## A Constant-time Algorithm of CSIDH keeping Two Points

Hiroshi Onuki<sup>1</sup> Yusuke Aikawa<sup>2</sup> Tsutomu Yamazaki<sup>3</sup> Tsuyoshi Takagi<sup>1</sup>

<sup>1</sup>The University of Tokyo

<sup>2</sup>Mitsubishi Flectric

<sup>3</sup>Kyushu University

2020/2/21

### Table of contents

- Overview
- Isogeny-based Cryptography
- CSIDH
- Our proposal
- Summary

2/25

### Table of contents

- Overview
- Isogeny-based Cryptography
- CSIDH
- Our proposal
- Summary

#### Overview

 We constructed a constant-time algorithm of an isogeny-based cryptography CSIDH.

• Our algorithm is about 29% faster than a previous work.

### Table of contents

- Overview
- Isogeny-based Cryptography
- CSIDH
- Our proposal
- Summary

## Post Quantum Cryptography

- RSA and ECC will be broken if a quantum computer is built.
- ⇒ Post Quantum Cryptography (PQC) is important.
- NIST started PQC standardization process in 2016.
- The candidates include an isogeny-based cryptography.
  - · SIKE (Supersingular Isogeny Key Encapsulation).

6/25

# Isogeny-based cryptography (1/3)

#### Isogeny-based cryptography is

- a cryptosystem based on isogeny problem,
- first proposed by Couvegne and independently by Rostovtsev and Stolbunov.

## Isogeny-based cryptography (1/3)

#### Isogeny-based cryptography is

- a cryptosystem based on isogeny problem,
- first proposed by Couvegne and independently by Rostovtsev and Stolbunov.



⇒ Isogeny-based cryptography is a candidate for PQC.

## Isogeny-based cryptography (2/3)

Rough sketch of isogeny-based key exchange:



 $E: \mathsf{public} \ \mathsf{elliptic} \ \mathsf{curve}$ 

 $arphi_A$  : Alice's secret key,  $E_A$  : Alice's public key

 $arphi_B$  : Bob's secret key,  $E_B$  : Bob's public key

 $E_{{\color{red} AB}}$  : shared key

8 / 25

# Isogeny-based cryptography (3/3)

#### Pros

- Short key size
- Various techniques for ECC can be applied
- Many applications (signature, hash, ...)

#### Cons

Slow

9/25

### SIDH & CSIDH

#### SIDH is

- Supersingular Isogeny Diffie Hellman,
- proposed by Jao and Feo at PQCrypto 2011.

The isogeny-based candidate for NIST PQC is based on SIDH.

### SIDH & CSIDH

#### SIDH is

- Supersingular Isogeny Diffie Hellman,
- proposed by Jao and Feo at PQCrypto 2011.

The isogeny-based candidate for NIST PQC is based on SIDH.

#### CSIDH is

- Commutative SIDH,
- proposed by Castryck et al. at ASIACRYPT 2018.

### Table of contents

- **CSIDH**

## CSIDH (1/3)

```
p: a prime,
```

 $\mathcal{E}\ell\ell=\{E: \text{supersingular e.c. over } \mathbb{F}_p\mid \operatorname{End}_{\mathbb{F}_p}(E)\cong \mathbb{Z}[\sqrt{-p}]\}/\sim_{\mathbb{F}_p}$ 

 $\mathcal{C}\ell$ : the ideal class group of  $\mathbb{Z}[\sqrt{-p}]$ .

## CSIDH (1/3)

p: a prime,

 $\mathcal{E}\ell\ell = \{E: \text{supersingular e.c. over } \mathbb{F}_p \mid \operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}[\sqrt{-p}]\} / \sim_{\mathbb{F}_p},$ 

 $\mathcal{C}\ell$ : the ideal class group of  $\mathbb{Z}[\sqrt{-p}]$ .

