Superconductivity in Quasicrystals

RIKEN Center for Emergent Matter Science Shiro Sakai

Feb. 1, 2021

Collaborators

Nayuta Takemori (Okayama University, A03)

Akihisa Koga (Tokyo Institute of Technology, A04)

Ryotaro Arita (University of Tokyo, RIKEN)

Superconducting quasicrystal?

Al-Zn-Mg

For the discovery of a new superconductor, we would have

- Meissner effect
- Identification of crystal structure
- Reproducibility

by K. Kitazawa

No magnetization data.

DOI: 10.1038/s41467-017-02667-x

Discovery of superconductivity in quasicrystal

OPEN

K. Kamiya^{1,5}, T. Takeuchi², N. Kabeya³, N. Wada¹, T. Ishimasa⁴, A. Ochiai³, K. Deguchi¹, K. Imura¹ & N.K. Sato¹

First example of electronic long-range order in QC

Top 10 Breakthroughs of 2018 in Physics World

Kamiya et al., Nature Commun. 9, 154 (2018)

What's the issue?

Standard understanding of superconductivity

- Presence of Fermi surface
- Cooper pair = (2 el. with \mathbf{k}_{F} and $-\mathbf{k}_{F}$)
- Many properties calculated in momentum space.

Quasicrystal: No momentum space, no Fermi surface

How can we understand a superconducting QC?

Note: Two different reciprocal spaces

$$\rho(\mathbf{r}) = \left\langle c_{\mathbf{r}}^{\dagger} c_{\mathbf{r}} \right\rangle \quad \text{Local density}$$

Figures from https://www.kek.j p/ja/newsroom/2 011/12/08/1200/

$$S(\boldsymbol{q}) = \int \rho(\boldsymbol{r}) e^{i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

q: F. T. of *absolute* coordinate

r

In periodic systems, Fermi surface is defined by a peak in

$$A(\mathbf{k}, \omega = E_F) = -\frac{1}{\pi} \operatorname{Im} G(\mathbf{k}, \omega = E_F)$$

F. T. of $G(\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2, t) = -i \langle Tc_{\mathbf{r}_1}(t) c_{\mathbf{r}_2}^{\dagger}(0) \rangle$
k: F. T. of *relative* coordinate
This is not well defined in OC

What's the issue?

Anderson's theorem

P. Anderson, J. Phys. Chem. Solids 11, 26 (1959)

s-wave superconductivity is robust against weak (nonmagnetic) disorder

But, strong disorder can destroy SC!

Figure from A. Ghosal, M. Randeria, and N. Trivedi, PRL **81**, 3940 (1998).

Normal state: metal \rightarrow Anderson insulator

What about quasicrystal?

Normal state: critical wave function

What's the issue?

Novel SC properties?

Fractal superconductivity!

How to address the issues?

- No momentum space
- Nonuniform (but not random)

DFT for approximants?

M. Saito, T. Sekikawa, and Y. Ono, Phys. Status Solidi B 2000108 (2020): Conductivity and specific heat

cf. 1D: M. Tezuka and A. M. Garcia-Garcia, PRA **82**, 043613 (2010).

Model of quasiperiodicity

R. Penrose, Inst. Math. Appl. Bull. 10, 266 (1974)

Model with pairing attraction

Figure from Esslinger, Ann. Rev. Condens. Matt. Phys. 1, 129 (2010)

Attractive Hubbard model on Penrose tiling

$$\left[H = -t \sum_{\langle ij \rangle \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} - \mu \sum_{i\sigma} n_{i\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} \right] \text{ on }$$

Inhomogeneity \rightarrow Real-space approaches

Bogoliubov-de Gennes theory (BdG)

- Static mean field (one-body approx., weak U)
- Large size ~ 1 million sites : Y. Nagai, JPSJ **89**, 074703 (2020)

Real-space dynamical mean-field theory (RDMFT)

- Dynamical mean field (many-body physics, weak-to-strong U)
- < 10,000 sites

A. Georges *et al.*, RMP **68**, 13 (1996)M. Potthoff and W. Nolting, PRB **59**, 2549 (1999)

Bogoliubov - de Gennes theory (BdG)

Real-space dynamical mean-field theory (RDMFT)

- Geometry of the Penrose lattice comes in the one-body part.
- Nonlocal correlations are neglected.

Local SC order parameter

- Superconductivity occurs at low *T*.
- Transition occurs *simultaneously* at every sites.

Three different superconducting states

Three different superconducting states

Spatial extension of Cooper pairs $\Delta_{ij} = \langle c_{i\uparrow} c_{j\downarrow} \rangle$: Off-site SC order parameter

Crossover of three different SC states

Crossover of three different SC states

Unusual pairing in momentum space (1)

FT of *i* and *j*, respectively

Square lattice

 $|\langle c_{\mathbf{k}\uparrow} c_{\mathbf{k}\downarrow\downarrow} \rangle|$ for $k_x = k_y = k$ and $k_x' = k_y' = k'$

Unusual pairing in momentum space (2) $|\langle c_{\mathbf{k}\uparrow}c_{\mathbf{k}\downarrow\downarrow}\rangle|$ for $k_x=k_y=k$ and $k_x'=k_y'=k'$

What about the property?

