
fold should be called an equi-complex focal submanifold but that we called it a complex
equifocal submanifold for simplicity. Note that equifocal submanifolds in the symmetric
space are complex equifocal. In fact, since they are compact, their principal curvatures
are not close to zero and hence the parallelity of their focal structure leads to that of their
complex focal structure.
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2 Isoparametric submanifolds in a Hilbert space, complex
isoparametric submanifolds and anti-Kaehlerian isopara-
metric submanifolds

In 1989, Terng [T2] introduced the notion of an isoparametric submanifold in a (separable)
Hilbert space. This notion is defined as a (proper) Fredholm submanifold with trivial
normal holonomy group and constant principal curvatures, where a (proper) Fredholm
submanifold means a (properly embedded) submanifold of finite codimension such that the
normal exponential map exp⊥ of the submanifold is a Fredholm map (i.e., the differential
of exp⊥ at each point is a Fredholm operator) and that the restriction of exp⊥ to unit
ball normal bundle of M is proper. Note that the shape operators of this submanifold are
compact operators (beacuse exp⊥ is a Fredholm map) and that they are simultaneously
diagonalizable with respect to an orthonormal base. Also she [T2] introduced the notion
of the parallel transport map for a compact semi-simple Lie group G. This map is defined
as a Riemannian submersion of a (separable) Hilbert space H0([0, 1], g) onto G, where
H0([0, 1], g) is the space of all L2-integrable paths in the Lie algebra g of G. Let G/K be
a symmetric space of compact type, π the natural projection of G onto G/K and ϕ the
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parallel transport map for G. Let M be a submanifold in G/K and M̃ a component of
the lifted submanifold (π ◦ ϕ)−1(M). The relation between the focal structures of M and
M̃ is as in Fig. 5.

H0([0, 1], g)

G/K

π ◦ ϕ

M̃

M

Fig. 5.

In 1995, Terng-Thorbergsson [TT] showed that M is equifocal if and only if M̃ is isopara-
metric. Thus the research of an equifocal submanifold in a symmetric space of compact
type is reduced to that of an isoparametric submanifold in a (separable) Hilbert space.
An advantage of this reducement of the research is as follows. The symmetric space is of
non-trivial holonomy group but the Hilbert space is a linear space, that is, it is of triv-
ial holonomy group and is identified with its tangent space at each point. By using this
reducement of the research, they proved some facts for an equifocal submanifold in the
symmetric space (see [TT]). In [TT], they proposed the following problem:
Problem. Is there a similar method of research for equifocal submanifolds in symmetric
spaces of non-compact type?

By private discussion with Thorbergsson at Nagoya University in 2002, I knew that
this problem is important and began to tackle to this problem. In 2004-2005, we [Koi3,4]
constructed a similar method of research for complex equifocal submanifolds in symmetric
spaces of non-compact type in more general. We shall explain this method of research.
First we shall recall the notions of an isoparametric submanifold, a real isoparametric
submanifold, a complex isoparametric submanifold and a proper complex isoparametric
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submanifold in a (finite dimensional) pseudo-Euclidean space. Let M be a (properly
embedded) complete submanifold in a pseudo-Euclidean space. Denote by A the shape
tensor of M . Assume that the normal holonomy group of M is trivial. Let v be a parallel
normal vector field of M . For each x ∈ M , the shape operator Avx is expressed as

n
⊕
i=1

⊕
j∈Sx

i


λx

ij 1
. . . . . .

. . . 1
λx

ij


(i,i)−type



⊕



[n
2
]

⊕
i=1

⊕
j∈S′x

i



αx
ij −βx

ij 1 0
βx

ij αx
ij 0 1

. . . . . . . . .
. . . . . . 1 0

. . . 0 1
αx

ij −βx
ij

βx
ij αx

ij


(2i,2i)−type


with respect to a pseudo-orthonormal base of the tangent space (see [Pe] in detail), where
blank components in each matrix mean zero. If Sx

i = ∅ (i ≥ 2) and S′x
i = ∅ (i ≥ 2), that

is, the complexification Ac
vx

of Avx is diagonalizable with respect to a pseudo-orthonormal
base, then Avx is called be proper. If, for each parallel normal vector field v of M , the set
{λx

ij | 1 ≤ i ≤ n, j ∈ Sx
i } of all real eigenvalues of Avx is independent of the choice of x ∈ M

