

Video Tampering Detection Using Machine Learning

Hiroki Ueda¹, Hyunho Kang, Keiichi Iwamura

¹Department of Electrical Engineering

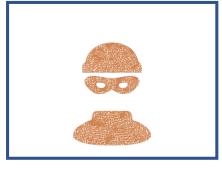
Tokyo University of Science

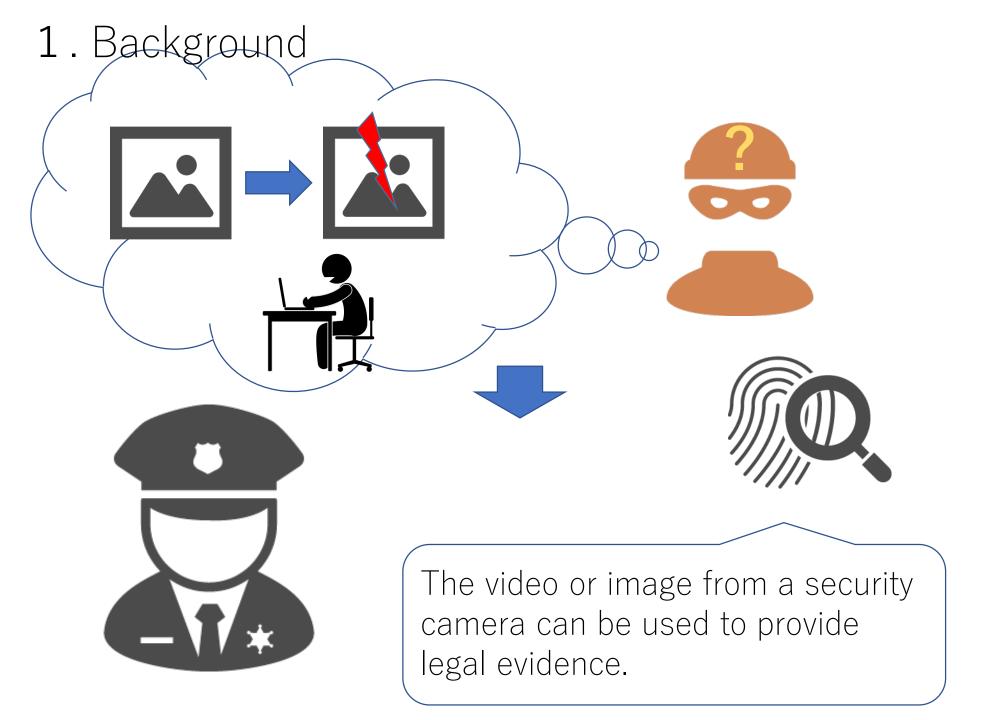
Tokyo, JAPAN

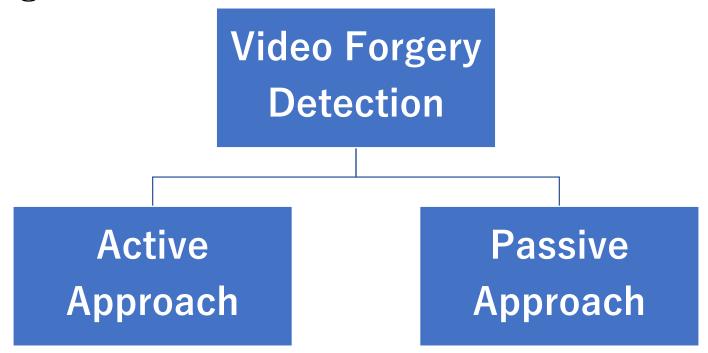
Contents

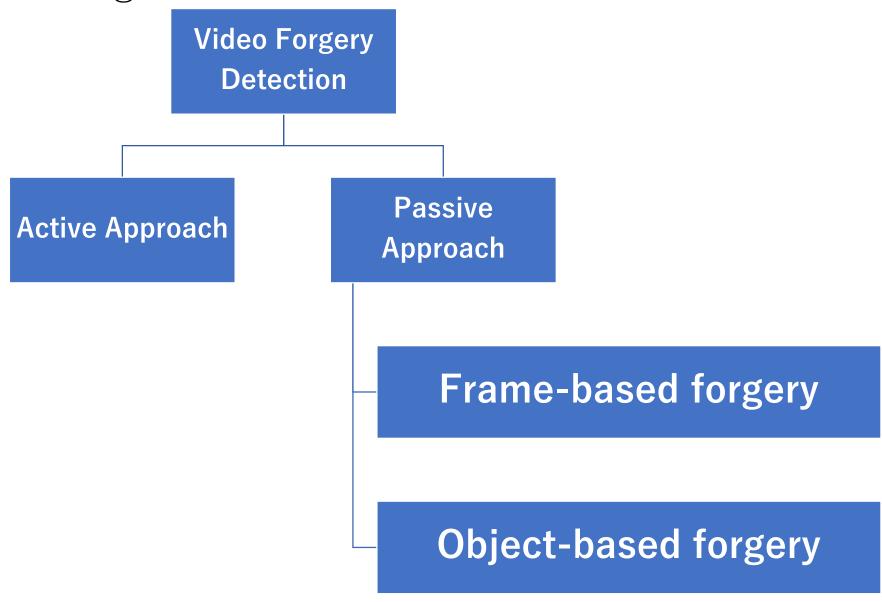
- Background
- 2. Conventional method
- 3. Proposed method
- 4. Conclusion

Recently, security cameras have been installed in various places.









Process of Verification

Preparation of dataset

- 2 Preprocessing of dataset
- 3 Separation of dataset for training and verification
- Generation of classifier that identify whether there is any manipulation
- (5) Verification of forgery using dataset for verification

2.1. Conventional Method - Preparation of Dataset-

- Tampered Video Dataset
- One original video
- A video with eight patterns of tampering added to it
- Eight patterns of tampering added are as follows: Multiple / Rotation / No transformation / RGB / Shearing / Scaling / Brightness / Flipping

Released by the CVIP GROUP

2.1. Conventional Method - Preparation of Dataset-

Tampered Video Dataset

- · Dimensions: 640 × 360
- Length: 5 [s] \sim 10 [s]
- Framerate: 25 [fps]

2.1. Conventional Method - Preparation of Dataset-

No Tampering

Tampering

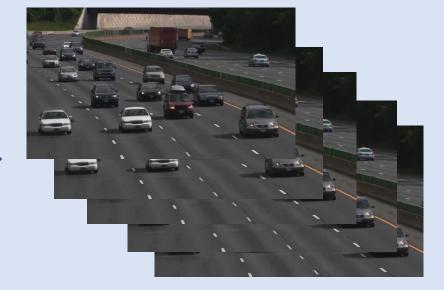


Process of Verification

- 1 Preparation of dataset
- ② Preprocessing of dataset
- 3 Separation of dataset for training and verification
- Generation of classifier that identify whether there is any manipulation
- (5) Verification of forgery using dataset for verification

