Maximally ambiguously k-colorable graphs ♠

Matthias Kriesell *

An anticlique of a graph G is a set of pairwise nonadjacent vertices of G, and a k-coloring of G is a partition of $V(G)$ into at most k anticliques. Graphs with at least one k-coloring are k-colorable, and we call those with more than one k-coloring ambiguously k-colorable. A graph is maximally ambiguously k-colorable if it is ambiguously k-colorable but adding any edge between distinct nonadjacent vertices produces a graph which is not. We give a full description of the maximally ambiguously k-colorable graphs in terms of quadratic matrices.

Let A be a $k \times k$-matrix where all entries are non-negative integers. A is tiny if it is a diagonal matrix with exactly one entry 2, all others at most 1, and at least two diagonal entries 0. A is small if it is a diagonal matrix with at least one entry 2, all others at most 2, and exactly one diagonal entry 0. A is special if all diagonal entries are nonzero, exactly one off-diagonal entry is 1, and all others are 0. A is normal if it is a block diagonal matrix with quadratic blocks M, D, where D is a diagonal matrix with nonzero diagonal entries and M has each of the following properties:

(i) All diagonal entries are nonzero,
(ii) M is of size $r \geq 2$ and fully indecomposable, that is it does not admit an $s \times (r-s)$ zero submatrix, where $s \in \{1, \ldots, r-1\}$, and
(iii) whenever $M(i,j) \geq 2$ for $i \neq j$ then there exists a sequence f_0, \ldots, f_{ℓ} from $\{1, \ldots, r\}$ with $\ell \geq 3$, $f_{h-1} \neq f_h$ and $M(f_{h-1}, f_h) \geq 1$ for all $h \in \{1, \ldots, \ell\}$, and $(f_0, f_1) = (f_{\ell-1}, f_{\ell}) = (i,j)$.

Finally, A is desirable if it is tiny or small or special or normal.

Given a matrix A with non-negative integer entries, we associate a graph $G(A)$ on $\{(i, j, t) : i, j \in \{1, \ldots, k\}, t \in \{1, \ldots, A(i, j)\}\}$, where (i, j, t) and (i', j', t') are adjacent if and only if $i \neq i'$ and $j \neq j'$. Our main theorem can be formulated as follows.

Theorem 1. Given $k \geq 1$, a graph is maximally ambiguously k-colorable if and only if it is isomorphic to $G(A)$ for some desirable $k \times k$-matrix A.

As a (nontrivial) application of this theorem we get a Turán type result. Given integers r, n, the Turán number of n and K_{r+1} is the largest number $\text{ex}(n, K_{r+1})$ of edges a (simple) graph on n vertices without K_{r+1} as a subgraph can have. A desirable $k \times k$-matrix A is called row-balanced if $|\sum_{j=1}^{k} A(i, j) - A(i', j)| \leq 1$ for all $i, i' \in \{1, \ldots, k\}$, that is, the difference of any two row-sums is 0 or ±1. Likewise,
A is \textit{column-balanced} if $|\sum_{i=1}^{k} A(i,j) - A(i,j')| \leq 1$ for all $j, j' \in \{1, \ldots, k\}$. A is \textit{balanced} if it is both row- and column-balanced. Let us call a special matrix A \textit{very special} if it is row-balanced and the sum of the entries in row j is $\lfloor \frac{n}{k} \rfloor$, where j is the index of the unique column with an off-diagonal entry, or, symmetrically, if A is column-balanced and the sum of the entries in column i is $\lfloor \frac{n}{k} \rfloor$, where i is the index of the unique row with an off-diagonal entry. Observe that we can realize a very special matrix for all $n \geq k + 1$. If k divides n or $n+1$ then, up to isomorphism, they all induce one and the same graph, whereas if k does neither divide n nor $n+1$ then, up to isomorphism, they all induce one among two nonisomorphic graphs. Finally, suppose that A is a normal matrix, and let M, D be as in the definition of \textit{normal}; we call A \textit{mininormal}, if A is balanced, $M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, and $2k \leq n < 3k$.

\textbf{Theorem 2.} Let n, k be integers. Then the maximum number of edges an ambiguously k-colorable graph on n vertices can have is $ex(n, K_{k+1}) - \max\{1, \lfloor \frac{n}{k} \rfloor\}$. The graphs where equality is attained are of the form $G(A)$, where A is a desirable $k \times k$-matrix such that A is tiny or small or very special or mininormal.