
A Constant-time Algorithm of CSIDH keeping

Two Points

Hiroshi Onuki1 Yusuke Aikawa2 Tsutomu Yamazaki3

Tsuyoshi Takagi1

1The University of Tokyo

2Mitsubishi Electric

3Kyushu University

2020/2/21



Table of contents

1 Overview

2 Isogeny-based Cryptography

3 CSIDH

4 Our proposal

5 Summary

H. Onuki et. al. Constant-time CSIDH 2020/2/21 2 / 25



Table of contents

1 Overview

2 Isogeny-based Cryptography

3 CSIDH

4 Our proposal

5 Summary

H. Onuki et. al. Constant-time CSIDH 2020/2/21 3 / 25



Overview

We constructed a constant-time algorithm of an isogeny-based
cryptography CSIDH.

Our algorithm is about 29% faster than a previous work.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 4 / 25



Table of contents

1 Overview

2 Isogeny-based Cryptography

3 CSIDH

4 Our proposal

5 Summary

H. Onuki et. al. Constant-time CSIDH 2020/2/21 5 / 25



Post Quantum Cryptography

RSA and ECC will be broken if a quantum computer is built.

⇒ Post Quantum Cryptography (PQC) is important.

NIST started PQC standardization process in 2016.

The candidates include an isogeny-based cryptography.

· SIKE (Supersingular Isogeny Key Encapsulation).

H. Onuki et. al. Constant-time CSIDH 2020/2/21 6 / 25



Isogeny-based cryptography (1/3)

Isogeny-based cryptography is

a cryptosystem based on isogeny problem,

first proposed by Couvegne and independently by Rostovtsev and
Stolbunov.

⇒ Isogeny-based cryptography is a candidate for PQC.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 7 / 25



Isogeny-based cryptography (1/3)

Isogeny-based cryptography is

a cryptosystem based on isogeny problem,

first proposed by Couvegne and independently by Rostovtsev and
Stolbunov.

⇒ Isogeny-based cryptography is a candidate for PQC.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 7 / 25



Isogeny-based cryptography (2/3)

Rough sketch of isogeny-based key exchange:

E
φB−−−→ EB

φA

y yφA

EA −−−→
φB

EAB

E : public elliptic curve
φA : Alice’s secret key, EA : Alice’s public key
φB : Bob’s secret key, EB : Bob’s public key

EAB : shared key

H. Onuki et. al. Constant-time CSIDH 2020/2/21 8 / 25



Isogeny-based cryptography (3/3)

Pros

Short key size
Various techniques for ECC can be applied
Many applications (signature, hash, ...)

Cons

Slow

H. Onuki et. al. Constant-time CSIDH 2020/2/21 9 / 25



SIDH & CSIDH

SIDH is

Supersingular Isogeny Diffie Hellman,

proposed by Jao and Feo at PQCrypto 2011.

The isogeny-based candidate for NIST PQC is based on SIDH.

CSIDH is

Commutative SIDH,

proposed by Castryck et al. at ASIACRYPT 2018.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 10 / 25



SIDH & CSIDH

SIDH is

Supersingular Isogeny Diffie Hellman,

proposed by Jao and Feo at PQCrypto 2011.

The isogeny-based candidate for NIST PQC is based on SIDH.

CSIDH is

Commutative SIDH,

proposed by Castryck et al. at ASIACRYPT 2018.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 10 / 25



Table of contents

1 Overview

2 Isogeny-based Cryptography

3 CSIDH

4 Our proposal

5 Summary

H. Onuki et. al. Constant-time CSIDH 2020/2/21 11 / 25



CSIDH (1/3)

p : a prime,

Eℓℓ = {E : supersingular e.c. over Fp | EndFp(E) ∼= Z[
√
−p]}/ ∼Fp ,

Cℓ : the ideal class group of Z[
√
−p].

Proposition 1
Cℓ acts freely and transitively on Eℓℓ via isogenies.

Cℓ× Eℓℓ → Eℓℓ

∈ ∈

(a, E) 7→ a ∗ E

(a, E) 7→ a ∗ E can be easily computed.

