画像が表示されません

プレプリント

  1. X. Han and H. Yamamoto,
    An $\varepsilon$-regularity theorem for line bundle mean curvature flow, arXiv

論文

  1. H. Yamamoto,
    Ricci-mean curvature flows in gradient shrinking Ricci solitons, arXiv,
    to appear in Asian J. Math.
  2. J. Takahashi and H. Yamamoto,
    Solutions with time-dependent singular sets for the heat equation with absorption,
    J. Differential Equations, 266(2019), no. 7, 4061-4105. Here
  3. H. Yamamoto,
    Special Lagrangian and deformed Hermitian Yang-Mills on tropical manifold,
    Math. Z., 290(2018), no. 3,4, 1023-1040. Here and Here
  4. N. Koike and H. Yamamoto,
    Gauss maps of the Ricci-mean curvature flow,
    Geom. Dedicata, 194(2018), no. 1, 169-185. Here and Here
  5. H. Yamamoto,
    Examples of Ricci-mean curvature flows,
    J. Geom. Anal., 28(2018), no. 2, 983-1004. Here and Here
  6. H. Yamamoto,
    Lagrangian self-similar solutions in gradient shrinking Kähler-Ricci solitons,
    J. Geom., 108(2017), no. 1, 247-254. Here
  7. H. Yamamoto,
    Weighted Hamiltonian stationary Lagrangian submanifolds and generalized Lagrangian mean curvature flows in toric almost Calabi-Yau manifolds,
    Tohoku Math. J., 68(2016), no. 3, 329-347. Here
  8. H. Yamamoto,
    Special Lagrangians and Lagrangian self-similar solutions in cones over toric Sasaki manifolds,
    New York J. Math., 22(2016), 501-526. Here
  9. A. Futaki, K. Hattori and H. Yamamoto,
    Self-similar solutions to the mean curvature flows on Riemannian cone manifolds and special Lagrangians on toric Calabi-Yau cones,
    Osaka J. Math., 51(2014), no. 4, 1053-1079. Here

報告集等

  1. H. Yamamoto,
    平均曲率流の特異点について,
    RIMS Kôkyûroku, No.2068, 22-35. 2018.
  2. H. Yamamoto,
    リッチ平均曲率流とそのガウス写像について,
    「福岡大学微分幾何研究会2017」報告集, 121-125.
  3. H. Yamamoto,
    リッチ平均曲率流とその具体例について,
    「福岡大学微分幾何研究会2016」報告集, 67-71.
  4. H. Yamamoto,
    Huisken氏のある定理の拡張について,
    「福岡大学微分幾何研究会2015」報告集, 31-40.
  5. H. Yamamoto,
    Examples of generalized Lagrangian mean curvature flows in toric almost Calabi-Yau manifolds,
    RIMS Kôkyûroku, No.1929, 54-63. 2014. Here
  6. H. Yamamoto,
    トーリックカラビヤウ多様体上の特殊ラグランジュ部分多様体およびラグランジュ自己相似解について,
    研究集会「部分多様体幾何とリー郡作用2013」報告集, 28-34.
  7. H. Yamamoto,
    toric Calabi-Yau多様体上のLagrangian mean curvature flowについて,
    研究集会「部分多様体論・湯沢2012」報告集, 11-16.