A Constant-time Algorithm of CSIDH keeping

Two Points

Hiroshi Onuki® Yusuke Aikawa? Tsutomu Yamazaki3
Tsuyoshi Takagi!

IThe University of Tokyo
2Mitsubishi Electric

3Kyushu University

2020,/2/21

Table of contents

© Overview

© Isogeny-based Cryptography
© CSIDH

@ Our proposal

© Summary

H. Onuki et. al. Constant-time CSIDH

Table of contents

© Overview

H. Onuki et. al. Constant-time CSIDH

@ We constructed a constant-time algorithm of an isogeny-based
cryptography CSIDH.

@ Our algorithm is about 29% faster than a previous work.

H. Onuki et. al. Constant-time CSIDH

Table of contents

© Isogeny-based Cryptography

H. Onuki et. al. Constant-time CSIDH

Post Quantum Cryptography

@ RSA and ECC will be broken if a quantum computer is built.
= Post Quantum Cryptography (PQC) is important.

@ NIST started PQC standardization process in 2016.
@ The candidates include an isogeny-based cryptography.
- SIKE (Supersingular Isogeny Key Encapsulation).

H. Onuki et. al. Constant-time CSIDH 2020/2/21

Isogeny-based cryptography (1/3)

Isogeny-based cryptography is
@ a cryptosystem based on isogeny problem,

o first proposed by Couvegne and independently by Rostovtsev and
Stolbunov.

H. Onuki et. al. Constant-time CSIDH

Isogeny-based cryptography (1/3)

Isogeny-based cryptography is
@ a cryptosystem based on isogeny problem,
o first proposed by Couvegne and independently by Rostovtsev and

Stolbunov.
Factorization
easy
p.q n = pq
prime numbers composite number
easy
———
Isogeny Problem
- eas ~ -
E.6 Y E.E' = 6(E)
elliptic curve and isogeny isogenous elliptic curves| ~ duantum computer

hard

= Isogeny-based cryptography is a candidate for PQC.

H. Onuki et. al. Constant-time CSIDH

Isogeny-based cryptography (2/3)

Rough sketch of isogeny-based key exchange:

E 225 Fjp

e | 2

EA —_— EAB
¥YB

FE : public elliptic curve

w4 : Alice's secret key, F/4 : Alice's public key
wp : Bob's secret key, E'p : Bob's public key
FEp : shared key

H. Onuki et. al. Constant-time CSIDH

Isogeny-based cryptography (3/3)

Pros
@ Short key size
@ Various techniques for ECC can be applied
e Many applications (signature, hash, ...)
Cons

@ Slow

H. Onuki et. al. Constant-time CSIDH 2020/2/21 9/25

SIDH & CSIDH

SIDH is
@ Supersingular Isogeny Diffie Hellman,

@ proposed by Jao and Feo at PQCrypto 2011.
The isogeny-based candidate for NIST PQC is based on SIDH.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 10/25

SIDH & CSIDH

SIDH is
@ Supersingular Isogeny Diffie Hellman,

@ proposed by Jao and Feo at PQCrypto 2011.
The isogeny-based candidate for NIST PQC is based on SIDH.

CSIDH is
@ Commutative SIDH,
@ proposed by Castryck et al. at ASIACRYPT 2018.

H. Onuki et. al. Constant-time CSIDH 2020/2/21

Table of contents

© CSIDH

H. Onuki et. al. Constant-time CSIDH 2020/2/21 11/25

CSIDH (1/3)

p 1 a prime,
£l = {E : supersingular e.c. over F, | Endg, (E) = Z[\/=p|}/ ~¥,.
Cl : the ideal class group of Z[\/—p].

H. Onuki et. al. Constant-time CSIDH 2020/2/21

CSIDH (1/3)

p 1 a prime,
£l = {E : supersingular e.c. over F, | Endg, (E) = Z[\/=p|}/ ~¥,.
Cl : the ideal class group of Z[\/—p].

Proposition 1

Cl acts freely and transitively on £/ via isogenies.

Clx & — &
w w
(a,F) — axFE

H. Onuki et. al. Constant-time CSIDH 2020/2/21 12/25

CSIDH (1/3)

p 1 a prime,
£l = {E : supersingular e.c. over F, | Endg, (E) = Z[\/=p|}/ ~¥,.
Cl : the ideal class group of Z[\/—p].

Proposition 1

Cl acts freely and transitively on £/ via isogenies.

Clx & — &w
w w
(a,F) — axFE
e (a,F) — ax FE can be easily computed.
e (E,ax* E)— ais hard to compute.

H. Onuki et. al. Constant-time CSIDH 2020/2/21

CSIDH (2/3)

Rough sketch of CSIDH:

ax FE T) ab x E

E € &0 : public elliptic curve

a € Cl: Alice's secret key, ax F : Alice’s public key
b € C/ : Bob's secret key, b x E/ : Bob's public key
ab * F : shared key

H. Onuki et. al. Constant-time CSIDH

2020/2/21

13/

25

CSIDH (3/3)

@ CSIDH uses a prime p of form 441 ---¢,, — 1,
where /4, ..., ¢, are distinct odd primes.

e In Z[\/—p|, a prime ¢; splits as
&- = !

[Ji, [z = (&,7’(’ — 1), [z = (&',7’(+ 1), where ™ = \ —P-

e To calculate the action of [; (resp. [;), one needs a point in
E[m — 1] (resp. E[m + 1]) of order ;.

