第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

準周期構造の理論的基礎 Theoretical introduction to quasiperiodic structures

Nobuhisa Fujita

IMRAM, Tohoku University, Sendai 980-8577, Japan ― 準周期構造の理論と基礎 ―

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Outline

1. Introduction pp.3-8

- 2. Z-modules for quasicrystals pp.9-23
- 3. Quasiperiodic tilings (QPTs) pp.24-31
- 4. Methods for generating QPTs pp.32-61
- 5. Approximants

pp.62-78

― 準周期構造の理論と基礎 ―

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

1. Introduction

ED pattern from a rapidly quenched Al-Mn alloy

D. Shechtman, et al., Phys. Rev. Lett. 53 (1984) 1951-1953.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

5-fold rotational symmetry is not compatible with periodicity, still the diffraction peaks are very sharp.

D. Shechtman, et al., Phys. Rev. Lett. 53 (1984) 1951-1953.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Quasicrystals as a new class of ordered solids

1. Long-range quasiperiodic translational order

A QC exhibits a self-similar arrangement of Bragg peaks (δ functions), whose indexing needs k (> d) independent basis vectors for indexing (d: the number of space dimensions).

2. <u>Non-crystallographic point group symmetry</u>

A QC exhibits a point group symmetry forbidden in periodic crystals (*e.g.*, *n*-fold rotational axes with *n* being a natural number excluding 1, 2, 3, 4 and 6).

D. Levine and P.J. Steinhardt, *Phys. Rev. Lett.* 53 (1984) 2477 – 2480.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Paradigm shift in crystallography: the New definition of crystals (1992)

The definition proposed by the IUCr Commission on Aperiodic Structures (IUCr, 1991):

by *crystal* we mean <u>any solid having an</u> <u>essentially discrete diffraction diagram</u> and *aperiodic crystal* we mean <u>any crystal in</u> <u>which three-dimensional lattice periodicity</u> <u>can be considered to be absent</u>.

International Union of Crystallography, Report of the Executive Committee for 1991, *Acta Cryst.* A48 (1992) 922–946.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Aperiodic order: Three known categories

Quasiperiodic structure (QCs, incommensurate modulation, composite crystals) A structure that show Bragg peaks (δ functions) in diffraction patterns which require k (> d) independent reciprocal basis vectors for indexing, where d is the # of space dimensions and $k < \infty$.

Limit-periodic structure

A structure with recursive (or hierarchical) superlattice structures superposed on a basic periodic lattice.

K. Niizeki and N. Fujita, *Philos. Mag.* 87 (2007) 3073–3078 and references cited therein.

Limit-quasiperiodic structure

A structure that can be obtained as an incommensurate section of a limitperiodic structure in higher dimensions.

K. Niizeki and N. Fujita, J. Phys. A: Math. Gen. 38 (2005) L199–L204 and references cited therein.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Non-crystallographic point groups for quasicrystals

- 準周期構造の理論と基礎 --

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

2. <u>Z-Modules</u> for quasicrystals

(Z-加群) Additive Abelian group over an integer ring (Z) *!! Alternatives to lattices for periodic crystals*

Reciprocal (= Fourier) module, \mathcal{M}^*

≃ A *dense* (≠ *discrete*) point set in the *d*-dim. wave-number (or reciprocal) space generated as the integer linear combinations of k (> d) reciprocal basis vectors, used to index the Bragg peaks.

Direct (= Bravais) module, \mathcal{M}

(k: rank, d: space dimensions)

 \simeq A *dense* (\neq *discrete*) point set in the *d*-dim. real (or direct) space generated as the integer linear combinations of *k* (> *d*) basis vectors, used to index the quasi-lattice points or tiling vertices.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Ex) Fourier module for decagonal QC

一準周期構造の理論と基礎第一回新学2. Z-modules for quasicrystals若手研究会

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Minimal basis set for indexing the Bragg peaks

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

For a planar *n*-gonal quasicrystal, the minimal number of basis vectors is $k = \phi(n)$, where $\phi(n)$ (Euler's ϕ -function) is the number of positive integers up to *n* that are co-prime with *n*.

$$\phi(n) = n \prod_{j} \left(1 - \frac{1}{p_{j}} \right) \quad (p_{j} \in \{\text{all prime factors of } n\})$$
$$\sum_{j} \phi(d_{j}) = n \qquad (d_{j} \in \{\text{all divisors of } n\})$$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Lifting up the # of space dimensions

d-dim. Fourier module \mathcal{M}^* of rank *k* can be lift up to *k*-dim. reciprocal hyper-lattice \mathcal{L}^*