### Proposition 1

 $\mathcal{C}\ell$  acts freely and transitively on  $\mathcal{E}\ell\ell$  via isogenies.

$$\begin{array}{ccc} \mathcal{C}\ell \times \mathcal{E}\ell\ell & \to & \mathcal{E}\ell\ell \\ & \cup & & \cup \\ & (\mathfrak{a},E) & \mapsto & \mathfrak{a}*E \end{array}$$

# CSIDH (1/3)

p: a prime,

 $\mathcal{E}\ell\ell=\{E: \text{supersingular e.c. over } \mathbb{F}_p\mid \operatorname{End}_{\mathbb{F}_p}(E)\cong \mathbb{Z}[\sqrt{-p}]\}/\sim_{\mathbb{F}_p}$ ,

 $\mathcal{C}\ell$ : the ideal class group of  $\mathbb{Z}[\sqrt{-p}]$ .

### Proposition 1

 $\mathcal{C}\ell$  acts freely and transitively on  $\mathcal{E}\ell\ell$  via isogenies.

$$\begin{array}{ccc} \mathcal{C}\ell \times \mathcal{E}\ell\ell & \to & \mathcal{E}\ell\ell \\ & & & & & & \\ (\mathfrak{a},E) & \mapsto & \mathfrak{a}*E \end{array}$$

- $(\mathfrak{a}, E) \mapsto \mathfrak{a} * E$  can be easily computed.
- $(E, \mathfrak{a} * E) \mapsto \mathfrak{a}$  is hard to compute.

# CSIDH (2/3)

#### Rough sketch of CSIDH:

$$E \xrightarrow{\mathfrak{b}} \mathfrak{b} * E$$

$$\downarrow \mathfrak{a}$$

$$\mathfrak{a} * E \xrightarrow{\mathfrak{b}} \mathfrak{ab} * E$$

```
E \in \mathcal{E}\ell\ell : public elliptic curve
```

 $\mathfrak{a} \in \mathcal{C}\ell$ : Alice's secret key,  $\mathfrak{a} * E$ : Alice's public key  $\mathfrak{b} \in \mathcal{C}\ell$ : Bob's secret key,  $\mathfrak{b} * E$ : Bob's public key

 $\mathfrak{ab} * E$  : shared key

# CSIDH (3/3)

- CSIDH uses a prime p of form  $4\ell_1 \cdots \ell_n 1$ , where  $\ell_1, \dots, \ell_n$  are distinct odd primes.
- In  $\mathbb{Z}[\sqrt{-p}]$ , a prime  $\ell_i$  splits as  $\ell_i = \mathfrak{l}_i \overline{\mathfrak{l}}_i, \quad \mathfrak{l}_i = (\ell_i, \pi 1), \ \overline{\mathfrak{l}}_i = (\ell_i, \pi + 1), \ \text{where} \ \pi = \sqrt{-p}.$
- To calculate the action of  $\mathfrak{l}_i$  (resp.  $\overline{\mathfrak{l}}_i$ ), one needs a point in  $E[\pi-1]$  (resp.  $E[\pi+1]$ ) of order  $\ell_i$ .

# CSIDH (3/3)

- CSIDH uses a prime p of form  $4\ell_1 \cdots \ell_n 1$ , where  $\ell_1, \dots, \ell_n$  are distinct odd primes.
- In  $\mathbb{Z}[\sqrt{-p}]$ , a prime  $\ell_i$  splits as  $\ell_i = \mathfrak{l}_i \overline{\mathfrak{l}}_i, \quad \mathfrak{l}_i = (\ell_i, \pi 1), \ \overline{\mathfrak{l}}_i = (\ell_i, \pi + 1), \text{ where } \pi = \sqrt{-p}.$
- To calculate the action of  $l_i$  (resp.  $\bar{l}_i$ ), one needs a point in  $E[\pi-1]$  (resp.  $E[\pi+1]$ ) of order  $\ell_i$ .

The actions of  $l_i$  and  $\bar{l}_i$  can be computed efficiently.

 $\Rightarrow$  CSIDH uses ideal of form  $\mathfrak{l}_1^{e_1}\cdots\mathfrak{l}_n^{e_n}$ , where,  $e_1,\ldots,e_n$  are integers in [-m,m].

Secret keys in CSIDH are expressed as  $(e_1, \ldots, e_n)$ .