2.2. Conventional Method —Preprocessing of Dataset-

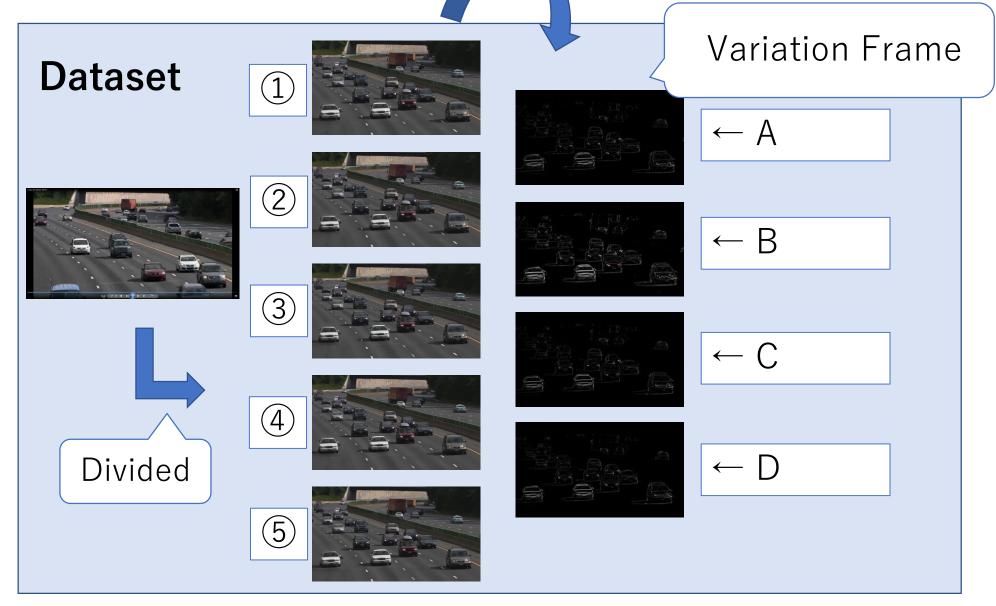
Dataset



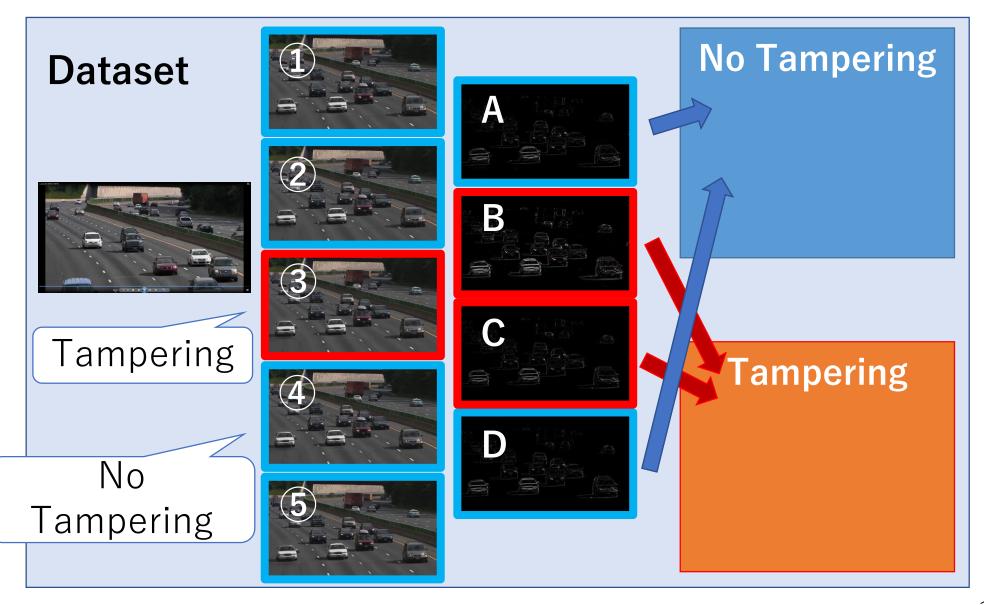
 640×360 , 25 f/s

The video is divided into frames and stored as images (jpeg format)

2.2. Conventional Methra—Preprocessing of Dataset-



2.2. Conventional Method — Preprocessing of Dataset-



2.2. Conventional Method — Preprocessing of Dataset-

Dataset										
		Multiple	No transformation	Shearing	Brightness	Rotation	RGB	Scaling	Flipping	
	No Tampering	151	141	141	140	141	141	158	141	
	Tampering	20	30	30	31	30	30	13	30	

Acquisition of Patch Image

Tampering · · · Positive No Tampering · · · Negative

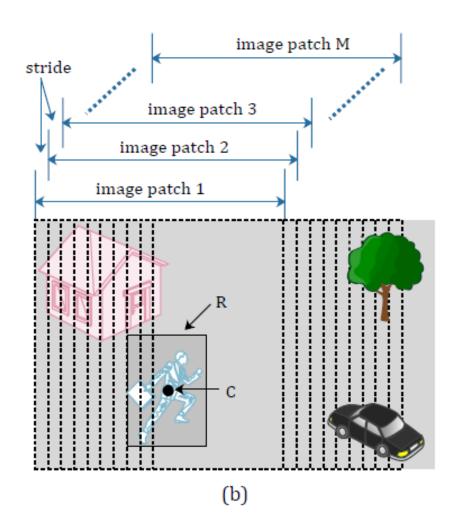
image patch 3 stride image patch 2 stride image patch 1 (a)

Deep Learning for Detection of Object-Based Forgery in Advanced Video Ye Yao , Yunqing Shi , Shaowei Weng , Bo Guan Symmetry 2018

In a frame that has not been tampered, the variation frame is trimmed into three sheets comprising of left, center, and right blocks.