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Lifting up the # of space dimensions *d*-dim. Fourier module \mathcal{M}^* of rank k can be lift up to *k*-dim. reciprocal hyper-lattice \mathcal{L}^*

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Complementary components, g_j^{\perp}

 $G_{\mathcal{M}^*}$: point group of the Fourier module \mathcal{M}^* of the QC $G_{\mathcal{L}^*}$: point group of the *k*-dim. reciprocal hyper-lattice \mathcal{L}^*

 $G_{\mathcal{L}^*}$ should have a subgroup *H* which is isomorphic to $G_{\mathcal{M}^*}$ (i.e., $G_{\mathcal{L}^*} \supset H \cong G_{\mathcal{M}^*}$) and which does not mix the physical and orthogonal components, i.e.,

$$\overline{D} = \begin{pmatrix} D & 0 \\ 0 & D^{\perp} \end{pmatrix} \text{ where } \overline{D} \in H \text{ and } D \in G_{\mathcal{M}^*}$$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Lifting up the # of space dimensions [*k*-dim. basis vectors, $\overline{g}_i = (g_i, g_i^{\perp})$ of \mathcal{L}^*]

Physical components

Perpendicular components

[1] K. Niizeki, J. Phys.: Math. Gen. 22 (1989) 193-204.
[2] A. Yamamoto, Acta Cryst. A52 (1996) 509-560.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Structure factors

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Charge density (periodic in hyper-space)

Direct space (perpendicular dims.) (k-d)-dim.

The real charge density in the physical space is a *d*-dim. section of a periodic array of atomic surfaces in *k*-dim. hyper-space obtained as the Fourier transform of the *k*-dim. structure factors.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

k-dim. bases \overline{a}_j of the direct hyper-lattice \mathcal{L} = Fourier tr. of the reciprocal hyper-lattice \mathcal{L}^*

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

k-dimensional bases $\overline{a}_i = (a_i, a_i^{\perp})$ of \mathcal{L}

二準周期構造の理論と基礎第一回新学術領域ハイパーマテリアル2. Z-modules for quasicrystals若手研究会@Web開催2020.5.28

(Direct Reciprocal) hyper-lattices for quasicrystals

- 2-dim. QC : A unique hyper-lattice exists for *n*-gonal case (n = 5, 8, 10, 12, 18, ...)
- 3-dim. QC : Three hyper-lattices exist for icosahedral case P-type (SI) / F-type (FCI) / I-type (BCI)

$$\mathcal{L}_{P} \coloneqq \{n_{1}\bar{a}_{1} + n_{2}\bar{a}_{2} + n_{3}\bar{a}_{3} + n_{4}\bar{a}_{4} + n_{5}\bar{a}_{5} + n_{6}\bar{a}_{6}\}$$
$$\mathcal{L}_{F} \coloneqq \{n_{1}\bar{a}_{1} + n_{2}\bar{a}_{2} + n_{3}\bar{a}_{3} + n_{4}\bar{a}_{4} + n_{5}\bar{a}_{5} + n_{6}\bar{a}_{6} | \sum_{j=1}^{6} n_{j} = 0 \mod 2\}$$
$$\mathcal{L}_{I} \coloneqq \{n_{1}\bar{a}_{1} + n_{2}\bar{a}_{2} + n_{3}\bar{a}_{3} + n_{4}\bar{a}_{4} + n_{5}\bar{a}_{5} + n_{6}\bar{a}_{6} | n_{i} = n_{j} \mod 2\}$$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Direct (= Bravais) module \mathcal{M} (projection of \mathcal{L} onto the physical sub-space)

Df.)
$$\mathcal{M} = \left\{ \sum_{j=1}^{k} n_j \boldsymbol{a}_j \mid n_j \in \mathbb{Z} \right\}$$

一準周期構造の理論と基礎第一回新学術領域ハイパーマテリアル2. Z-modules for quasicrystals若手研究会@Web開催2020.5.28

Self-similarity of \mathcal{M} (and \mathcal{M}^*)

Z-modules for quasicrystals are scale invariant. There exists an irrational number τ , called the *Pisot unit*, such that $\tau \mathcal{M} = \mathcal{M}$ and $\tau > 1$

Pisot unit for important classes of QCs:

D.S. Rokhsar, *et al.*, *Phys. Rev. B* **35** (1987)5487 – 5495.
 L.S. Levitov and J. Rhyner, *J. Phys. France* **49** (1988) 1835 – 1849.
 K. Niizeki, *J. Phys.: Math. Gen.* **22** (1989) 193 – 204.