(with considering the multiplicities), then M is called a real isoparametric submanifold.
Also, if, for each parallel normal vector field v of M , the set {λx

ij | 1 ≤ i ≤ n, j ∈ Sx
i } ∪

{αx
ij +

√
−1βx

ij | 1 ≤ i ≤ [n2 ], j ∈ S′x
i } of all complex eigenvalues of Avx is independent

of the choice of x ∈ M (with considering the multiplicities), then M is called a complex
isoparametric submanifold. In particular, if M is complex isoparametric and each shape
operator of M is proper, then M is called a proper complex isoparametric submanifold.
Also, if, for any parallel normal vector field v of M , the characterisitic polynomials of Avx

are independent of the choice of x ∈ M , then M is called an isoparametric submanifold
(see [Ka], [Ha1,2], [M] for example). Clearly we have

M : proper complex isoparametric ⇒ M : isoparametric
⇒ M : complex isoparametric ⇒ M : real isoparametric.
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In 2004, we [Koi3] defined the notions of a real isoparametric submanifold, a complex
isoparametric submanifold and a proper complex isoparametric submanifold in a pseudo-
Hilbert space as Fredholm submanifolds satisfying the similar conditions, where a pseudo-
Hilbert space means a topological vector space equipped with a (weak-sense) non-degenerate
continuous symmetric bilinear form which is Hilbertable. See [Koi3] about the meaning
of the Hilbertability and the definition of a Fredholm submanifold in a pseudo-Hilbert
space. Also, we [Koi3] introduced the notion of the parallel transport map for a (not nec-
essarily compact) semi-simple Lie group G. This map is defined as a pseudo-Riemannian
submersion of a pseudo-Hilbert space H0([0, 1], g) onto G, where H0([0, 1], g) is the space
of all paths in the Lie algebra g of G which are L2-integrable with respect to the positive
definite inner product associated with the Ad(G)-invariant non-degenerate inner product
of g. Let G/K be a symmetric space of non-compact type, π the natural projection of G
onto G/K and ϕ the parallel transport map for G. Also, let M be a (properly embedded)
complete submanifold in G/K and M̃ a component of the lifted submanifold (π◦ϕ)−1(M).
We [Koi3] showed that M is complex equifocal if and only if M̃ is complex isoparametric.
Thus the research of complex equifocal submanifolds in symmetric spaces of non-compact
type is reduced to that of complex isoparametric submanifolds in pseudo-Hilbert spaces. If
M̃ is proper complex isoparametric, then we ([Koi5]) called M a proper complex equifocal
submanifold. Since the shape operators of a proper complex isoparametric submanifold
is simultaneously diagonalizeble with respect to a pseudo-orthonormal base, the complex
focal set of the submanifold at any point u consists of infinitely many complex hyper-
planes in the complexified normal space at u and the group generated by the complex
reflections of order two with respect to the complex hyperplanes is discrete. From this
fact, it follows that the same fact holds for the complex focal set of a proper complex
equifocal submanifold. In 2005, we [Koi4] introduced the notions of an anti-Kaehlerian
isoparametric submanifold and a proper anti-Kaehlerian isoparametric submanifold in an
infinite dimensional anti-Kaehlerian space, where an infinite dimensional anti-Kaehlerian
space means a topological complex vector space (V, J) equipped with a non-degenerate
continuous symmetric bilinear form ⟨ , ⟩ such that ⟨JX, JY ⟩ = −⟨X,Y ⟩ for any X, Y ∈ V
and that (V, ⟨ , ⟩) is Hilbertable. See [Koi4] about the definitions of these notions. Let πc

the natural projection of Gc onto Gc/Kc and ϕc the parallel transport map for Gc. Let M̃c

be a component of the lifted submanifold (πc ◦ ϕc)−1(Mc) of the complexification Mc of
M . We [Koi4] showed that M is complex equifocal (resp. proper complex equifocal) if and
only if M̃c is anti-Kaehlerian isoparametric (resp. proper anti-Kaehlerian isoparametric)
in the infinite dimensional anti-Kaehleian space H0([0, 1], gc). Thus, in the case where M
is of class Cω, the research of complex equifocal (resp. proper complex equifocal) subman-
ifolds is reduced to that of anti-Kaehlerian isoparametric (resp. proper anti-Kaehlerian
isoparametric) submanifolds.
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3 Hyperpolar actions