Acquisition of Patch Image

Tampering · · · Positive No Tampering · · · Negative



In the tampered frame, the tampered portion is placed as centrally as possible, and split into 10 sheets, while being shifted by 1 to 3 pixels.

2.3. Conventional Method -Acquisition of Patch Image-

Dataset									
	Trimming	Multiple	No transformation	Shearing	Brightness	Rotation	RGB	Scaling	Flipping
N N	Before	151	141	141	140	141	141	158	141
No Tampering	After	453	423	423	420	423	423	473	423
Tamp	Before	20	30	30	31	30	30	13	30
Tampering	After	200	300	300	310	300	300	131	300
"No Tampering": "Tampering" \Rightarrow 141:30 = 4.7 :1 After trimming \Rightarrow 423:300 = 1.4 :1									

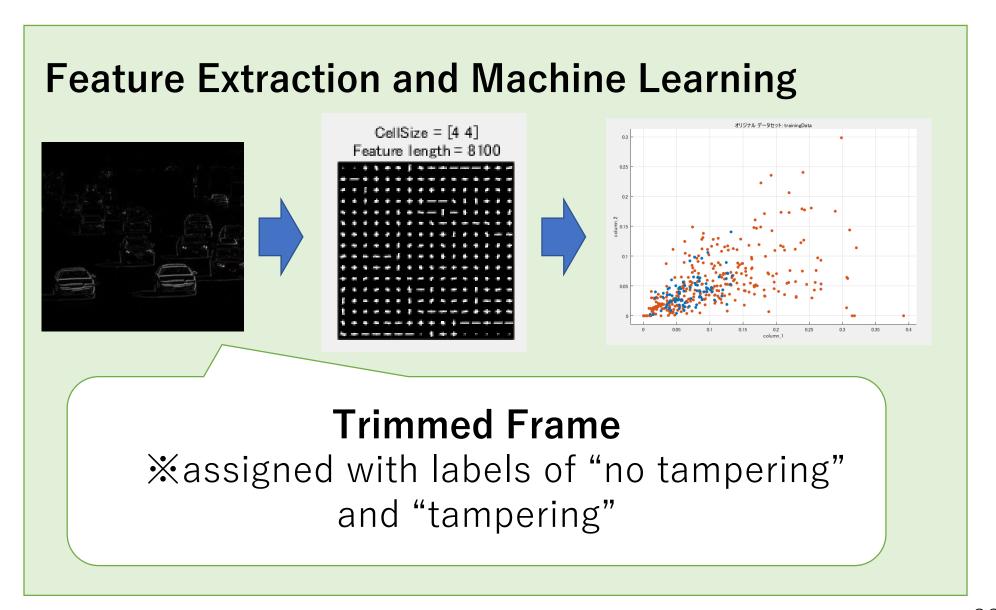
Process of Verification

- 1 Preparation of dataset
- ② Preprocessing of dataset
- Separation of dataset for training and verification
- Generation of classifier that identify whether there is any manipulation
- (5) Verification of forgery using dataset for verification