― 準周期構造の理論と基礎 ―

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

B. Gruenbaum, G.C. Shephard, *Tilings and Patterns* (Freeman, New York, 1987) Chap. 10.24

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

R. Penrose, *Math. Intel.* 2 (1979) 32–37.
B. Gruenbaum, G.C. Shephard, *Tilings and Patterns* (Freeman, New York, 1987) Chap. 10.²⁵

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

R. Penrose, *Math. Intel.* 2 (1979) 32–37.
B. Gruenbaum, G.C. Shephard, *Tilings and Patterns* (Freeman, New York, 1987) Chap. 10.²⁶

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

F. P. M. Beenker, Eindhoven University of Technology Report No. 82-WSK-04. (Eindhoven , 1982).

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

P. Stampfli, *Helv. Phys. Acta* **59** (1986) 1260–1263. J. Hermisson, C. Richard, M. Baake, *J. Phys. I France* **7** (1997) 1003–1018. 一準周期構造の理論と基礎第一回新学術領域ハイパーマテリアル3. Quasiperiodic tilings (QPTs)若手研究会@Web開催2020.5.28

The *x* coordinate of every lattice point is represented as $x = i + \frac{j}{\tau}$, which belongs to the 1-dim. Z-module: $\mathcal{M} = \{m + n/\tau \mid m, n \in \mathbb{Z}\}$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Lifting up the # of space dimensions

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Cut-and-project method x_{\perp} Span of window χ_{\parallel} $\overline{a}_1 = \left(1, -\frac{1}{\tau}\right), \overline{a}_2 = \left(\frac{1}{\tau}, 1\right)$

31

― 準周期構造の理論と基礎 ―

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

4. Methods for generating QPTs

Methods for constructing QPTs

– 準周期構造の理論と基礎 –4. Methods for generating QPTs

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Cut-and-project method

– 準周期構造の理論と基礎 –

4. Methods for generating QPTs

Section method

第一回新学術領域ハイパーマテリアル

若手研究会@Web開催2020.5.28

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Cut-and-project method \simeq Section method x_{\perp} Span of window χ_{\parallel} $\overline{a}_1 = \left(1, -\frac{1}{\tau}\right), \overline{a}_2 = \left(\frac{1}{\tau}, 1\right)$ Check! An atomic surface intersect with the physical space if and only if the

corresponding lattice point is within the strip.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Check! All the squares which intersect with the horizontal axis are colored in red. The left base points of the red square are inside the strip.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

If we remove the vertex between L and S in every LS pair, we get a new segment, L'. This is done simply by narrowing the window.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Here, the window is reduced by a factor of $1/\tau$. The new L' tile corresponds to the projection of a diagonal of the square unit cell.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

If the unit cell is chosen as a parallelogram as shown, the new tiles L' and S' correspond to the projection of the edges of the parallelogram.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

The Affine transformation, \overline{A} , which rescales the x_{\parallel} and x_{\perp} axes by $1/\tau$ and $-\tau$, respectively, will recover the original setting (cut-and-projection).

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Dual-grid method – practice in 1 dim.

Two-dimensional grid lines (in hyper-space)

$$\overline{a}_1 = \begin{pmatrix} 1, & -\frac{1}{\tau} \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} \frac{1}{\tau}, & 1 \end{pmatrix}$$

 $\begin{array}{l} (n_1 + s_1)\overline{a}_1 + \theta \overline{a}_2 \ (-\infty < \theta < \infty) \ \dots \ 1^{\text{st}} \text{ series} \\ \\ \theta \overline{a}_1 + (n_2 + s_2)\overline{a}_2 \ (-\infty < \theta < \infty) \ \dots \ 2^{\text{nd}} \text{ series} \\ \\ (s_1, s_2 \ \dots \text{ phason shift parameters}) \end{array}$

One-dimensional grid points (in physical sub-space)

$$(n_1 + s_1)\overline{a}_1 + \theta \overline{a}_2 = (x, 0) \rightarrow \theta = 1/\tau (n_1 + s_1)$$

$$\rightarrow x = (2 - 1/\tau)(n_1 + s_1) \dots 1^{\text{st}} \text{ series}$$

$$\theta \overline{a}_1 + (n_2 + s_2)\overline{a}_2 = (x, 0) \rightarrow \theta = \tau (n_2 + s_2)$$

$$\rightarrow x = (1 + 2/\tau)(n_2 + s_2) \dots 2^{\text{nd}} \text{ series}$$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Dual-grid method – practice in 1 dim.