(E, a ∗ E) 7→ a is hard to compute.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 12 / 25



CSIDH (1/3)

p : a prime,

Eℓℓ = {E : supersingular e.c. over Fp | EndFp(E) ∼= Z[
√
−p]}/ ∼Fp ,

Cℓ : the ideal class group of Z[
√
−p].

Proposition 1
Cℓ acts freely and transitively on Eℓℓ via isogenies.

Cℓ× Eℓℓ → Eℓℓ
∈ ∈

(a, E) 7→ a ∗ E

(a, E) 7→ a ∗ E can be easily computed.

(E, a ∗ E) 7→ a is hard to compute.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 12 / 25



CSIDH (1/3)

p : a prime,

Eℓℓ = {E : supersingular e.c. over Fp | EndFp(E) ∼= Z[
√
−p]}/ ∼Fp ,

Cℓ : the ideal class group of Z[
√
−p].

Proposition 1
Cℓ acts freely and transitively on Eℓℓ via isogenies.

Cℓ× Eℓℓ → Eℓℓ
∈ ∈

(a, E) 7→ a ∗ E

(a, E) 7→ a ∗ E can be easily computed.

(E, a ∗ E) 7→ a is hard to compute.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 12 / 25



CSIDH (2/3)

Rough sketch of CSIDH:

E
b−−−→ b ∗ E

a

y ya

a ∗ E −−−→
b

ab ∗ E

E ∈ Eℓℓ : public elliptic curve
a ∈ Cℓ : Alice’s secret key, a ∗ E : Alice’s public key
b ∈ Cℓ : Bob’s secret key, b ∗ E : Bob’s public key

ab ∗ E : shared key

H. Onuki et. al. Constant-time CSIDH 2020/2/21 13 / 25



CSIDH (3/3)

CSIDH uses a prime p of form 4ℓ1 · · · ℓn − 1,
where ℓ1, . . . , ℓn are distinct odd primes.

In Z[
√
−p], a prime ℓi splits as

ℓi = līli, li = (ℓi, π − 1), l̄i = (ℓi, π + 1), where π =
√
−p.

To calculate the action of li (resp. l̄i), one needs a point in
E[π − 1] (resp. E[π + 1]) of order ℓi.

The actions of li and l̄i can be computed efficiently.
⇒ CSIDH uses ideal of form le11 · · · lenn ,

where, e1, . . . , en are integers in [−m,m].

Secret keys in CSIDH are expressed as (e1, . . . , en).

H. Onuki et. al. Constant-time CSIDH 2020/2/21 14 / 25



CSIDH (3/3)

CSIDH uses a prime p of form 4ℓ1 · · · ℓn − 1,
where ℓ1, . . . , ℓn are distinct odd primes.

In Z[
√
−p], a prime ℓi splits as

ℓi = līli, li = (ℓi, π − 1), l̄i = (ℓi, π + 1), where π =
√
−p.

To calculate the action of li (resp. l̄i), one needs a point in
E[π − 1] (resp. E[π + 1]) of order ℓi.

The actions of li and l̄i can be computed efficiently.
⇒ CSIDH uses ideal of form le11 · · · lenn ,

where, e1, . . . , en are integers in [−m,m].

Secret keys in CSIDH are expressed as (e1, . . . , en).

H. Onuki et. al. Constant-time CSIDH 2020/2/21 14 / 25



Algorithm of CSIDH

Input: E ∈ Eℓℓ, an integer vector (e1, . . . , en).
Output: (le11 · · · lenn ) ∗ E.
1: while ei ̸= 0 :
2: Sample a random x0 ∈ Fp and set P ← (x0, y0) ∈ E.
3: if P ∈ E(Fp) then s← +1 else s← −1.
4: S ← {i | ei and s have the same sign.}, k ←

∏
i∈S ℓi.

5: Q← [(p+ 1)/k]P .
6: for i ∈ S :
7: R← [k/ℓi]Q.
8: if R ̸=∞ then
9: Compute φ : E → lsi ∗ E by using R.
10: E ← lsi ∗ E, Q← φ(Q), ei ← ei − s.

