A System Analysis of Bio-ethanol Produced from Cassava and Sugarcane in Northern Thailand Silver Poster Award

Motoko Yamanari^{1,*}, Kenichi Adachi¹, Kiyoshi Dowaki¹ and Yucho Sadamichi²

¹Tokyo University of Science, 2641 Yamazaki, Noda city, Chiba 278-8510

²Center for Southeast Asian Studies Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto 606-8501

*E-mail: yamanari@rs.noda.tus.ac.jp TEL: +81-4-7124-1501 ext.3815

Introduction

Thailand

- Saving fossil fuels
- Increase of farm income opportunities
- Sustainable recycling of biomass waste feedstock

The government's bio-fuel policy E10(~2011) ->E20

Raw materials: sugarcane, cassava (See Fig.1)

25% Reduction in GHG by 2020 (COP15)
 Need to Gain CER By the scheme of CDM (Clean Development Mechanism)

The biomass gasification

The biomass gasification system
:Blue Tower (BT) system

Under the CDM scheme, we optimized the biomass utilization system to increase recycle rate and to mitigate CO₂ emission (See Fig.2).

Fig.1: Target area and cultivation of sugarcane and cassava

Fossil Fuels

Cultivation

Fossil Fuels

Fossil Fuels

Fig.2: combination of Blue Tower process and bio-ethanol plant

↓ CO₂

Supply to Electrical Grid

Methodology

We estimated by "Biomass Utilization Model" ...

- i. the optimal routes of cultivation site to ethanol plant and ethanol plant to BT plant.
- ii. the available material weight (0~15%-> Monte Carlo simulation) in each site for the existing bio-ethanol plant.
- iii. the locations of bio-ethanol plant and BT gasification plant (scale: 30 t/d) based on a site investigation.
- iv. CO₂ intensity is based on LCA methodology (see Fig.3)

We optimized the combination of bio-ethanol plants with BT plants by solving non-linear mixed integer program written in GAMS ver.23.0.

1. Cultivation

Indirect emissions :Fertilizers(N, $\rm P_2O_5$, $\rm K_2O)$ and Herbicides Direct emissions: Diesel oil

2. Transportation

 ${
m truck}$ ${
m cadd}_{
m ratio(\lambda)}$ ${
m [g-CO}_2^{
m A}/{
m km]}$ ${
m [g-CO}_2^{
m b}/{
m km]}$ Cassava 10ton 100% 669.96 476.35 ${
m Sugarcane}$ 15ton 167% 1004.95 543.34

The fuel consumption rate: $f_{FC}(\lambda) = a\lambda + 2b$

The road distance between each province is used as the shortest pathway.

3. Ethanol production

Ethanol conversion ratio>>
Cassava: 137L-ethanol/t
Sugarcane: 10.17L-ethanol/t
Direct emissions: Electricity, Coal
and Diesel

4. Blue Tower process design

a. Result of reforming experiment (e.g. cassava)

b. Material balance (e.g. cassava) (S/C=1.7, M.C.=10.21wt.%, 950 deg.C).

 $C_{27.9}H_{51.6}O_{31.4}N_{0.56} + 40.83H_2O \rightarrow 6.39CH_4 + 7.83CO + 10.06H_2 + 9.35CO_2$

 $+49.24H_2O+0.26N_2+Others$ (Char etc.) Based on the simulator , we estimated the energy efficiencies.

-> Power efficiency: Cassava 16.8%, Sugarcane 17.6%

5. Simulation by using Biomass Utilization Model

Objective function

Fig.3: System boundary

 $Min.: Net _CO_2 = EtOH _CO_2 - CO_2 _BT$

EtOH _CO₂: Cultivation + Transportation + Ethanol production

CO₃. BT : BT process - Transportation to BT

6. Economical Efficiency Evaluation

BT plant: 2,250 million yen/unit(durable time:15 years)
One administrator and 8 workers for one BT plant
Salary for worker :350,000THB/person/year
Transportation cost : 10.32 THB/km/t

Results

Fig.5 Optimal allocation of EtOH synthesis plant and BT plant (sugarcane)

Conclusion

Table1 CO₂ abatement cost in comparison with another renewable options

	CO ₂ Abatement Cost (¥/CO ₂ -t)	Unit price for power production (¥/kWh)
BT (Cassava)	10,134	16.8
BT (Sugarcane)	6,540	14.4
Solar PV	8,419~84,955	40~90
Wind Energy	-9,950 ~ 9,950	7 ~ 20

There are possibility of CO₂ abatement and profitability of the project operation in our system.

Fig.6 CO₂ emission of conventional case and Blue Tower case (cassava)

Additional Reduction of CO₂ emission

Surplus electricity would be supplied to the general grid -> reduction of CO₂ emission

- 1. BT system has great potential to gain CER (Certified Emission Reduction) efficiently.
- Using biomass waste feedstock efficiently, the eco-energy, and the job opportunities for farmers would be created.