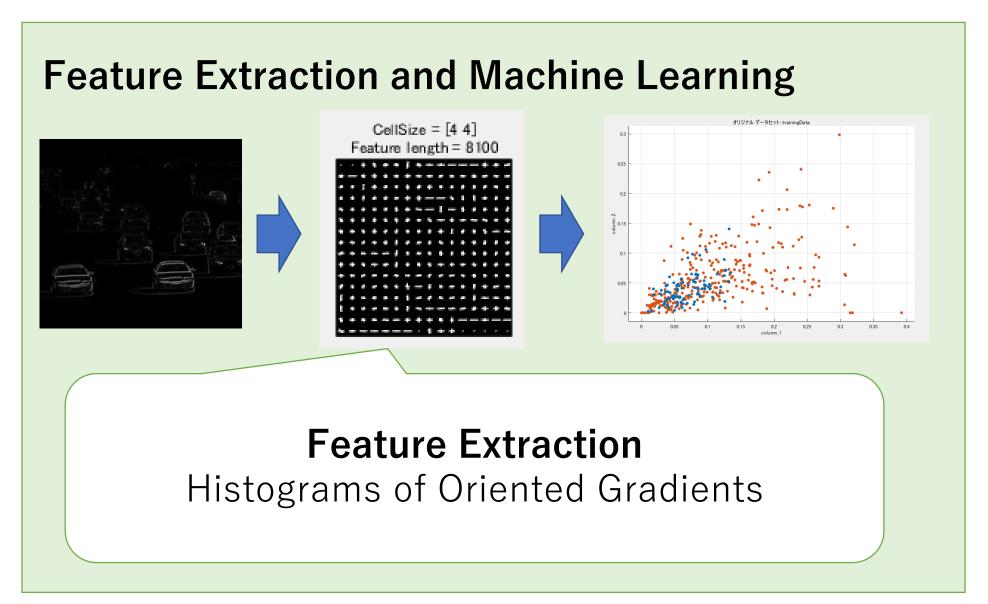
Process of Verification

- 1 Preparation of dataset
- ② Preprocessing of dataset
- 3 Separation of dataset for training and verification
- Generation of classifier that identify whether there is any manipulation
- (5) Verification of forgery using dataset for verification

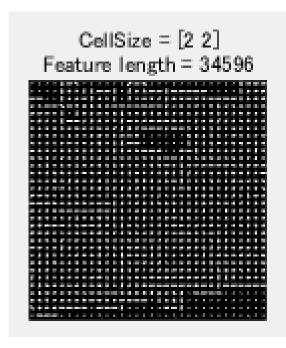
2.4. Conventional Method -Workflow of Machine Learning-

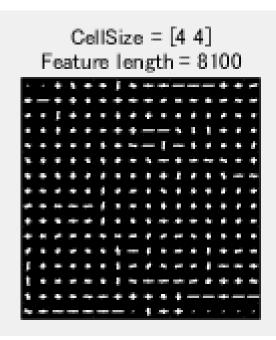


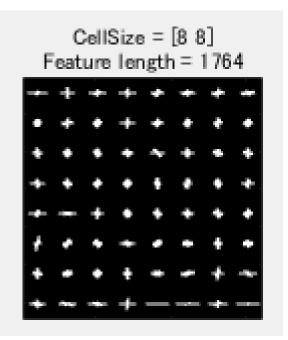
2.4. Conventional Method -Workflow of Machine Learning-



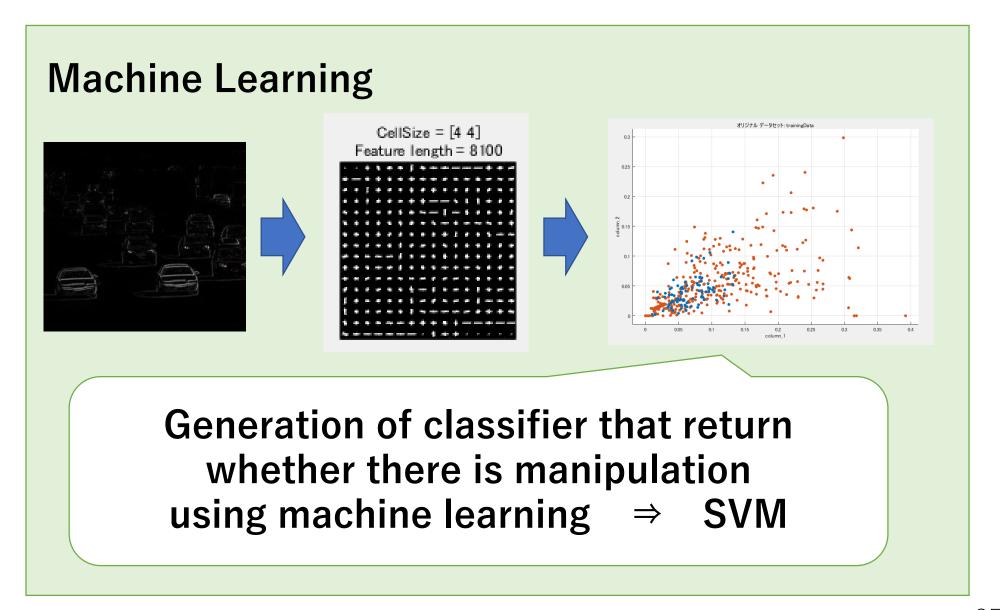
HOG(Histograms of Oriented Gradients)