Let H be a closed subgroup of G. The H-action on G/K is called a polar action if H
is compact and if, for each x ∈ G/K, there exists a complete embedded submanifold Σx

through x meeting all principal H-orbits orthogonally. This submanifold Σx is called a
section of this action through x. Furthermore, if the induced metric on Σx is flat, then
the H-action is called a hyperpolar action. Here we illustrate that the assumption of the
compactness of H is indispensable in these definitions. Consider the circle S1 := {z ∈
C | |z| = 1} on R2(= C) by the multiplication in C. This action S1 y R2(= C) is a
compact group action with flat section, that is, a hyperpolar action, and the orbits and
the sections of this action give the images of parameter curves of the polar coordinate of
R2 (see Fig. 7). This action has the only fixed point (i.e., pole) (0, 0). Define the S1-action
on the unit sphere S2 := {(x,w) ∈ R × C |x2 + |w|2 = 1} by z · (x,w) = (x, zw) ((z ∈
S1, (x, w) ∈ S2). This action also is hyperpolar and has two fixed points (i.e., poles) (1, 0)
and (−1, 0). On the other hand, the group action R y R2 defined by t · (x, y) := (x+ t, y)
(t ∈ R, (x, y) ∈ R2) is a non-compact action with flat section. However this action has no
fixed point (i.e., pole) and the orbits and the sections of this action give the images of the
parameter curves of the Euclidean coordinate (i.e., non-polar coordinate) of R2 (see Fig.
7).
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It is known that principal orbits of a hyperpolar action are equifocal. On the other hand, in
1995, E. Heintze, R.S. Palais, C.L. Terng and G. Thorbergsson ([HPTT]) proved that any
homogeneous equifocal submanifold in a simply connected symmetric space of compact
type occurs as a principal orbit of a hyperpolar action. If there exists an involution σ of
G with (Fixσ)0 ⊂ H ⊂ Fixσ, then the H-action on G/K is called a Hermann action,
where Fix σ is the fixed point group of σ and (Fixσ)0 is the identity component of Fixσ.
It is easy to show that Hermann actions are hyperpolar. In 2001, A. Kollross ([Kol])
proved that hyperpolar actions of cohomogeneity greater than one on an irreducible simply
connected symmetric space of compact type are orbit equivalent to Hermann actions. Also,
in 2007, O. Goertsches and G. Thorbergsson ([GT]) proved that any principal orbit M of
a Hermann action are curvature-adapted, where the curvature-adaptedness means that,
for any unit normal vector v of M (at x), the normal Jacobi operator R(v) preserves the
tangent space TxM and R(v)|TxM and the shape operator Av of M commute. Hence we
obtain the following fact.

All homogeneous equifocal submanifolds of codimension greater than one in an irreducible
simply connected symmetric space of compact type are curvature-adapted.

4 Homogeneity of equifocal submanifolds

In this section, we shall state a homogeneity theorem for an equifocal submanifold in a
symmetric space of compact type. In 1999, E. Heintze and X. Liu proved the following
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homogeneity theorem for an isoparametric submanifold in a Hilbert space.

Theorem 1([HL2]). All irreducible isoparametric submanifolds of codimension greater
than one in a Hilbert space are homogeneous.

This result is the infinite dimensional version of the homogeneity theorem for isopara-
metric submanifolds in a (finite dimensional) Euclidean space by G. Thorbergsson ([Th]),
which states that all irreducible isoparametric submanifolds of codimension greater than
two in a Euclidean space are homogeneous. In 2002, by using the result of Heintze-Liu,
U. Christ [Ch] proved the following homogeneity theorem for an equifocal submanifold in
a simply connected symmmetric space of compact type.

Theorem 2([Ch]). All irreducible equifocal submanifolds of codimension greater than
one in a simply connected symmetric space of compact type are homogeneous.