Base points of the two unit cells that contact each other at a grid point (in the physical space)

(1st series) $x = (2 - 1/\tau) (n_1 + s_1), \ \theta = 1/\tau (n_1 + s_1)$

 $n_2 = \theta - \operatorname{Frac}[\theta] = \operatorname{Floor}[\theta]$

 $(n_1, n_2), (n_1-1, n_2)$... indices for the squares

(2nd series) $x = (1 + 2/\tau) (n_2 + s_2), \theta = \tau (n_2 + s_2)$

 $n_1 = \theta - \operatorname{Frac}[\theta] = \operatorname{Floor}[\theta]$

 $(n_1, n_2), (n_1, n_2-1)$... indices for the squares

The vertices of the tiling are the projections of these base points. base point, $(n_1, n_2) \leftrightarrow$ vertex coordinate $x = n_1 + n_2/\tau$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Dual-grid method – practice in 2 dims.

$$\overline{a}_{j} = \sqrt{2/5} \left(\cos \varphi_{j}, \sin \varphi_{j}, \cos 2 \varphi_{j}, \sin 2 \varphi_{j}, \sqrt{1/2} \right)$$

where $\varphi_{j} = \frac{2\pi j}{5}, j = 1, 2, 3, 4, 5$

Check! $\overline{a}_i \cdot \overline{a}_j = \delta_{ij}$... the Kronecker delta

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Dual-grid method – practice in 2 dims.

5-dim. hyper-cubic lattice: $\mathcal{L} = \{n_1 \overline{a}_1 + n_2 \overline{a}_2 + n_3 \overline{a}_3 + n_4 \overline{a}_4 + n_5 \overline{a}_5\}$

Hyper-grids in 5-dim. hyper-space ____ Phason shifts

(θ_j : free parameter)

2-dim. grid lines (the physical-space sections of the hyper-grids)

 1st grids:
 $5/2(n_1 + s_1)a_1^{\parallel} + \theta(a_2^{\parallel} - a_5^{\parallel})$

 2nd grids:
 $5/2(n_2 + s_2)a_2^{\parallel} + \theta(a_3^{\parallel} - a_1^{\parallel})$

 3rd grids:
 $5/2(n_3 + s_3)a_3^{\parallel} + \theta(a_4^{\parallel} - a_2^{\parallel})$

 4th grids:
 $5/2(n_4 + s_4)a_4^{\parallel} + \theta(a_5^{\parallel} - a_3^{\parallel})$

 5th grids:
 $5/2(n_5 + s_5)a_5^{\parallel} + \theta(a_1^{\parallel} - a_4^{\parallel})$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

二準周期構造の理論と基礎第一回新学術領域ハイパーマテリアル4. Methods for generating QPTs若手研究会@Web開催2020.5.28

Dual-grid method – practice in 2 dims.

 $(x, y, 0, 0, 0) = (n_1 + s_1)\overline{a}_1 + (n_2 + s_2)\overline{a}_2 + \theta_3\overline{a}_3 + \theta_4\overline{a}_4 + \theta_5\overline{a}_5$ $\theta_3 = \overline{g}_3 \cdot (x, y, 0, 0, 0) = n_3 + s_3 + \delta, \ n_3 = [\theta_3 - s_3], \ \delta = Frac(\theta_3 - s_3)$ $\theta_4 = \overline{g}_4 \cdot (x, y, 0, 0, 0) = n_4 + s_4 + \delta', \ n_4 = [\theta_4 - s_4], \ \delta' = Frac(\theta_4 - s_4)$ $\theta_5 = \overline{g}_5 \cdot (x, y, 0, 0, 0) = n_5 + s_5 + \delta'', \ n_5 = [\theta_5 - s_5], \ \delta'' = Frac(\theta_5 - s_5)$ where $\overline{g}_j = \overline{a}_j (j = 1, 2, 3, 4, 5) \dots 5$ -dim. reciprocal basis vecs.

