

The 12th Workshop among Asian Information Security Labs (WAIS 2020)

Computationally Secure Verifiable Secret Sharing Scheme

Imai Takato¹ and Iwamura Keiichi¹

¹Department of Electrical Engineering Tokyo University of Science Tokyo, JAPAN 2020/2/21

Contents

- 1. Background
- 2. Secret Sharing Scheme
- 3. Proposed Scheme
- 4. Security of Proposed Scheme

Background(1)

Information Leakage

User

Personal Information

- Purchase history
- · Credit card number
- App backup
- · Images, videos, etc. ..

Background 1

Encrypted Data Fragmented Data

Cloud

User

Encryption

F

Background2

Data Modification

Purpose Cloud

User

Encryption / Decryption technology between User and Cloud

Secret Sharing Scheme(SSS)

Homomorphic Encryption

SSS + Encryption using Key

_Asymmetric Secret Sharing Scheme (A-SSS) [1]

- Cheat Detect(Verify recnstructed Secret)
- Identify Dishonest Server

Dishonest Server: Server that outputs forged share

Secret Sharing Scheme (SSS)

- Shamir's k out of n Secret Sharing Scheme [2]
- Secret data is converted into *n* number of different values (shares) and distributed to *n* number of servers to be stored.

Secret Sharing Scheme(SSS)

Shamir's k out of n SSS[2]

· Convert one data into n pieces(shares), Distribute n shares,

Collect k shares and Reconstruct

No Fault Tolerance

Multiple servers
 (At least 2 servers)

→Suitable for the Cloud.

Distribution Process of SSS (n = 3, k = 2)

Secret is converted into three shares

 x_i : ServerID(Public)

 y_i : Share(Secrecy)

Reconstruction Process of SSS(n = 3, k = 2)

User collects any two (x_i, y_i) and reconstruct secret s.

 x_i : ServerID(Public)

 y_i : Share(Secrecy)

Asymmetric Secret Sharing Scheme (A-SSS) [1]

- Combination of <u>Secret Sharing Scheme</u> and <u>Key Cryptography</u>
 - · SSS is Information-theoretic Secure.
 - · A-SSS partially has encryption using Key, so it results in secure using key.

→A-SSS is Computationally Secure.

Asymmetric Secret Sharing Scheme (A-SSS) [1]

- A-SSS can limit external data servers to less than k
- A-SSS reconstruction requires permission from the key owner

No possibility of information leakage from external data servers without owner's permission

Key Servers less than k

Data Servers less than k

Asymmetric Secret Sharing Scheme (A-SSS) [1]

• In reconstruction, key server's share is must be used.

^[1] Satoshi Takahashi, Hyunho Kang, Keiichi Iwamura, Asymmetric secret sharing scheme suitable for cloud systems, 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)

Distribution Process of A-SSS

$$(n=4,k=3)$$

Create remaining shares from owner's share

 x_i : ServerID(Public)

 y_i : Share(Secrecy)

Reconstruction Process of A-SSS

$$(n=4,k=3)$$

Key Server's shares are must be used

 x_i : ServerID(Public)

 y_i : Share(Secrecy)

Problem 1 of SSS and A-SSS

Correct Secret cannot be reconstructed if at least one forged share is collected

Problem 2 of SSS and A-SSS ServerID(x_1, x_2, \dots, x_n) is public $(3, y_2)$ $(2, y_1)$ 2 $(2, y_1)$ forged S Difference $(3, y_2)$ Δx : 2, Δy_3 Δy_3 $(4, y_3')$ Difference $(4, y_3'')$ Δx : 1, $\Delta y_3'$

Continue outputting forged S'

16

Normal SSS

7

Distribution

Distribution

Reconstruction

7 If attackers are involved

8 Forgery

Forged Secret

Forged Secret

Forged Secret

Furthermore, if the server ID

Cloud

8 is made public

Solution to the Second Problem

(Concealment of Server's ID)

→Keep key server's ID private

- → Unable to Specify function uniquely
- \Rightarrow Unable to Match with false Secret S'

Prevent matching with false Secret S'_1

Extended A-SSS

Distribution

Cloud

8 Forgery

However,

- Key's server ID
- is Private

Prevent continuous outputting 8

Proposed Scheme

- Extension of A-SSS → Concealment of Key Server's ID
 - \rightarrow Prevent continuous generation of false Secret S'
 - →Data involved and generated by the attacker is different each time
- → Able to verify correctness of reconstructed secret only by repeating reconstruction and just comparing the outputted values.

Proposed Scheme

Data involved and generated by the attacker is different each time

→ That matched are considered correct

That did not matched are considered incorrect.

Ex) Perform Reconstruction Process 4 times \rightarrow (7,9,7,8)

7 : Correct (match)

$$8 \neq (7,9), 9 \neq (7,8)$$

8,9 : Cheating (not match)

- Perform the same reconstruction multiple times
 - \rightarrow Cheat Detection

Conditions for identifying dishonest servers

Specific identification possible : k - t < u - e

ex)
$$n = 5, k = 3, t = 2, u = 3, e = 1$$

 $(k - t = 1 < u - e = 2)$

$$(x_1, x_2, x_3) \to 7$$

$$(x_1, x_2, x_4) \to 7 \quad (7 = 7)$$

$$(x_1, x_2, x_5) \to 8 \quad (8 \neq 7)$$

n: Total number of servers (n = t + u)

k: Threshold number of servers

t: Number of Key servers (0 < t < k)

u: Number of DS (0 < u < k)

e: Number of dishonest servers in DS

7 matchs,

- \rightarrow Adopt 7, (x_3, x_4) is honest
- → 8 is forged Secret
 - $\rightarrow x_5$ is dishonest

Security of Proposed A-SSS

Security of Proposed A-SSS

 $x_i : p \text{ Points}$ Equations $y_i : p \text{ Points}$ $(x_i, y_i) : p \text{ Pairs}$

Small probability by coincidence with false reconstruction Secret S'

$$\frac{p}{p \times p} = \frac{1}{p}$$

(Other methods have the same probability)

p: Prime numbers that can be represented by 128bit or more

Security of Proposed A-SSS

represented by 128bit or more

25

CONCLUSION

- Extension of A-SSS(server ID concealment)
 - Secret can be verified with only two reconstructions (Able to check whether it has been forged)
 - Possible to identify dishonest server
 - Up to $_{u}C_{k-t}$ reconstructions

$$\cdot k - t < u - e$$

(u : date servers, e : dishonest servers, t : key servers)

Thank you for your attention