The vertex weighted complexity of a graph

HONGFENG WU * RONGQUAN FENG † IWAO SATO ‡

1. Introduction

Graphs and digraphs treated here are finite simple. Let G be a connected (unoriented) graph with vertex set $V(G)$ and edge set $E(G)$, where $E(G)$ is the set of unoriented edges of G. Let $D(G) = \{(u, v), (v, u) \mid uv \in E(G)\}$. The complexity $\kappa(G)$ of G is the number of spanning trees in G. The complexities for various graphs were given in [1,2].

Let G be a connected graph with n vertices v_1, \ldots, v_n. The adjacency matrix $A(G) = (a_{ij})$ is the square matrix such that $a_{ij} = 1$ if v_i and v_j are adjacent, and $a_{ij} = 0$ otherwise. Let $D = (d_{ij})$ be the diagonal matrix with $d_{ii} = \deg_G v_i$, and $Q = D - I$. For a connected graph G, let $f_G(u) = \det(I - uA(G) + u^2Q)$.

For a graph G, Northshield [5] showed that the complexity of G is given by the derivative of the function above.

Theorem 1[Northshield] For a connected graph G, $f_G'(1) = 2(l - n)\kappa(G)$, where $n = |V(G)|$ and $l = |E(G)|$.

Let G be a connected graph with n vertices v_1, \ldots, v_n. Furthermore, let $p : V(G) \rightarrow \mathbb{R}^+ = \{a \in \mathbb{R} \mid a \geq 0\}$ be a function. We say that each vertex v of G has weight $p_v = p(v)$. Then we define the $n \times n$ matrix $L = (L(u, v))_{u,v \in V(G)}$ as follows: $L(u, v) := \sum_{(v,z) \in D(G)} p_z$ if $u = v$, $L(u, v) := -\sqrt{p_u p_v}$ if $(u, v) \in D(G)$, and and $L(u, v) := 0$ otherwise.

Let T denote a spanning tree in G. For a vertex v in T, we define the rooted directed tree T_v towards the root v: $A(T_v) = \{(x, y) \mid xy \in E(T) \text{ and } d_T(v, x) > d_T(v, y)\}$, where $d_T(v, x)$ is the distance between v and x in T. Next, for each rooted directed tree T_v, the weight $w(T_v)$ is defined as follows: $w(T_v) = \prod_{(x,y) \in A(T_v)} p_y$. Also, we define $\kappa_v(G) = \sum_T w(T_v)$ and $\kappa_p(G) = \sum_{v \in V(G)} \kappa_v(G)$, where T runs over all spanning trees in G. Then $\kappa_p(G)$ is called the vertex weighted complexity of G. If $p_v = 1$ for all $v \in V(G)$, then the vertex weighted complexity of G is the number of rooted directed spanning trees in G.

Theorem 2[Chung and Langlands] The cofactor of L obtained by deleting the u th row and the v th column has determinant $(p_u p_v)^{1/2} (\sum z \in V(G) p_z)^{-1} \kappa_p(G)$.

2. Vertex weighted complexities of graphs

*LMAM, School of Mathematical Sciences, Peking University
†LMAM, School of Mathematical Sciences, Peking University
‡Oyama National College of Technology, Oyama, Tochigi 323-0806, JAPAN. E-mail:isato@oyama-ct.ac.jp
Let G be a connected graph with n vertices v_1, \ldots, v_n. Then we consider a $n \times n$ matrix $A_p = A_p(G) = (a_{ij})_{1 \leq i, j \leq n}$ as follows: $a_{ij} := \sqrt{p_{v_i} p_{v_j}}$ if $(v_i, v_j) \in E(G)$, and $a_{ij} := 0$ otherwise. This is called the (vertex) weighted matrix of G. Furthermore, let $A_p = (d_{ij})$ be the diagonal matrix with $d_{ii} = \sum_{(v_i, v_j) \in E(G)} p_{v_j}$, and $Q_p = A_p - I$. Note that $\mathcal{L} = D_p - A_p$. Then we introduce the following function: \(f_G(u, p) = \text{det}(I - uA_p(G) + u^2 Q_p). \)

The following theorem is a generalization of Theorem 1.

Theorem 3 Let G be a connected graph with n vertices, and p a vertex weight of G. Then $f_G(1, p) = 2^{|E(G)|} |p(V(G))| \kappa_p(G)$, where $p(E(G)) = \sum_{u \in E(G)} p_u p_v$ and $p(V(G)) = \sum_{v \in V(G)} p_v$.

3. Vertex weighted complexities of regular coverings

Theorem 4 Let G be a connected graph with n vertices and l unoriented edges, Γ a finite group and $\alpha : D(G) \rightarrow \Gamma$ an ordinary voltage assignment. Moreover, let p be a vertex weight of G. Furthermore, let $\rho_1 = 1, \rho_2, \ldots, \rho_l$ be all inequivalent irreducible representations of Γ, and f_i the degree of ρ_i for each i, where $f_1 = 1$. Then $f_G(u, \rho) = f_G(u, p) \cdot \prod_{i=2}^{l} \text{det}(I_{n, f_i} - u \sum_{g \in \Gamma} \rho_i(g) \otimes A_g + u^2 (f_i \circ Q_p))^{f_i}$.

Under the hypothesis of Theorem 4, $f_G(u, p)$ divides $f_{G^\alpha}(u, \rho)$.

We explicitly express the vertex weighted complexity of a connected regular covering of G by using the vertex weighted complexity of G.

Theorem 5 Let G be a connected graph with n vertices, Γ be a finite group and $\alpha : D(G) \rightarrow \Gamma$ an ordinary voltage assignment. Moreover, let p be a vertex weight of G. Furthermore, let $\rho_1 = 1, \rho_2, \ldots, \rho_l$ be the irreducible representations of Γ, and f_i the degree of ρ_i for each i, where $f_1 = 1$. Suppose that the the Γ-covering G^α of G is connected. Then the vertex weighted complexity of G^α is $\kappa_p(G^\alpha) = \kappa_p(G) \cdot \prod_{i=2}^{l} \text{det}(I_{n, f_i} - u \sum_{g \in \Gamma} \rho_i(g) \otimes A_g + (f_i \circ Q_p))^{f_i}$.

In the case that $p_v = 1$ for all $v \in V(G)$, we have $\kappa_p(G) = |V(G)| \kappa(G)$. From Theorem 5, we obtain a decomposition formula for the complexity of any connected regular covering of a graph G by using that of G (see [4]).

References