From this homogeneity theorem and the facts stated in the previous section, we have
the following fact.

Theorem 3. All equifocal submanifolds of codimension greater than one in an irreducible
simply connected symmetric space of compact type occur as principal orbits of Hermann
actions.

5 Complex hyperpolar actions

Let G/K be a symmetric space of non-compact type and H be a closed subgroup of G. We
([Koi4]) called the H-action on G/K a complex polar action if, for each x ∈ G/K, there
exists a complete embedded submanifold Σx through x meeting all principal H-orbits
orthogonally. Furthermore, if the induced metric on Σx is flat, then we ([Koi4]) called
H-action a complex hyperpolar action, where we note that this action should be called a
hyper-complex polar action but that we called it a complex hyperpolar action for simplicity.
We illustrate why we named this action thus. Define the R-action on the hyperbolic space
H2(= SO(1, 2)/SO(2) = {(x1, x2, x3) | − x2

1 + x2
2 + x2

3 = −1}(⊂ R3
1)) by θ · (x1, x2, x3) =

(x1 cosh θ + x2 sinh θ, x1 sinh θ + x2 cosh θ, x3) ((θ ∈ R, (x1, x2, x3) ∈ H2), where R3
1 is

the Lorentzian space equipped with the Lorentzian inner product −dx2
1 + dx2

2 + dx2
3. This

action is a complex hyperpolar action. By the way, this action has no fixed point (i.e., pole)
but the complexified action C on the anti-Kaehlerian symmetric space SO(3, C)/SO(2, C)
(which is the complexification of H2) has fixed points (i.e. poles). These fixed points
should be called complex poles of the original action. In this sense, we named the above
action a complex (hyper)polar action. See also Fig. 8.
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We ([Koi4]) showed that principal orbits of a complex hyperpolar action are complex
equifocal. Conversely we ([Koi4]) showed that homogeneous complex equifocal submani-
folds occur as principal orbits of complex hyperpolar actions. If there exists an involution
σ of G with (Fixσ)0 ⊂ H ⊂ Fixσ, then we called the H-action on G/K a Hermann type
action. We ([Koi5]) showed that principal orbits of a Hermann type action are proper
complex equifocal and curvature-adapted. Also, we ([Koi7]) showed that all complex hy-
perpolar actions with totally geodesic orbit are orbit equivalent to Hermann type actions.

6 Homogeneity of proper complex equifocal submanifolds

In this section, we shall state a homogeneity theorem for proper complex equifocal sub-
manifolds. In [Koi13], we first proved the following homogeneity theorem for a proper anti-
Kaehlerian isoparametric submanifold in an infinite dimensional anti-Kaehlerian space.

Theorem 4([Koi13]). All irreducible proper anti-Kaehlerian isoparametric submanifolds
of codimension greater than one in the infinite dimensional anti-Kaehlerian space are
homogeneous.

By using this homogeneity theorem, we proved the following homogeneity theorem for
a proper complex equifocal Cω-submanifold in a symmetric space of non-compact type.
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Theorem 5([Koi13]). All irreducible proper complex equifocal Cω-submanifolds of codi-
mension greater than one in a symmetric space of non-compact type are homogeneous.

By using this homogeneity theorem and the facts stated in the previous section, we
have recently proved the following fact.

Theorem 6([Koi14]). All irreducible curvature-adapted proper complex equifocal Cω-
submanifolds of codimension greater than one in a symmetric space of non-compact type
occur as principal orbits of Hermann type actions.

Remark 1. In this theorem, we cannot replace ”proper complex equifocal” to ”complex
equifocal”. In fact, principal orbits of the N -action on an irreducible symmetric space
G/K of non-compact type and rank greater than one are irreducible curvature-adapted
complex equifocal submanifolds of codimension greater than one but they do not occur as
principal orbits of a Hermann type action, where N is the nilpotent part in the Iwasawa’s
decomposition G = KAN of G.

Also, we have recently proved the following fact for the curvature-adaptedness of a
proper complex equifocal submanifold.

Theorem 7([Koi14]). Let G/K be a symmetric space of non-compact type and rank r
whose root system is reduced. Then all proper complex equifocal submanifolds of codi-
mension r in G/K are curvature-adapted.