These equations determine five integers n_1 , n_2 , n_3 , n_4 , n_5 , which provide the indices of the base points of the four 5-dim. unit cells that contact each other at the above intersection point (x,y) of the 1st and 2nd grid lines \rightarrow

(similar formulas can be obtained for an intersection of ith and jth grid lines)

$$\begin{array}{cccc} (1) & (n_1, n_2, n_3, n_4, n_5) \\ (2) & (n_1 - 1, n_2, n_3, n_4, n_5) \\ (3) & (n_1, n_2 - 1, n_3, n_4, n_5) \\ (4) & (n_1 - 1, n_2 - 1, n_3, n_4, n_5) \end{array}$$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Dual-grid method – practice in 2 dims.

Rhombic Penrose tiling (in 2-dim. physical space)

Mapping the vertices of the tiling into the orthogonal complement (3-dim.)

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

$$\overline{\boldsymbol{a}}_{j} = 1/\sqrt{2} \left(\cos(\varphi_{j}), \sin(\varphi_{j}), \cos(3\varphi_{j}), \sin(3\varphi_{j}) \right)$$

where $\varphi_{j} = \frac{\pi(j-1)}{4}, j = 1, 2, 3, 4$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Dual-grid method – practice in 2 dims.

4-dim. hyper-cubic lattice: $\mathcal{L} = \{n_1 \overline{a}_1 + n_2 \overline{a}_2 + n_3 \overline{a}_3 + n_4 \overline{a}_4\}$

Hyper-grids in 4-dim. hyper-space ____ Phason shifts

2-dim. grid lines (the physical-space sections of the hyper-grids)

1st grids:
$$2(n_1 + s_1)a_1^{\parallel} + \theta a_3^{\parallel}$$
2nd grids: $2(n_2 + s_2)a_2^{\parallel} + \theta a_4^{\parallel}$ 3rd grids: $2(n_3 + s_3)a_3^{\parallel} + \theta a_1^{\parallel}$ 4th grids: $2(n_4 + s_4)a_4^{\parallel} + \theta a_2^{\parallel}$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Ist grids

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

 $n_2 - 1$

 n_2

Dual-grid method – practice in 2 dims. 2nd grids (x, y, 0, 0)an intersection of grid lines $n_2 + 2$ $n_2 + 1$

 $n_1 - 2$ $n_1 - 1$ n_1 $n_1 + 1$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Dual-grid method – practice in 2 dims.

 $(x, y, 0, 0, 0) = (n_1 + s_1)\overline{a}_1 + (n_2 + s_2)\overline{a}_2 + \theta_3\overline{a}_3 + \theta_4\overline{a}_4$ $\theta_3 = \overline{g}_3 \cdot (x, y, 0, 0) = n_3 + s_3 + \delta, \ n_3 = [\theta_3 - s_3], \ \delta = Frac(\theta_3 - s_3)$ $\theta_4 = \overline{g}_4 \cdot (x, y, 0, 0) = n_4 + s_4 + \delta', \ n_4 = [\theta_4 - s_4], \ \delta' = Frac(\theta_4 - s_4)$ where $\overline{g}_i = \overline{a}_i (j = 1, 2, 3, 4) \dots 4$ -dim. reciprocal basis vecs.

These equations determine four integers n_1 , n_2 , n_3 , n_4 , which provide the indices of the base points of the four 4-dim. unit cells that contact each other at the intersection (*x*,*y*) of the 1st and 2nd grid lines \rightarrow

(similar formulas can be obtained for an intersection of ith and jth grid lines)

$$\begin{array}{cccc} (1) & (n_1, n_2, n_3, n_4) \\ (2) & (n_1 - 1, n_2, n_3, n_4) \\ (3) & (n_1, n_2 - 1, n_3, n_4) \\ (4) & (n_1 - 1, n_2 - 1, n_3, n_4) \end{array}$$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Dual-grid method – practice in 2 dims.

Ammann-Beenker tiling (in 2-dim. physical space)

Mapping the vertices of the tiling into the orthogonal complement (2-dim.)

