Proposals of the agricultural products cultivation system due to Blue Tower gasification combined-cycle systems to reduce CO₂ emission

Tokyo University of Science

Kiyoshi DOWAKI

E-mail: dowaki@rs.noda.tus.ac.jp

Energy I: LCM in the Energy Sector I 31/Aug/2011: 2:00pm-4:00pm

1. Background

CO₂ emission abatement

Biomass resources are carbon neutral.

Contribution to the Global warming protection.

Cost barrier

The installation cost is relatively high.

Fukuoka Blue Tower project

Installation of Bio-H₂ production system through biomass gasification process.

Due to a good business model in consideration of an environmental aspect and/or a solution for cost barrier, the ecofriendly system would be promoted.

Plant scale: 15 t/d

Product: H₂ gas (300Nm³/h) Location: Fukuoka, Japan Creation of the newly effective system.

Provided by IDEX, Japan

2. Comprehensive whole system

Blue Tower Gasification process

Realistic design of the gasification process

(Using an original simulator of VBA and/or the process simulator of AspenTech Inc. based on the experimental results)

R&D phase

OKey-Technologies Study

(Due to the basic experiments)

- 1.Estimation of the energy efficiency
- Analyses of a gasification performance and/or gaseous yields
- Measurement of thermal conductivity etc.

OApplication Technologies Study

(Utilization of the demo-plant or due to the basic experiments)

- 1.Prodution of Bio-H2 fuel
- 2.Estimation of the gas-engine operation
- Research of the combined gasification fuel cell cogeneration system
- FS on BTL fuels (DME and/or MeOH) etc.

Gasification apperatus

Fuel Cell (PEM)

A proposal of a new business model

A creation of a system package

A development of a creative market due to a combined agriculture engineering industry

A development of CO2 abatement system

Application (feedback) to food industry

Estimation of the consumer behavior due to cost, energy and LCA (carbon footprint) indexes (ex. Food industry)

| Selection of final eco-products | Ex. Vegetables, bread, rice etc. | Investigation of the willingness to pay of eco-products due to carbon footprint (CO2 visualization) | Realization of 4E | Countermeasure of CO2 abatement | CO2 visualization | CO2 visualization | CO2 visualization | CO3 vis

3. In the previous studies

So far, we executed the following research contents;

- a. We checked the performance through the demo-plant.
- b. The process design was executed based on the lab-scale experimental data. We also estimated the consistency between the plant data and the simulated one.
- c. We investigated the effect of CO₂ abatement in consideration of energy consumption in end-users.

4. Objectives in this study

For the paprika greenhouse facility,

- a. Based on the previous studies, we proposed the BT-SOFC and/or the BT-GE for the paprika greenhouse facility.
- b. We estimated the energy efficiency and/or the energy cost in consideration of excess energy supply.
- c. Based on LCA methodology, we estimated the CO₂ intensity of a paprika. This time, we compared two cases.
- d. Using the result of questionnaire for the consumers, we analyzed the willingness to pay (WTP) for CO₂ abatement.
- e. We compared the energy cost based on the effects of FIT and/or WTP of CFP.

Proposal of the advanced energy system for the paprika green house facility due to the contribution of CO₂ abatement and the reduction of cost barrier.

5. Schematic design of BT-SOFC/BT-GE

Basic specification of BT

- 1. Blue Tower Gasification Plant(Scale:15t-dry/d)
- 2. Additional feedstock is necessary in BT-GE case.
- 3. Gaseous components (at 550 °C in the pyrolyzer and at 950 °C in the reformer, and at S/C=1.0)

$$C_{33.9}H_{46.8}O_{20.3}N_{0.3} + 33.9H_2O \rightarrow$$

 $3.34CH_4 + 12.9CO + 34.8H_2 + 12.7CO_2 + 45.0H_2O$
 $+0.15N_2 + Others(Char etc.)$

H₂ conc. >50 Vol.%(Dry-basis)

6

→Paprika Greenhouse Facility (1.2ha)

6. Performance of BT-SOFC

*The performance data of BT reactor is based on the design of Fukuoka project.

 Table
 1 Data of the specification of SOFC unit

· ·		
Item	Unit	Data
Unit Scale	[kW]	200
Number of unit	[-]	4
Operating Temperature	[deg.C]	900
Current density J	[mA/cm ²]	612
Stoichiometric ratio	[-]	1.25
Tafel slope b	[mV/dec.]	2.2
Resistance R	[ohm]	0.52
Open Circuit Voltage U ₀	[mV]	950
DC/AC converter Eff.	[%]	95

Table 2 Performance of BT-SOFC system

ltem	Unit	Data
Feedstock	[kg/h]	764.5
Cold gas efficiency	[%-LHV]	87.3
Auxiliary Power	[kW]	113.9
Partial load ratio (SOFC)	[%]	81.7
Net Power eff. vs. Feedstock	[%-LHV]	19.2
Net power scale	[kW]	540

Definition of each performance data

$$\eta_{\text{cold}} = \frac{\text{Syngas} [\text{MJ/h}]}{\text{Feedstock} [\text{MJ/h}]}$$
(1)

$$U = U_0 - RJ - b \ln(J)$$
 (2)

Note: J. Kim et al. (1995): Journal of. Electrochemical Society, 142(8), 2670-2674

7. Performance of BT-GE

*The performance data of BT reactor is based on the design of Fukuoka project.