H. Onuki et. al. Constant-time CSIDH 2020/2/21

14 /25

CSIDH (3/3)

@ CSIDH uses a prime p of form 441 ---¢,, — 1,
where /4, ..., ¢, are distinct odd primes.

e In Z[\/—p], a prime {; splits as
=L, L={,m—=1), ;= ;,7+1), where 7 = \/—p.

e To calculate the action of [; (resp. [;), one needs a point in
E[m — 1] (resp. E[m + 1]) of order ;.

The actions of [; and [; can be computed efficiently.
= CSIDH uses ideal of form I{*--- ¢,
where, €1, ..., e, are integers in [—m, m].

Secret keys in CSIDH are expressed as (ey,...,¢,).

H. Onuki et. al. Constant-time CSIDH 2020/2/21

Algorithm of CSIDH

Input: E € E0/, an integer vector (ey,...,e,).
Output: (I§'---[&) % E.
1: while e¢; # 0 :
Sample a random z € F,, and set P < (z9,y0) € E.
if P € E(F,) then s < +1 else s « —1.
S < {i | e; and s have the same sign.}, k < []
Q < [(p+1)/K]P.
fori e S
R« [k/6]Q
if R # oo then
Compute ¢ : E' — [x I/ by using R.
E—FxE Q<+ ¢(Q), e e —s.

165

o NO RN

—
@

11: return E.

H. Onuki et. al. Constant-time CSIDH 2020/2/21

Algorithm of CSIDH

Input: E € E0/, an integer vector (ey,...,e,).
Output: (I§'---[&) % E.
1: while e¢; # 0 :

2: Sample a random z € F,, and set P < (z9,y0) € E.

3: if P € E(F,) then s < +1 else s « —1.

4: S < {i | e; and s have the same sign.}, k < [[,cq ¢

5: Q <« [(p+1)/k]P. // k-torsion

6: forie S:

7: R« [k/;])Q. // [i-torsion

8: if R # oo then

9: Compute ¢ : E — [{ x E' by using R. // lsogeny (curve)
10: E+ExE, Q<+ o(Q), e; < e;—s. // lsogeny (point)

11: return £. Not constant-time!

H. Onuki et. al. Constant-time CSIDH 2020/2/21

Constant-time

Constant-time algorithm
No branch depending on secret information.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 17 /25

Constant-time

—

Constant-time algorithm

No branch depending on secret information.

Meyer, Campos and Reith proposed a contant-time algorithm of
CSIDH at PQCrypto 2019.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 17 /25

Constant-time algorithm by Meyer et al.

Meyer el al.
@ use dummy isogenies,
@ change secret key intervals. [—m,m] — [0, 2m]

Constant-time

by Meyer et al.
The worst case (2m, 2m, ..., 2m)
(m, m, .., m)

Num. of keys

Twice

>

al

Computational time

2020/2/21

H. Onuki et. al. Constant-time CSIDH

Table of contents

@ Our proposal

H. Onuki et. al. Constant-time CSIDH 2020/2/21 19/25

Our contribution

@ constant-time algorithm using the interval [—m, m]
@ keeping two points P € E[r — 1] and P’ € E[r + 1]
@ less cost than Meyer et al.

Our Constant-time

{m, m, ..., m) + additional cost

Constant-time

by Meyer et al.
The worst case (2m, 2m, ..., 2m)
(m, m, .., m)

Num. of keys

reduce 29%

A

aiif

Computational time

H. Onuki et. al. Constant-time CSIDH 2020/2/21 20/25

Algorithm of CSIDH (Redisplay)

Input: E € E0/, an integer vector (ey,...,e,).
Output: (I§'---[&) % E.
1: while e¢; # 0 :

2: Sample a random z € F,, and set P < (z9,y0) € E.

3: if P € E(F,) then s < +1 else s « —1.

4: S < {i | e; and s have the same sign.}, k < [[,cq ¢

5: Q <« [(p+1)/k]P. // k-torsion

6: fori e S

7: R« [k/;])Q. // [i-torsion

8: if R # oo then

9: Compute ¢ : E — [{ x E' by using R. // lsogeny (curve)
10: E+ExE, Q<+ o(Q), e; < e;—s. // lsogeny (point)
11: return F.

H. Onuki et. al. Constant-time CSIDH 2020/2/21

Comparison

Meyer et al. Ours
Initial Point(s) | one point two points
k-torsion twice as the worst | twice as the worst
[?-torsion twice as the worst | the same as the worst
Isogeny (curve) | twice as the worst | the same as the worst
Isogeny (point) | twice as the worst | twice as the worst

H. Onuki et. al. Constant-time CSIDH 2020/2/21 22 /25

Experimental results

C implementation of CSIDH-512 on an Intel Xeon Gold 6130 Skylake

| Clock cycles x10° | Wall clock time
Implementation by Meyer et al. 215.3 102.742ms
Our implementation 152.8 72.913ms

Our implementation has 29.03% fewer clock cycles than
the implementation by Meyer et al.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 23 /25

Table of contents

© Summary

H. Onuki et. al. Constant-time CSIDH 2020/2/21 24 /25

@ We constructed an efficient constant-time algorithm of CSIDH.

@ Our algorithm uses the same secret key interval as the
variable-time algorithm by keeping two points.

@ Our algorithm is 29% faster than the previous work.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 25/25

	Overview
	Isogeny-based Cryptography
	CSIDH
	Our proposal
	Summary

