WAIS2020@Tokyo University of Science

Improved CRT-RSA Secret Key Recovery Method from Sliding Window Leakage

Kento Oonishi (The University of Tokyo)

Xiaoxuan Huang (The University of Tokyo)

Noboru Kunihiro (University of Tsukuba)

21st. Feb, 2020

2020/2/21

Our Contribution

- 1. Formularize the exact bit recovery rate from Square & Multiply sequence on Sliding Window method
- Propose the new method for recovering CRT-RSA secret keys from Square & Multiply sequences
- 3. Experiment of proposed method

2020/2/21

Agenda

- 1. Background
 Threat of Side-Channel Attacks
- 2. Previous Result [BBG+17]
 Previous Key Recovery Method
- 3. Our Result
 New Key Recovery Method
- 4. Conclusion

RSA Encryption Scheme [RSA78]

p,q: distinct n/2-bit prime numbers $N = pq, ed \equiv 1 \mod (p-1)(q-1)$.

CRT-RSA Scheme (PKCS#1)

Faster Decryption than the standard RSA

Decryption

$$m = C^d \mod N$$

Sliding Window Method

We calculate c^d by **squaring** and **multiplication**.

Squaring: $X \to X^2$ **M**ultiplication: $X \to aX$

Input: *c*, *d*, and **window size** *w*

Output: c^d

We set c^0 as initial value.

We read bits of d from the most significant bit.

- -If bit is "0", **S**quaring
- -If bit is "1", we read w-bits.

$$w$$
-bits $\begin{cases} w & \underline{\mathbf{S}} \text{ quarings} \\ 1 & \underline{\mathbf{M}} \text{ ultiplication} \end{cases}$

Threat of Side Channel Attacks

CRT-RSA scheme implemented by SW-method is known to be vulnerable against side channel attacks! [BBG+17]

[BBG+17] Bernstein et al. "Sliding Right into Disaster: Left-to-Right Sliding Windows Leak." CHES 2017.

Our Motivation from [BBG+17]

	Success Rate
w = 4, 1024-bit CRT-RSA	≈100%
w = 5, 2048-bit CRT-RSA	8.6%

In w = 5, we only recover <u>8.6%</u> CRT-RSA secret keys because of **too many candidates**.

By <u>decreasing the number of candidates</u>, we may <u>recover more CRT-RSA secret keys</u>.

Question

How do we **decrease** the number of candidates?

2020/2/21

Our New Method

We extract more information as bits.

We recover more secret keys when w = 5.

-Prune branches

Technique in [BBG+17]

Proposed key recovery algorithm from **S&M sequences**

They use **Branch and Bound** Strategy.

-Compute some candidate bits

Iteration

*If there is no pruning, final candidates always include the correct secret keys.

How do they compute candidate bits sequentially?

How do they prune branch?

Computing Candidate Bits [HS09]

We can compute candidate bits using **mathematical relationship** in CRT-RSA.

$$p[i] + q[i] \equiv c_1 \bmod 2,$$

$$d_p[i + \tau(k_p)] + p[i] \equiv c_2 \bmod 2,$$

$$d_q[i + \tau(k_q)] + q[i] \equiv c_3 \bmod 2.$$
 Candidate bits Known

This simultaneous equations have one degree of freedom.

We obtain two candidates.

[HS09] Heninger and Shacham. "Reconstructing RSA Private Keys from Random Key Bits." CRYPTO 2009.

Visualization of Calculation

There are exponential candidates in tree. How do we prune branch?

Pruning in [BBG+17]

*They showed that we can recover CRT-RSA secret keys in polynomial time by method B when $w \le 4$.

Method A

Given sequences d_p SMSSSSM d_p 1 0 1 1 0 d_q SSMSSSS d_q 0 1 1 0 1 Recover bits partially* d_p 1 0 0 ? 1 Compare on bits d_q ? 1 0 0 ? We remain leaves only when there is no mismatch.

*[Vre18] proposed the optimal bit recovery method.

[Vre18] van Vredendaal. "Exploiting Mathematical Structures in Cryptography." Eindhoven University of Technology, 2018.

Optimal Bit Recovery [Vre18]

"Optimal" means we recover all common bits when we consider all candidates.

Example SSMSSM,
$$w = 2$$

All Candidates
$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & \times & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

*Recovered bits are <u>always</u> correct.

Method B

Given sequences

 d_p SMSSSSM

 d_q SSMSSSS

Calculated Bits

 d_p 10110

 d_q 0 1 1 0 1

Convert into S&M sequences

 d_p SSSMSMS

 d_a SSSMSSM

Compare on **S&M sequences**

We remain leaves only when there is no mismatch.

Experimental Results of [BBG+17]

- Implement with Depth first search (DFS)
- If we generate 1,000,000 leaves, return failure.
- They measure success rate on 500,000 trials.