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Some resources on aperiodic tilings:

Perl scripts for constructing the rhombic Penrose tiling (P3) and the Ammann-Beenker tiling:

<u>http://www.tagen.tohoku.ac.jp/labo/tsai/nobuhisa/Penrose2pov.pl</u> $s_1 + s_2 + s_3 + s_4 + s_5 = integer \rightarrow rhombic Penrose tiling (P3)$ $s_1 + s_2 + s_3 + s_4 + s_5 = half integer \rightarrow anti-Penrose tiling$

http://www.tagen.tohoku.ac.jp/labo/tsai/nobuhisa/AmmannBeenker2pov.pl

Tilings encyclopedia:

http://tilings.math.uni-bielefeld.de/

Book:

B. Gruenbaum, G.C. Shephard, Tilings and Patterns, W. H. Freeman and Company, New York, 1987 (Chapter 10).

— 準周期構造の理論と基礎 —

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

5. Approximants

Fibonacci chain (without linear phason strain)

― 準周期構造の理論と基礎 ―

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

— 準周期構造の理論と基礎 —

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Fibonacci numbers

$$F_{n+1} = F_n + F_{n-1}$$
 ($F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, F_6 = 8, ...$)

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Z

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

5-dim. basis vectors of an approximant (modified with a linear phason strain) $\left(\frac{p}{a}, \frac{r}{s}\right)$ approximation

$$\widetilde{a}_{1} = \begin{pmatrix} 1/(2\tau) \\ \sqrt{4\tau + 3}/(2\tau) \\ -p \\ \frac{s}{1/\sqrt{2}} \end{pmatrix}, \quad \widetilde{a}_{2} = \begin{pmatrix} -\tau/2 \\ \sqrt{3-\tau}/2 \\ p-q \\ -r \\ 1/\sqrt{2} \end{pmatrix}, \quad \widetilde{a}_{3} = \begin{pmatrix} -\tau/2 \\ -\sqrt{3-\tau}/2 \\ p-q \\ r \\ 1/\sqrt{2} \end{pmatrix},$$

$$\widetilde{a}_{4} = \begin{pmatrix} 1/(2\tau) \\ -\sqrt{4\tau + 3}/(2\tau) \\ -p \\ -s \\ 1/\sqrt{2} \end{pmatrix}, \qquad \widetilde{a}_{5} = \begin{pmatrix} 1 \\ 0 \\ 2q \\ 0 \\ 1/\sqrt{2} \end{pmatrix}$$

$$\widetilde{\boldsymbol{a}}_{j} = \begin{pmatrix} \boldsymbol{a}_{j}^{||} \\ \boldsymbol{b}_{j}^{\perp} \\ 1/\sqrt{2} \end{pmatrix}$$

arbitrarily scaled

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Periodicity of
$$\left(\frac{p}{q}, \frac{r}{s}\right)$$
 approximant

A general 5-dim. lattice vector with indices $(h_1, h_2, h_3, h_4, h_5)$

 \rightarrow Perpendicular space components: $h_1 h_1^{\perp} + h_2 h_2^{\perp} + h_2 h_2^{\perp} + h_4 h_4^{\perp} + h_5 h_5^{\perp}$

$$= \begin{pmatrix} 2qh_5 - ph_1 + (p-q)h_2 + (p-q)h_3 - ph_4 \\ sh_1 - rh_2 + rh_3 - sh_4 \\ (h_1 + h_2 + h_3 + h_4 + h_5)/\sqrt{2} \end{pmatrix}$$

Note that the 2-dim. lattice basis vectors, \mathbf{R}_1 and \mathbf{R}_2 , of $\left(\frac{p}{q}, \frac{r}{s}\right)$ approximant along the *x* and *y* directions should in general be indexed as (j, k, k, j, i) and (l, m, -m, -l, 0), respectively.

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Periodicity of
$$\left(\frac{p}{q}, \frac{r}{s}\right)$$
 approximant

Their modified perpendicular space components would then be

$$\mathbf{R}_{1}' = jb_{1}^{\perp} + kb_{2}^{\perp} + kb_{3}^{\perp} + jb_{4}^{\perp} + ib_{5}^{\perp} = \begin{pmatrix} 2\{p(k-j) - q(k-i)\} \\ 0 \\ (i+2j+2k)/\sqrt{2} \end{pmatrix}$$
$$\mathbf{R}_{2}' = lb_{1}^{\perp} + mb_{2}^{\perp} - mb_{3}^{\perp} - lb_{4}^{\perp} = \begin{pmatrix} 0 \\ 2(sl - rm) \\ 0 \end{pmatrix}$$

