10年代が帰りたいの=49c られりではない。 216 第6章 リー群作用の軌道幾何学

接続 ω に関する u を発する水平リフト (the horizontal lift of c starting from u with respect to ω) という. この水平リフトを用いて、写像 $P_c^\omega: \pi^{-1}(c(0)) \to \pi^{-1}(c(1))$ を

$$P_c^{\omega}(u) := c_u^L(1) \quad (u \in \pi^{-1}(c(0)))$$

によって定める. この写像は C^r 同型写像になることが示される. この写像 P_c^ω を接続 ω に関する c に沿う平行移動 (the parallel translation along c with respect to ω) という.

 $C_p := \{c : [0,1] \to M \mid c : 区分的に C^{\infty} 級の曲線 s.t. c(0) = c(1) = p\}$

とおく. $c \in C_p$ に対し、 P_c^ω を $0 = t_0 < t_1 < \cdots < t_k = 1$ を $c|_{[t_{i-1},t_i]}$ ($i = 1,\dots,k$) が C^∞ 曲線となるような [0,1] の分割として、 $P_{c|_{[t_{k-1},t_k]}}^\omega$ $\circ \cdots \circ P_{c|_{[t_0,t_1]}}^\omega$ によって定義する。 P_c^ω $(c \in C_p)$ は $\pi^{-1}(p)$ からそれ自身への G 同変な同型写像になるので、 $P_c^\omega = R_{g_c}|_{\pi^{-1}(p)}$ となる $g_c \in G$ が一意に存在する。G の閉部分群 $\Phi_{\mathbf{k}}^\omega$ を $\Phi_{\mathbf{k}}^\omega$ $:= \{g_c \mid c \in C_p\}$ によって定義する。この閉部分群 $\Phi_{\mathbf{k}}^\omega$ を ω の \mathbf{p} におけるホロノミー群 (the holonomy group of ω at \mathbf{p}) という。 $\Phi_{\mathbf{k}}^\omega$ は、 C^∞ 級リー群 G の閉部分群なので、それ自身 1 つの C^∞ 級リー群になる。 $\Phi_{\mathbf{k}}^\omega$ の単位元の連結成分を $(\Phi_{\mathbf{p}}^\omega)^0$ と表す。 $(\Phi_{\mathbf{p}}^\omega)^0$ は、 ω の \mathbf{p} における制限ホロノミー群 (the restricted holonomy group of ω at \mathbf{p}) とよばれる。

次に、Gの表現 $\rho:G\to GL(V)$ に対し、 $\pi:P\to M$ の ρ による同伴ベクトルバンドルという概念を定義する。 $P\times V$ における同値関係 \sim を

接続ωが与えられているとて定義される:

$$\mathcal{H}^{\omega,\rho}_{[(u,v)]} := \left\{ \begin{array}{l} \frac{d[(c_u^L(t), u), d)]}{dt} \end{array} \right.$$

ここで、 c_u^L は前述のcの分布 $\mathcal{H}^{\omega,\rho}$ は、 ω に関するの E_ρ with respect to \mathcal{E}^L に $[0,1] \rightarrow \mathcal{E}^L$ horizontal lift of c w M 上の C^∞ 曲線c: [0,1] いてc に沿う平行移動C

によって定義される. ³ が C[∞] 級であると の接続 ∇³ が

 $(\nabla_{\mathbf{X}}^{\omega}\xi)_{p} := \frac{d(P_{c|[0,t]}^{\omega,\rho})}{d(P_{c|[0,t]}^{\omega,\rho})}$