11: return E.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 15 / 25



Algorithm of CSIDH

Input: E ∈ Eℓℓ, an integer vector (e1, . . . , en).
Output: (le11 · · · lenn ) ∗ E.
1: while ei ̸= 0 :
2: Sample a random x0 ∈ Fp and set P ← (x0, y0) ∈ E.
3: if P ∈ E(Fp) then s← +1 else s← −1.
4: S ← {i | ei and s have the same sign.}, k ←

∏
i∈S ℓi.

5: Q← [(p+ 1)/k]P . // k-torsion
6: for i ∈ S :
7: R← [k/ℓi]Q. // lsi -torsion
8: if R ̸=∞ then
9: Compute φ : E → lsi ∗ E by using R. // Isogeny (curve)

10: E ← lsi ∗E, Q← φ(Q), ei ← ei − s. // Isogeny (point)

11: return E. Not constant-time!

H. Onuki et. al. Constant-time CSIDH 2020/2/21 16 / 25



Constant-time

Constant-time algorithm
No branch depending on secret information.

Meyer, Campos and Reith proposed a contant-time algorithm of
CSIDH at PQCrypto 2019.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 17 / 25



Constant-time

Constant-time algorithm
No branch depending on secret information.

Meyer, Campos and Reith proposed a contant-time algorithm of
CSIDH at PQCrypto 2019.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 17 / 25



Constant-time algorithm by Meyer et al.

Meyer el al.

use dummy isogenies,

change secret key intervals. [−m,m]→ [0, 2m]

H. Onuki et. al. Constant-time CSIDH 2020/2/21 18 / 25



Table of contents

1 Overview

2 Isogeny-based Cryptography

3 CSIDH

4 Our proposal

5 Summary

H. Onuki et. al. Constant-time CSIDH 2020/2/21 19 / 25



Our contribution

constant-time algorithm using the interval [−m,m]
keeping two points P ∈ E[π − 1] and P ′ ∈ E[π + 1]
less cost than Meyer et al.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 20 / 25



Algorithm of CSIDH (Redisplay)

Input: E ∈ Eℓℓ, an integer vector (e1, . . . , en).
Output: (le11 · · · lenn ) ∗ E.
1: while ei ̸= 0 :
2: Sample a random x0 ∈ Fp and set P ← (x0, y0) ∈ E.
3: if P ∈ E(Fp) then s← +1 else s← −1.
4: S ← {i | ei and s have the same sign.}, k ←

∏
i∈S ℓi.

5: Q← [(p+ 1)/k]P . // k-torsion
6: for i ∈ S :
7: R← [k/ℓi]Q. // lsi -torsion
8: if R ̸=∞ then
9: Compute φ : E → lsi ∗ E by using R. // Isogeny (curve)

10: E ← lsi ∗E, Q← φ(Q), ei ← ei − s. // Isogeny (point)

11: return E.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 21 / 25



Comparison

Meyer et al. Ours

Initial Point(s) one point two points

k-torsion twice as the worst twice as the worst

lsi -torsion twice as the worst the same as the worst

Isogeny (curve) twice as the worst the same as the worst

Isogeny (point) twice as the worst twice as the worst

H. Onuki et. al. Constant-time CSIDH 2020/2/21 22 / 25



Experimental results

C implementation of CSIDH-512 on an Intel Xeon Gold 6130 Skylake

Clock cycles ×106 Wall clock time
Implementation by Meyer et al. 215.3 102.742ms

Our implementation 152.8 72.913ms

Our implementation has 29.03% fewer clock cycles than
the implementation by Meyer et al.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 23 / 25



Table of contents

1 Overview

2 Isogeny-based Cryptography

3 CSIDH

4 Our proposal

5 Summary

H. Onuki et. al. Constant-time CSIDH 2020/2/21 24 / 25



Summary

We constructed an efficient constant-time algorithm of CSIDH.

Our algorithm uses the same secret key interval as the
variable-time algorithm by keeping two points.

Our algorithm is 29% faster than the previous work.

H. Onuki et. al. Constant-time CSIDH 2020/2/21 25 / 25


	Overview
	Isogeny-based Cryptography
	CSIDH
	Our proposal
	Summary