Table 3 Data of the specification of gas-engine unit

Item	Unit	Data
Unit Scale	[kW]	215
Number of unit	[-]	3
Engine output	[PS]	318
Revolution per minite	[rpm]	1,500
Compression ratio	[-]	10.0
(design)	[7]	10.0

Table 4 Performance of BT-GE system

Item	Unit	Data
Feedstock	[kg/h]	764.5
Cold gas efficiency	[%-LHV]	71.4
Auxiliary Power	[kW]	111.1
Partial load ratio (Gas-engine)	[%]	88.4
Net Power eff. vs. Feedstock	[%-LHV]	16.3
Net power scale	[kW]	459
Net Heat recovery eff.	[%-LHV]	28.6
Net heat supply	[MJ/h]	2,895

<Important suggestion>

In this case, the additional feedstock is necessary in order to satisfy the condition of reaction sensible heat in reactor.

139.5 kg/h (Main feedstock: 625.0 kg/h)

8. Energy / CO₂ Demand

Paprika Greenhouse (Miyagi, Japan)

Annual Energy Consumption (2008)

Annual Shipping Weight (2008)

Annual CO₂ gas for growth agent (2008)

9. Analysis of exergy

*Comparison of BT-SOFC to BT-GE

- 1. Due to the excess thermal energy, the exergy efficiency of gas-engine case would be worse (3 point disadvantages.)
- 2. The excess energy would be generated by the discrepancy between 10 supply and demand.

10. System boundary

Note:

In the LCI of "WtT (Well to Tank)" phase, the uncertainties on the transportation distance and the moisture of feedstock were considered.

11. Specific CO₂ emission

<Emission>

1. Conv. case: 622.6 g-CO₂/paprika

2. BT-SOFC: 25.0 -82.8 g-CO₂/paprika

3. BT-GE: 44.5 -117.7 g-CO₂/paprika

*Note that the uncertainties on the transportation distance and/or the moisture content of feedstock are included in the result.

**The paprika in the greenhouse is assumed to absorb 80 % of CO₂ gas which is synthesized artificially.

Fig. 1 Specific CO₂ emission of paprika cultivation Table 5 Data of specific CO₂ emission

Item	Specific CO ₂ emission	Note
Feedstock	0.0 g-CO ₂ /MJ-Fuel	at 20 wt.% (moisture content), Japanese Cedar, HV:13.23 MJ/kg
Diesel	74.4 g-CO ₂ /MJ-Fuel	Chipping, Transportation, HV: 35.50 MJ/L
Bunker A	76.9 g-CO ₂ /MJ-Fuel	Paprika production (Boiler)
Kerosene	73.6 g-CO ₂ /MJ-Fuel	Paprika production (Boiler)
Electricity	123.1 g-CO ₂ /MJ-Fuel	Paprika production (Ventilation and lightning)
Fertilizer (N)	5.67 kg-CO ₂ /kg	Indirect CO ₂ emission
Fertilizer (P ₂ O ₅)	0.88 kg-CO ₂ /kg	Indirect CO ₂ emission
Fertilizer (K ₂ O)	1.85 kg-CO₂/kg	Indirect CO ₂ emission

12. Expected operating cost

<Condition>

- 1. BT plant: 1 billion JPY
- 2. SOFC:

1 million JPY/kW as of 2015

GE: 0.24 million JPY/kW

*Note that the subsidy (1/2 rates) was considered in the both cases. Also, the FIT of 20 JPY/kWh was considered.

Fig. 2 Expected operating cost

Based on the questionnaire (Oct. 1 to 15,2010/ Respondents: 249) on the willingness to pay of paprika with CFP,

$$CO_2$$
 benefit [JPY/yr] = $\frac{82.9[JPY/paprika] \times CO_2}{3.05^{***}}$ × Annual products (3)

was obtained (Dot lines are indicated in consideration of WTP of CFP.).

***Annual products: 1.22 × 106 pieces/1.2 ha

13. Conclusion Remarks

- On the promotion of biomass gasification system, the greenhouse is one of the promising candidates.
- From the viewpoint of the energy efficiency, the energy supply due to BT-SOFC is better in comparison to BT-GE. This is due to the excess energy supply.
- CO₂ abatement of BT-system would be obtained to much extent.
- The energy cost is still high in comparison to the conventional one.
- However, using the FIT and/or the CFP scheme, the cost reduction can be achieved.

Thank you for your attention.