	Method A	Method B
w = 4, 1024-bit CRT-RSA	28%	≈100%
w = 5, 2048-bit CRT-RSA	0%	8.6%

Method B recovers more CRT-RSA secret keys

Our Key Idea

Method A and B can be combined!

Our New Method

We extract more information on <u>bits</u>.

Then, we decrease candidates!

SSMSSSSMSSM...

We partially recover bits by [Vre18].

We determine more bits with high accuracy.

*These bits are <u>not always</u> correct.

SSMSSSSMSSM··· + x101x1x1···

11010111···

[KSI14] Kunihiro et al. "Recovering RSA Secret Keys from Noisy Key Bits with Erasures and Errors." IEICE Trans. Fundamentals. E97-A, 1273—1284, 2014.

Explicit Form of the Bit Recovery Rate

When $w \geq 2$,

$$\frac{2}{w+1} + \frac{\sum_{k=0}^{w-1} f_w(k)g(k)}{2(w+1)} + \frac{2^w - 1}{2^{w-1}(2^{w-1} + 1)} \frac{1}{3(w+1)}$$

$$f_w(k) = \frac{2}{3 \cdot 2^k} \left(1 - \frac{1}{2^{w-k}} \right) \left(1 - \frac{2}{2^{w-k}} \right)$$
$$g(k) = 2 \left(1 - \frac{2^k}{2^{k+2} - 1} \right) \prod_{j=1}^k \frac{2^{j-1}}{2^{j+1} - 1}$$

W	Theoretical
3	60.95%
4	49.81%
5	41.92%

3.1. Our Result 1: The Exact Bit Recovery Rate

Experimental Results

W	Theoretical (%)	2048-bit CRT-RSA 100 times (%)
3	60.95	60.80
4	49.81	49.96
5	41.92	41.84
6	36.09	36.19
7	31.65	31.76

Our analysis matches with the experiment.

Hidden Information

W	Theoretical (%)	2048-bit CRT-RSA 100 times (%)
4	49.81	49.96

We **cannot** recover secret keys when w = 4, because less than 50% bits are recovered [PPS12].

However, we can recover secret keys when w = 4, by method B of [BBG+17].

*Using S&M sequences directly

There are more information in unrecovered bits!

How do we extract more information?

[PPS12] Paterson et al. "A Coding-Theoretic Approach to Recovering Noisy RSA Keys." Asiacrypt 2012.

Extracting Hidden Information

We extract information as the proportion of "1".

Example SSMSSM,
$$w = 2$$

All Candidates

Recovered bits

There are some bits as almost "1".

*We check this heuristically by Monte-Calro approach.

Thus, we determine more bits with high accuracy!!!

23 2020/2/21

3. Our Result

Our New Method (Again)

We extract more information on <u>bits</u>.

Then, we decrease candidates!

SSMSSSSMSSM...

We partially recover bits by [Vre18].

We determine more bits with high accuracy.

*These bits are <u>not always</u> correct.

SSMSSSSMSSM··· + x101x1x1···

11010111···

[KSI14] Kunihiro et al. "Recovering RSA Secret Keys from Noisy Key Bits with Erasures and Errors." IEICE Trans. Fundamentals. E97-A, 1273—1284, 2014.

Our New Method: Step 1

SSMSSSSMSSM...

We partially recover bits by [Vre18].

*Recovered bits are <u>always</u> correct.

SSMSSSSMSSM··· + x10xx1x1···

We choose sufficient candidates randomly, from <u>all</u> candidates.

We determined bits as "1", when the proportion of "1" is more than $1 - \varepsilon$. *These bits are not always correct.

SSMSSSSMSSM··· + x101x1x1···

Our New Method: Step 2

SSMSSSSMSSM··· + x101x1x1···

Pruning in Method A, B of [BBG+17]

- Method A: Recovered Bits
- Method B: S&M Sequences

[KSI14] on additional determined bits

- Calculate $[1/\varepsilon]$ -bits
- If there are more than one mismatches, we discard a leaf.

11010111···

3.3. Our Result 3: Experimental Results

Experiment

We perform experiment on 2048-bit CRT-RSA, w = 5.

We set the parameter $0 \le \varepsilon \le 0.1$ at 0.01 intervals.

In each ε ,

- We determine additional bits based on 1,000 samples.
- Implement by Depth first search (DFS)
- If we generate *L* leaves, return failure.
- We generate 100 CRT-RSA keys randomly, and measure success rate.

3.3. Our Result 3: Experimental Results

Experimental Result (L = 1,000,000)

Our method recovers more secret keys!

3.3. Our Result 3: Experimental Results

Experimental Result (L = 2,000,000)

Our method recovers more secret keys!

Conclusion

- 1. Formularize the exact bit recovery rate from Square & Multiply sequence on Sliding Window method
- Propose the new method for recovering CRT-RSA secret keys from Square & Multiply sequences
- 3. Experiment of proposed method

L	[BBG+17]	[Ours]
1,000,000	8.6%	17%
2,000,000	13%	21%