Universal properties in BCS theory

 $\frac{2E_g^0}{T_c} \cong 3.52 \qquad \begin{array}{c} E_g(T) \text{: Energy gap} \\ E_g^0 = E_g(0) \end{array}$

$$\frac{E_g(T)}{E_g^0} \cong A_1 \left(1 - \frac{T}{T_c} \right)^{\gamma}, A_1 \cong 1.74, \gamma = \frac{1}{2}$$

 $\frac{\Delta C_e}{C_{en}} \cong 1.43$: Jump of specific heat

Does these relations hold in quasiperiodic SC?

The gap & $T_{\rm c}$

		Per	nrose	Square		BCS	
	1591	4181	11 006	Ext	2500	10 000	
$\frac{2E_g^0}{T_c}$	3.35	3.38	3.38	3.38	3.46	3.45	3.52
A	1.01	1.05	1.09	1.70	1.70	1.70	1.74

 $2E_g^0/T_c$: Small but substantial shift to a lower value \Leftrightarrow Amorphous SC A_1 : No significant change

Jump of specific heat

$$S = 2\sum_{\alpha} \left\{ \ln(1 + e^{-\beta E_{\alpha}}) + \frac{\beta E_{\alpha}}{e^{\beta E_{\alpha}} + 1} \right\}$$
$$C_e = T \frac{dS}{dT}$$

Experiment: Kamiya et al., Nature Commun. 9, 154 (2018)

		Per	nrose	Square		BCS	
	1591	4181	11 006	Ext	2500	10 000	
$\frac{\Delta C}{C_{\text{en}}}$	1.13	1.21	1.21	1.21	1.40	1.39	1.43

~15 % smaller Jump

N. Takemori, R. Arita and SS, PRB **102**, 115108 (2020).

N. Takemori, R. Arita and SS, PRB 102, 115108 (2020).

Local density of states

- The spectral gap is much more uniform than $\langle c_{i\uparrow}c_{i\downarrow}\rangle$.
- The weight of spectral peaks significantly depends on sites.

I-V characteristics (1)

Finite gradient at the threshold voltage

Absence of coherence peak

N. Takemori, R. Arita and SS, PRB 102, 115108 (2020).

I-V characteristics (2)

Any signature at finite T?

Weakly T-dependent slope signals quasiperiodic SC.

N. Takemori, R. Arita and SS, PRB **102**, 115108 (2020).

Effect of magnetic field

Both positive and negative Δ_i .

SS, and R. Arita, Phys. Rev. Research 1, 022002(R) (2019)

FFLO-like state in quasiperiodic systems

\bar{n} =0.5, U=-3

FFLO in periodic systems

Fulde and Ferrell, PR **135**, A550 (1964). Larkin and Ovchinnikov, ZETF **47**, 1136 (1964).

$$\langle c_{\mathbf{k}+\mathbf{q}\uparrow}c_{-\mathbf{k}\downarrow}\rangle$$

Fig. from Matsuda and Shimahara, JPSJ **76**, 051005 (2007).

Even without Fermi surface, the sign change occurs!

SS, and R. Arita, Phys. Rev. Research 1, 022002(R) (2019)

Impurities (random potential)

Quasiperiodic potential

FFLO-like states

Electrons self-organize into a pattern compatible with the quasiperiodicity!

Are any other exotic pairings possible?

Kohn-Luttinger Mechanism Driven Exotic Topological Superconductivity on the Penrose Lattice

Ye Cao,¹ Yongyou Zhang¹,¹ Yu-Bo Liu,¹ Cheng-Cheng Liu,¹ Wei-Qiang Chen,^{2,3,4} and Fan Yang^{1,*}

- Anisotropic and/or spin-triplet pairings
- Superconductivity from repulsive *U*
- Kohn-Luttinger mechanism without Fermi surface
- Topological superconductivity
- Spontaneous vortices without magnetic field

Angular momentum of absolute coordinate, NOT a relative one of a pair

Both spin-singlet and triplet are possible for each orbital pairing.

Summary

- Order parameter shows various spatial patterns, depending on the spatial extent of Cooper pairs.
- Weak-coupling SC with unusual extended Cooper pairs SS, N. Takemori, A. Koga and R. Arita, PRB **95**, 024509 (2017).
- Deviation from the BCS universal properties

N. Takemori, R. Arita and SS, PRB **102**, 115108 (2020).

• FFLO-like SC at high magnetic field

SS and R. Arita, Phys. Rev. Research 1, 022002(R) (2019).

• Anisotropic SC

Y. Cao et al., PRL 125, 017002 (2020).

Topological SC

I. C. Fulga *et al.*, PRL **116**, 257002 (2016). R. Ghadimi *et al.*, arXiv:2006.06952

QC can be a novel platform of exotic SC!