Remark 2. By imitating the discussion in the proof of Theorem 7, we can show the
following fact:

Let G/K be a symmetric space of compact type and rank r whose root system is
reduced. Then all equifocal submanifolds of codimension r in G/K are curvature-adapted.

From Theorems 6 and 7, the following fact follows directly.

Theorem 8. Let G/K be a symmetric space of non-compact type and rank r(≥ 2) whose
root system is reduced. Then all irreducible proper complex equifocal submanifolds of
codimension r in G/K occur as principal orbits of Hermann type actions on G/K.
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7 Isoparametric submanifolds with flat section in the sense
of Heintze-Liu-Olmos

In 2006, Heintze-Liu-Olmos [HLO] defined the notion of isoparametric submanifold with
flat section in a general Riemannian manifold as a (properly embedded) complete subman-
ifold with flat section and trivial normal holonomy group whose sufficiently close parallel
submanifolds have constant mean curvature with respect to the radial direction. For a
compact submanifold with trivial holonomy group and flat section in a symmetric space of
compact type, they [HLO] showed that it is equifocal if and only if, for each parallel nor-
mal vector field v, Fvx is independent of the choice of a point x of the submanifold, where
Fvx is the function defined in Page 1. Thus, if it is an isoparametric submanifold with
flat section, then it is equifocal. Furthermore, for a compact submanifold in a symmetric
space of compact type, they proved te following fact.

Theorem 9([HLO]). Let M be a compact submanifold in a symmetric space of compact
type. Then M is equifocal if and only if it is an isoparametric submanifold with flat
section.

The proof of this fact is performed by investigating the lift (π ◦ ϕ)−1(M) of M to the
Hilbert space H0([0, 1], g).

On the other hand, we [Koi4] showed that, for a (properly embedded) complete sub-
manifold with trivial normal holonomy group and flat section in a symmetric space of
non-compact type, it is an isoparametric submanifold with flat section if and only if, for
each parallel normal vector field v, F c

vx
is independent of the choice of a point x of the

submanifold, where F c
vx

is the function defined in Page 2. Thus if it is an isoparametric
submanifold with flat section, then it is complex equifocal. Conversely, we proved the
following fact.

Theorem 10([Koi4]). All curvature-adapted complex equifocal submanifolds in a sym-
metric space of non-compact type are isoparametric submanifolds with flat section.

For a submanifold M in a Hadamard manifold N , we ([Koi11]) defined the notion of
a focal point of non-Euclidean type on the ideal boundary N(∞) as follows. Denote by
∇̃ the Levi-Civita connection of N and A the shape tensor of M . Let γv : [0,∞) → N be
the normal geodesic of M of direction v ∈ T⊥

x M . If there exists a M -Jacobi field (resp.
strongly M -Jacobi field) Y along γv satisfying lim

t→∞
||Yt||

t = 0, then we call γv(∞) (∈ N(∞))

a focal point (resp. strongly focal point) on the ideal boundary N(∞) of M along γv (see
Fig. 9), where γv(∞) is the asymptotic class of γv. Also, if there exists a M -Jacobi field Y
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along γv satisfying lim
t→∞

||Yt||
t

= 0 and Sec(v, Y (0)) < 0, then we call γv(∞) a focal point of

non-Euclidean type on N(∞) of M along γv, where Sec(v, Y (0)) is the sectional curvature
for the 2-plane spanned by v and Y (0).

We proved the following fact.

Theorem 11([Koi11]). Let M be a curvature-adapted submanifold in a symmetric space
N := G/K of non-compact type. Then M is proper complex equifocal if and only if it is an
isoparametric submanifold with flat section which admits no focal point of non-Euclidean
type on the ideal boundary N(∞) of N .

N

N(∞)

M

γv

γv(∞)Y (0)

Y

Fig. 9.

Furthermore, we have recently proved the following fact.

Theorem 12([Koi14]). Let G/K be a symmetric space of non-compact type and rank r.
Then all proper complex equifocal submanifolds of codimension r in G/K are isoparametric
submanifolds with flat section.

At the end of this section, we propose the following question.

