# A business feasibility study on paprika with carbon footprint (CFP) label

Kazuhiko Fukumotoi<sup>1,\*</sup> and Kiyoshi Dowaki<sup>1</sup>

<sup>1</sup>Tokyo University of Science, 2641 Yamazaki, Noda city, Chiba 278-

\*E-mail: j7411625@ed.noda.tus.ac.jp TEL: +81-4-7124-1501 ext.3815

## 1. INTRODUCTION

Ministry of Agriculture, Forestry and Fisheries (MAFF in Japan) Try to promote an eco-friendly scheme to agricultural sector The carbon-footprint (CFP) for agricultural products Consumers in Japan The added value for CO<sub>2</sub> emission reduction The carbon-footprint on the agricultural products might be brought (Itubo, 2009) such as vegetables would become attractive

We focused on greenhouse using a lot of energy and conducted feasibility study on our system, supplied electricity, thermal energy and CO<sub>2</sub> for growth promotion to paprika cultivation by BT under added-value for CFP.

The standard price of a paprika is higher in comparison to other vegetables.

Amount of distributed the paprika is increasing each year.

\*The standard price of a paprika: 200JPY

As one of vegetables the added value for CO<sub>2</sub> emission reduction might be brought, we focused the paprika cultivation.

Table 1 The condition of specification for our case study

|          | Gas Engine        |                |            | SOFC + HP         |                |
|----------|-------------------|----------------|------------|-------------------|----------------|
|          | Cultivation scale | BT-plant scale |            | Cultivation scale | BT-plant scale |
| GE-Case1 | 2ha               | 15t/day        | SOFC-Case1 | 2ha               | 15t/day        |
| GE-Case2 | 2ha               | 30t/day        | SOFC-Case2 | 2ha               | 30t/day        |
| GE-Case3 | 2ha               | 60t/day        | SOFC-Case3 | 2ha               | 60t/day        |
| GE-Case4 | 4ha               | 15t/day        | SOFC-Case4 | 4ha               | 15t/day        |
| GE-Case5 | 4ha               | 30t/day        | SOFC-Case5 | 4ha               | 30t/day        |
| GE-Case6 | 4ha               | 60t/day        | SOFC-Case6 | 4ha               | 60t/day        |

### 2. METHODOLOGY

#### 1. Outline of our system



Fig. 1 Proposed system

#### 2. Biomass LCA



 CO<sub>2</sub> emissions for products are based on LCA methodology.

## 3. Willingness to Pay due to Carbon footprint

In this previous study ...

The consumer should have a willing to pay (WTP) for ecofriendly vegetables.

There is potential to reduce CO<sub>2</sub> emission by purchasing the product.





4000

§ 2000

#### Added value

We clarified the sustainable business conditions in the consideration of the additional profit due to WTP besides the public support.

# 3. ENERGY AND CO, EMISSION OF THE CULTIVATION

#### 1. Conventional cultivation system

We estimated the energy consumption and CO<sub>2</sub>

Table 2 Annual production yield and energy consumption

| 240    | t/year                         |
|--------|--------------------------------|
| 240000 | L/year                         |
| 4300   | L/year                         |
| 58460  | kg/year                        |
| 100    | MW/year                        |
| 23715  | kg/year                        |
|        | 240000<br>4300<br>58460<br>100 |

## 2. CO<sub>2</sub> emission of conventional cultivation

Table 3 Specific CO2 intensity

| 2.8   | kg-CO <sub>2</sub> /L  |                                                                                          |
|-------|------------------------|------------------------------------------------------------------------------------------|
| 2.51  | kg-CO <sub>2</sub> /L  | (                                                                                        |
| 0.2   | kg-CO <sub>2</sub> /kg |                                                                                          |
| 0.468 | kg-CO <sub>2</sub> /kW | (                                                                                        |
| 2.5   | kg-CO <sub>2</sub> /kg |                                                                                          |
|       | 2.51<br>0.2<br>0.468   | 2.51 kg-CO <sub>2</sub> /L<br>0.2 kg-CO <sub>2</sub> /kg<br>0.468 kg-CO <sub>2</sub> /kW |

582.4g-CO2/paprika (4ha) 573.9g-CO<sub>2</sub>/paprika

## 3. The cultivation installing proposed system

Results from the interview to the farmer CO<sub>2</sub> gaseous concentration **11** 3000ppm \*conventional case: 600 ~700ppm Total yield would be three times

Fig. 3 CO<sub>2</sub> concentration and increasing rate of yield

# ◆ CO<sub>2</sub> reduction rate(each case): 55.1 ~ 89.8%

# 4. ANALYSIS OF COMSUMER'S AWARENESS AND ADDED VALUE FOR

## 1. Conjoint analysis, Questionnaire and Result

- We analyzed a questionnaire using conjoint analysis. The Questionnaire
  - ◆ Residents in Miyagi prefecture in Japan : 1000 families
  - ◆ The responses : 241(24.9%)
- ◆ The investigation period : from Oct. 1 to 15, 2010 (1) the preference survey of paprika, (2) the survey of environment awareness and (3) the predicable survey



#### 2. Estimation of added value



Price: 200yen/paprika

| Table 4 Marginal W H                                                                | ,     |
|-------------------------------------------------------------------------------------|-------|
| Rate of CO <sub>2</sub> reduction<br>[yen/a paprika CO <sub>2</sub> reduction 100%] | 82.9  |
| Production area(Otherprefecture)<br>[yen/a paprika]                                 | 61.2  |
| Production area (Miyagi)<br>[yen/a paprika]                                         | 117.0 |



200yen/paprika CO<sub>2</sub> benefit : 15.0 ~ 24.4yen/paprika

215.0 ~ 224.4yen/paprika

## 5. CASE STUDY



Fig. 5, 6 Relation between payout time, internal rate and consumer's utility

# 6. CONCLUSION

> It is highly possible that our system which is a combined system with the agriculture facility would be practically.

Abatement of

investment cost

- The combined SOFC system which would be fueled by the bio-fuel of hydrogen would be extremely promising one in the near future.
- They have good potential to pay more money for the products by which their utilities would be raised up.
- Due to the beneficial combinations, we would be able to reduce the cost relatively while abating CO<sub>2</sub> emission.