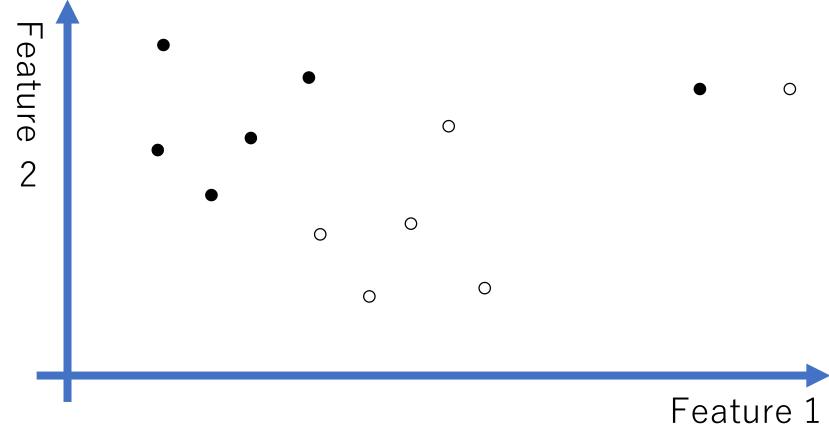


2.4. Conventional Method -Workflow of Machine Learning-



Supervised Learning

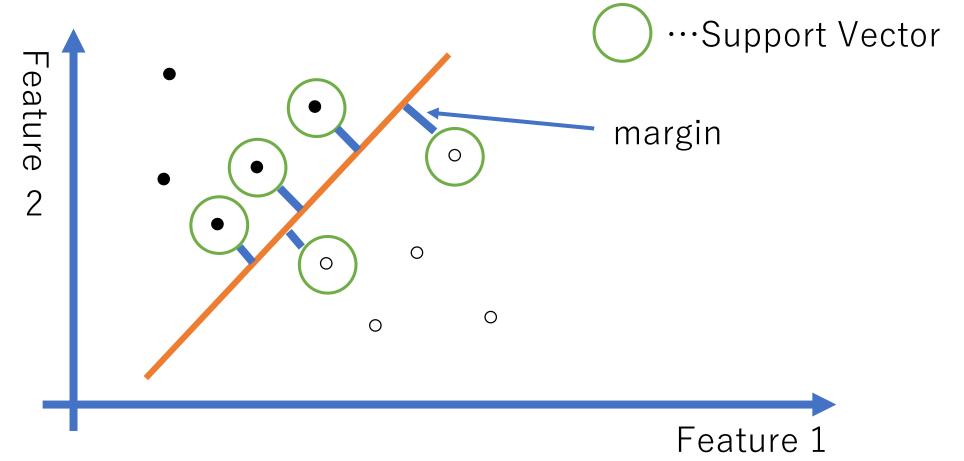
Using labeled training data



♦ Support Vector Machine (SVM)

Supervised Learning

— Using labeled training data

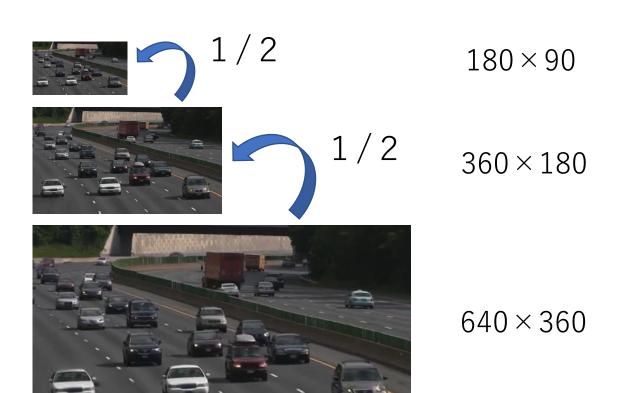


- ☐ Changes Made Over the Conventional Method
 - Improvement in the accuracy of detection
 - ⇒ By using the high frequency feature of consecutive frames
 - Because the dataset for the verification and training have the same origin, it is not practical for verification.
 - ⇒ Origin for each dataset is taken separately
 - Addition of evaluation parameters

