A System Analysis of Bio-ethanol Produced from Cassava and Sugarcane in Northern Thailand
Silver Poster Award

Introduction

Thailand: Saving fossil fuels
- Increase of farm income opportunities
- Sustainable recycling of biomass waste feedstock

The government's bio-fuel policy E10**(2011)** >E20
Raw materials: sugarcane, cassava (See Fig.1)

Under the CDM scheme, we optimized the biomass utilization system to increase recycle rate and to mitigate CO2 emission (See Fig.2).

Methodology

We estimated by "Biomass Utilization Model"...
1. **Cultivation**
 i. the optimal routes of cultivation site to ethanol plant and ethanol plant to BT plant.
 ii. the available material weight (0~15%) Monte Carlo simulation in each site for the existing bio-ethanol plant.
 iii. the locations of bio-ethanol plant and BT gasification plant: (scale: 30 t/d) based on a site investigation.
 iv. CO2 intensity is based on LCA methodology (see Fig.3)

We optimized the combination of bio-ethanol plants with BT plants by solving non-linear mixed integer program written in GAMS ver.23.0.

2. **Transportation**
 i. truck load ratio [kg CO2 per km] [kg biomass per km]
 - Cassava: 10 ton 100% 669.96 476.35
 - Sugarcane: 15 ton 167% 1004.95 543.34

The fuel consumption rate: \(f_t = a + b \)
The road distance between each province is used as the shortest pathway.

3. **Ethanol production**
 - Conversion ratio >> Cassava: 137L ethanol/t
 - Sugarcane: 10.17L ethanol/t
 - Direct emissions: Electricity, Coal, and Diesel

4. **Blue Tower process design**
 a. Result of reforming experiment (e.g. cassava)

5. Simulation by using Biomass Utilization Model

Objective function

\[
\begin{align*}
\text{Min}: & \quad \text{Net CO}_2 = \text{EtOH} - \text{CO}_2 - \text{CO}_2 - \text{BT} \\
& \quad \text{EtOH} - \text{CO}_2 : \quad \text{Cultivation + Transportation + Ethanol production} \\
& \quad \text{CO}_2 - \text{BT} : \quad \text{BT process} - \text{Transportation to BT}
\end{align*}
\]

6. **Economical Efficiency Evaluation**

BT plant: 2,250 million yen/unit(durable time:15 years)
One administrator and 8 workers for one BT plant
Salary for worker: 350,000THB/person/year
Transportation cost: 10.32 THB/km/t

Results

Fig.4 CO2 reduction rate, abatement cost and recycling rate

Conclusion

Table 1 CO2 abatement cost in comparison with another renewable options

<table>
<thead>
<tr>
<th></th>
<th>CO2 Abatement Cost (X/CO2 t)</th>
<th>Unit price for power production (X/kW/H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT (Cassava)</td>
<td>10,134</td>
<td>16.8</td>
</tr>
<tr>
<td>BT (Sugarcane)</td>
<td>6,540</td>
<td>14.4</td>
</tr>
<tr>
<td>Solar PV</td>
<td>8,419~8,955</td>
<td>40~90</td>
</tr>
<tr>
<td>Wind Energy</td>
<td>-9,950 ~ 9,950</td>
<td>7~20</td>
</tr>
</tbody>
</table>

There are possibility of CO2 abatement and profitability of the project operation in our system.

Additional Reduction of CO2 emission

Surplus electricity would be supplied to the general grid → reduction of CO2 emission

1. BT system has great potential to gain CER (Certified Emission Reduction) efficiently.
2. Using biomass waste feedstock efficiently, the eco-energy, and the job opportunities for farmers would be created.