Question. Let M be a (properly embedded) complete submanifold in a symmetric space
N = G/K of non-compact type. Is M a proper complex equifocal submanifold if and
only if it is an isoparametric submanifold with flat section which admits no focal point of
non-Euclidean type on N(∞)?
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8 Duality

In this section, we explain the duality of Hermann actions on symmetric spaces of compact
type and Hermann type actions on symmetric spaces of non-compact type. Let G/K be
a symmetric space of non-compact type and Gκ/K the compact dual of G/K. Also, let
θ be the Cartan involution of G with (Fix θ)0 ⊂ K ⊂ Fix θ, where Fix θ is the fixed point
group of θ and (Fix θ)0 is the identity component of Fix θ. If H is a symmetric subgroup
of G (i.e., (Fixσ)0 ⊂ H ⊂ Fixσ for some involution σ of G), then the H-action on G/K
is called a Hermann type action. Here we explain the duality between Hermann actions
on Gκ/K and Hermann type actions on G/K. We may assume that θ ◦ σ = σ ◦ θ by
replacing H to a its suitable conjugate group if necessary. Then we obtain the involution
σ̂ of Gκ with θ ◦ σ̂ = σ̂ ◦ θ from σ. Set Ĥ := (Fix σ̂)0. Thus we obtain a Hermann action
Ĥ y Gκ/K. Conversely, we may assume that θ ◦ τ = τ ◦ θ by replacing H ′ to a its
suitable conjugate group if necessary except for three exceptional ones. Then we obtain
the involution τ̂ of G with θ ◦ τ̂ = τ̂ ◦ θ from τ . Set Ĥ ′ := (Fix τ̂)0. Thus we obtain
a Hermann type action Ĥ ′ y Gκ/K. Thus Hermann type actions on G/K correspond
almost one-to-one to Hermann actions on Gκ/K.

PCI ⊂ I ⊂ CI ⊂ RI

duality

ικ

HT P ⊂ PCE ⊂ HLO − I ⊂ CE ⊂ E ′

PCI∞ ⊂ ??? ⊂ CI∞ ⊂ RI∞

ι ι ι

E ⊃ HP

I∞

?

Fig. 10.

Notations in Fig. 10 are as in the next page. The congruence classes of the orbits of
the action of the nilpotent group N on G/K belong to (HLO − I) \ PCE , where N is
the nilpotent part in the Iwasawa’s decomposition G = KAN of G. See [Koi9] about
examples other than these classes belonging to (HLO − I) \ PCE . Also, for almost all
complete submanifolds all of whose principal curvatures are sufficiently close to zero in
G/K, the ε-tubes over them belong to E ′ \ CE , where ε is any positive constant. Thus E ′

is a very big class.
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E : the set of all congruence classes of equifocal submanifolds in Gκ/K

HP : the set of all congruence classes of principal orbits of a Hermann actions on Gκ/K

I∞ : the set of all congruence classes of isoparametric submanifolds in H0([0, 1], gκ)

E ′ : the set of all congruence classes of equifocal submanifolds in G/K, where they may not be compact

CE : the set of all congruence classes of complex equifocal submanifolds in G/K

PCE : the set of all congruence classes of proper complex equifocal submanifolds in G/K

HT P : the set of all congruence classes of principal orbits of Hermann type actions on G/K

HLO-I : the set of all congruence classes of isoparametric submanifolds with flat section in G/K

ι : CE → CI∞ ⇐⇒
def

ι([M ]) := [(π ◦ ϕ)−1(M)]

ικ : E → I∞ ⇐⇒
def

ικ([M ]) := [(π ◦ ϕ)−1(M)]

CI∞ : the set of all congruence classes of complex isoparametric submanifolds in H0([0, 1], g)

PCI∞ : the set of all congruence classes of proper complex isoparametric submanifolds in H0([0, 1], g)

RI∞ : the set of all congruence classes of real isoparametric submanifolds in H0([0, 1], g)

CI : the set of all congruence classes of complex isoparametric submanifolds in Rm
ν

PCI : the set of all congruence classes of proper complex isoparametric submanifolds in Rm
ν

RI : the set of all congruence classes of real isoparametric submanifolds in Rm
ν

I : the set of all congruence classes of isoparametric submanifolds in Rm
ν
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