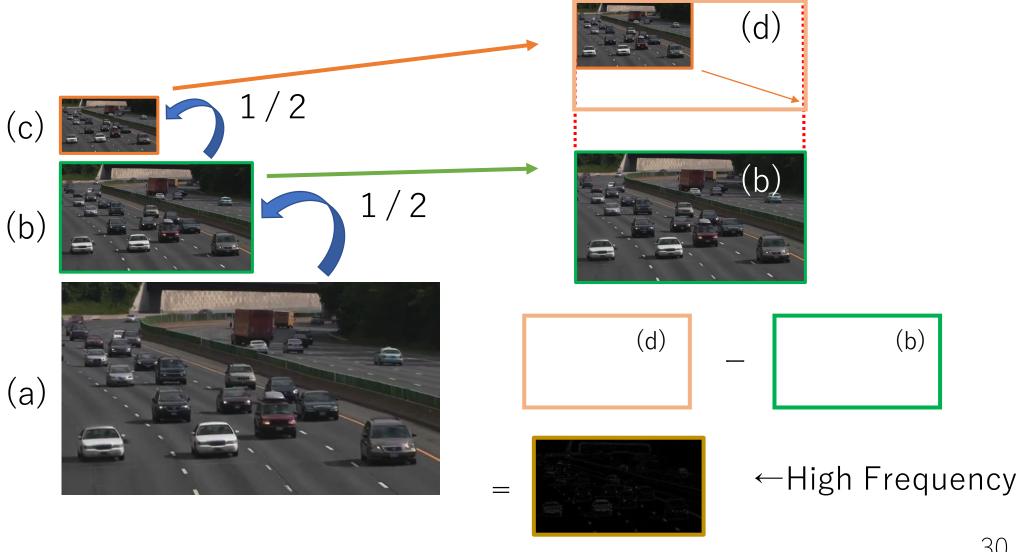
3.1. Proposed Method — Improvement of Feature Extraction—

We used the **high frequency** feature of consecutive frames.

⇒ Implementation of **Gaussian Pyramid**



3.1. Proposed method — Improvement of Feature Extraction—



30

Process of Verification

- 1 Preparation of dataset
- 2 Preprocessing of dataset
- 3 Separation of dataset for training and verification
- Generation of classifier that identify whether there is any manipulation
- 5 Verification of forgery using dataset for verification

□ Changes From the Conventional Method

- Improvement detection accuracy
 - ⇒ the feature of high frequency of consecutive frames
- Because dataset for the verification has the same origin of dataset for the training, it is not practical verification.
 - ⇒ Each origin separately
- Addition evaluation parameters

Evaluation Parameters

	Tampering	No Tampering
Positive	TP = True Positive	FP =False Positive
Negative	FN =False Negative	TN =True Negative

number of frames

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Evaluation Parameters

F1 Score

$$= \frac{1}{\frac{1}{2} \left(\frac{1}{Precision} + \frac{1}{Recall} \right)}$$

$$= 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

F1 Score is the harmonic mean of Precision and Recall.

3.2. Proposed method – Result of Verification-

	Conventional method	Proposed method 1	Proposed method 2
Accuracy	80.6%	82.6%	87.6%
Precision	100.0%	100.0%	100.0%
Recall	53.3%	57.8%	63.0%
F1 Score	69.3%	73.3%	77.3%

3.2. Proposed method -Result of Verification-

	Multiple	No Trans.	Shearing	Brightness	Rotation	RGB	Scaling	Flipping
Accuracy	88.78%	87.56%	88.94%	80.82%	88.94%	85.25%	94.54%	80.18%
Precision	100.00%	100.00%	100.00%	100.00%	100.00%	95.31%	100.00%	100.00%
Recall	63.33%	70.00%	73.33%	54.84%	73.33%	67.78%	76.19%	52.22%

- ✓ In most tampering patterns, False Positive (FP) = 0
- ✓ Recall ⇒ Uneven
 - ⇒ Tampering with a small change in luminance was detected with a low recall value.

Conclusions

- High Frequency feature in an image was proven to be effective as a parameter for forgery detection.
- With the improvement of the verification method, our proposed method is practical for forgery detection.