These perpendicular space components would vanish if R_1 and R_2 are the lattice bases of the approximant, so that

$$\frac{p}{q} = \frac{k-i}{k-j}, \qquad \frac{r}{s} = \frac{l}{m}, \qquad i+2j+2k = 0$$

$$(i-k) + 2(j-k) + 5k = 0$$
(i - k) + 2(j - k) + 5k = 0 70

- 準周期構造の理論と基礎-
5. Approximants
第一回新学術領域ハイパーマテリアル
若手研究会@Web開催2020.5.28
Periodicity of
$$\left(\frac{p}{q}, \frac{r}{s}\right)$$
 approximant
There exists non-zero integer, *n*, such that
 $i - k = pn, j - k = qn$ and
 $5k = -(p + 2q)n$
 $p+2q \ge 50$ 最小公倍数を
与えるようにnを決める。

Thus the values of *i*, *j* and *k* are determined uniquely (up to a sign) according to the values of *p* and *q*, and so are the values *l* and *m* according to the values of *r* and *s* through

 $l = \pm r$, $m = \pm s$

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Periodicity of
$$\left(\frac{p}{q}, \frac{r}{s}\right)$$
 approximant

Lattice basis vectors in the physical space

 $R_{1} = ja_{1}^{||} + ka_{2}^{||} + ka_{3}^{||} + ja_{4}^{||} + ia_{5}^{||} = qna_{1}^{||} + qna_{4}^{||} + pna_{5}^{||}$ $R_{2} = ra_{1}^{||} + sa_{2}^{||} - sa_{3}^{||} - ra_{4}^{||}$ The corresponding increments in the perpendicular space $R_{1}^{\perp} = ja_{1}^{\perp} + ka_{2}^{\perp} + ka_{3}^{\perp} + ja_{4}^{\perp} + ia_{5}^{\perp} = qna_{1}^{\perp} + qna_{4}^{\perp} + pna_{5}^{\perp}$ $R_{2}^{\perp} = ra_{1}^{\perp} + sa_{2}^{\perp} - sa_{3}^{\perp} - ra_{4}^{\perp}$

The linear phason strain tensor, *S* (Definition: $x^{\perp} \sim Sx^{\parallel}$)

$$\begin{pmatrix} \mathbf{R}_1^{\perp} & \mathbf{R}_2^{\perp} \end{pmatrix} = \mathbf{S}(\mathbf{R}_1 & \mathbf{R}_2) \\ \mathbf{S} = \begin{pmatrix} \mathbf{R}_1^{\perp} & \mathbf{R}_2^{\perp} \end{pmatrix} (\mathbf{R}_1 & \mathbf{R}_2)^{-1}$$

N.B.) *S* is a 3x2 matrix in the present case
第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

How to generate an approximant with dual-grids

Replace the hyper-cubic lattice basis vectors (\overline{a}_j and \overline{g}_j) into modified basis vectors (\overline{a}_j and \overline{g}_j) while performing the dual-grid method (see, p.50)

$$\overline{\boldsymbol{a}}_{j} = \left(\boldsymbol{a}_{j}^{||}, \boldsymbol{a}_{j}^{\perp}\right) \longrightarrow \widetilde{\boldsymbol{a}}_{j} = \left(\boldsymbol{a}_{j}^{||}, \boldsymbol{b}_{j}^{\perp}\right)$$
$$\overline{\boldsymbol{g}}_{j} \quad (\text{def: } \overline{\boldsymbol{a}}_{j} \cdot \overline{\boldsymbol{g}}_{j} = \boldsymbol{\delta}_{ij}) \longrightarrow \widetilde{\boldsymbol{g}}_{j} \quad (\text{def: } \widetilde{\boldsymbol{a}}_{j} \cdot \widetilde{\boldsymbol{g}}_{j} = \boldsymbol{\delta}_{ij})$$

— 準周期構造の理論と基礎 —

第一回新学術領域ハイパーマテリアル 若手研究会@Web開催2020.5.28

Exercises

- a. Compare approximant tilings generated with different values of phason shifts.
- b. Apply the dual-grid method for generating Ammann-Beenker tiling (octagonal, or 8-gonal, QC).
- c. Generate a few simplest approximants to the Ammann-Beenker tiling.