A life cycle analysis on Bio-DME synthesis system considering biomass materials

Masashi Higo(E-mail:j7408625@ed.noda.tus.ac.jp), Kiyoshi Dowaki Tokyo University of Science, Faculty of Science and Engineering, Department of Industrial Administration

1. Objective

This study focuses on Bio-DME (Biomass Di-methyl Ether) which is BTL (Biomass To Liquid). We executed process design of the Bio-DME production system. Especially, in order to estimate the variation of wood materials, seventeen species in Japan and Papua New Guinea (PNG) are selected.

- ◆To investigate the differences of specific CO₂ emissions with variation of the materials, their moisture content, and transportation distances.
- ◆To estimate energy intensities and specific CO₂ emissions, due to Bio-DME production performances and CO₂ inventories based on LCA methodology.

Fuel transportation distance \rightarrow JAPAN; 100km, PNG: 4,765km (one-way trip)

6. Discussions

It is important to propose the appropriate materials for ${\rm CO_2}$ emissions mitigation, and for Bio-DME production yield.

the regression equations on the specific CO_2 emission and the production yield of Bio-DME were estimated, base on analysis results.

7. Conclusions

◆We analyzed the differences of the seventeen species for their performances and the specific CO₂ emissions in the Bio-DME production system.

CO₂: CO₂ emissions [g-CO₂/MJ], Mat_{den}: Bulk density [t/m³], Cont_{H2}: Hydrogen content [wt.%]

◆If the heating value, the hydrogen contents and the bulk densities of feeds are provided, the Bio-DME production yields and the CO₂ emissions would be able to be predicted.