On Cameron–Erdős problem of Sidon sets

YOSHIHARU KOHAYAKAWA, SANG JUNE LEE, VOJTECH RÖDL and WOJCIECH SAMOTIJ

A set A of positive integers is called a Sidon set if all the sums $a_1 + a_2$, with $a_1 \leq a_2$ and $a_1, a_2 \in A$, are distinct. In this talk we consider Cameron–Erdős problem [1] which was suggested in 1990. The problem is to estimate the number of Sidon sets contained in $[n] := \{1, 2, \ldots, n\}$.

Let Z_n be the family of Sidon sets contained in $[n]$. Results of Chowla, Erdős, Singer, and Turán from the 1940s imply that the maximum size of Sidon sets in $[n]$ is $\sqrt{n}(1 + o(1))$. From this result, one trivially has

$$2^{\sqrt{n}(1+o(1))} \leq |Z_n| \leq \sum_{1 \leq i \leq F(n)} \binom{n}{i} = 2^{(1/2+o(1))\sqrt{n}\log n}. \quad (1)$$

Cameron and Erdős [1] improved the lower bound in (1) by showing that $\limsup_n |Z_n|^{2^{-F(n)}} = \infty$ and asked whether the upper bound could also be strengthened. However, these bounds have not been notably improved for about 20 years. Our result is as follows.

Theorem 1. (Kohayakawa, Lee, Rödl, Samotij [2]) There is a constant c for which $|Z_n| \leq 2^{c\sqrt{n}}$ for all large enough n.

Our proof method gives that the constant c in Theorem 1 may be taken to be arbitrarily close to $\log_2(32e) = 6.442 \cdots$. We do not make any attempts to optimize this constant as it seems that our approach cannot yield a sharp estimate for $\log_2|Z_n|$ (in particular, we give the proof for constants arbitrarily close to $\log_2(33e) = 6.487 \cdots$).

Very recently, Saxton and Thomason [3] derived Theorem 1 (for c arbitrarily close to 55) from a more general theorem bounding the number of independent sets in certain hypergraphs. They also proved that $|Z_n| \geq 2^{(1.16+o(1))\sqrt{n}}$.

For the proof of Theorem 1, we define a graph from our setting such that, roughly speaking, a Sidon set in $[n]$ corresponds to an independent set of the graph. In addition, the graph satisfies some dense condition. We show that in a graph satisfying the dense condition, the number of independent sets of given size t is much smaller than the trivial bound $\binom{n}{t}$. By applying it repeatedly, we have the

*University of Sao Paulo, Brazil; E-mail:yoshi@ime.usp.br
†Korea Advanced Institute of Science and Technology; E-mail:sjlee242@gmail.com
‡Emory University, USA; E-mail:rodl@mathcs.emory.edu
§Tel Aviv University, Israel; E-mail:samotij@post.tau.ac.il
new upper bound on the number of Sidon sets of a given size contained in \([n]\) as follows.

Theorem 2. (Kohayakawa, Lee, Rödl, Samotij [2]) Let \(0 < \sigma < 1\) be a real number. For any large enough \(n\) and \(t \geq 2s_0\), where \(s_0 = \left(\frac{2(1 - \sigma)^{-1}n \log n}{32en} \right)^{1/3}\), we have

\[
|Z_n(t)| \leq n^{3s_0} \left(\frac{32en}{\sigma t^2} \right)^t.
\]

(2)

Theorem 1 follows from Theorem 2 by summing over all \(t\).

References