### Algorithm of CSIDH

```
Input: E \in \mathcal{E}\ell\ell, an integer vector (e_1, \ldots, e_n).
Output: (\mathfrak{l}_1^{e_1}\cdots\mathfrak{l}_n^{e_n})*E.
 1: while e_i \neq 0:
            Sample a random x_0 \in \mathbb{F}_p and set P \leftarrow (x_0, y_0) \in E.
 2:
            if P \in E(\mathbb{F}_n) then s \leftarrow +1 else s \leftarrow -1.
 3:
           S \leftarrow \{i \mid e_i \text{ and } s \text{ have the same sign.}\}, k \leftarrow \prod_{i \in S} \ell_i.
 4:
         Q \leftarrow [(p+1)/k]P.
 5:
         for i \in S.
 6:
                 R \leftarrow [k/\ell_i]Q.
 7:
                 if R \neq \infty then
 8:
 9:
                        Compute \varphi: E \to \mathfrak{l}_i^s * E by using R.
                       E \leftarrow \mathfrak{l}_i^s * E, \ Q \leftarrow \varphi(Q), \ e_i \leftarrow e_i - s.
10:
11: return E.
```

### Algorithm of CSIDH

```
Input: E \in \mathcal{E}\ell\ell, an integer vector (e_1, \ldots, e_n).
Output: (\mathfrak{l}_1^{e_1}\cdots\mathfrak{l}_n^{e_n})*E.
 1: while e_i \neq 0:
           Sample a random x_0 \in \mathbb{F}_p and set P \leftarrow (x_0, y_0) \in E.
 2:
           if P \in E(\mathbb{F}_n) then s \leftarrow +1 else s \leftarrow -1.
 3:
           S \leftarrow \{i \mid e_i \text{ and } s \text{ have the same sign.}\}, k \leftarrow \prod_{i \in S} \ell_i.
 4:
       Q \leftarrow \lceil (p+1)/k \rceil P. // k-torsion
 5:
       for i \in S.
 6:
                R \leftarrow [k/\ell_i]Q. // \mathfrak{l}_i^s-torsion
 7:
                if R \neq \infty then
 8:
                      Compute \varphi: E \to \mathfrak{l}_i^s * E by using R. // Isogeny (curve)
 9:
                      E \leftarrow \mathfrak{l}_i^s * E, Q \leftarrow \varphi(Q), e_i \leftarrow e_i - s. // Isogeny (point)
10:
11: return E. Not constant-time!
```

### Constant-time

#### Constant-time algorithm

No branch depending on secret information.

#### Constant-time

#### Constant-time algorithm

No branch depending on secret information.

Meyer, Campos and Reith proposed a contant-time algorithm of CSIDH at PQCrypto 2019.

## Constant-time algorithm by Meyer et al.

#### Meyer el al.

- use dummy isogenies,
- ullet change secret key intervals.  $[-m,m] \to [0,2m]$



### Table of contents

- Overview
- Isogeny-based Cryptography
- CSIDH
- Our proposal
- Summary

#### Our contribution

- ullet constant-time algorithm using the interval [-m,m]
- keeping two points  $P \in E[\pi 1]$  and  $P' \in E[\pi + 1]$
- less cost than Meyer et al.



H. Onuki et. al. Constant-time CSIDH 2020/2/21

20 / 25

## Algorithm of CSIDH (Redisplay)

```
Input: E \in \mathcal{E}\ell\ell, an integer vector (e_1, \ldots, e_n).
Output: (\mathfrak{l}_1^{e_1}\cdots\mathfrak{l}_n^{e_n})*E.
 1: while e_i \neq 0:
           Sample a random x_0 \in \mathbb{F}_p and set P \leftarrow (x_0, y_0) \in E.
 2:
           if P \in E(\mathbb{F}_n) then s \leftarrow +1 else s \leftarrow -1.
 3:
           S \leftarrow \{i \mid e_i \text{ and } s \text{ have the same sign.}\}, k \leftarrow \prod_{i \in S} \ell_i.
 4:
        Q \leftarrow \lceil (p+1)/k \rceil P. // k-torsion
 5:
        for i \in S.
 6:
                 R \leftarrow [k/\ell_i]Q. // \mathfrak{l}_i^s-torsion
 7:
                 if R \neq \infty then
 8:
                       Compute \varphi: E \to \mathfrak{l}_i^s * E by using R. // Isogeny (curve)
 9:
                       E \leftarrow \mathfrak{l}_i^s * E, Q \leftarrow \varphi(Q), e_i \leftarrow e_i - s. // Isogeny (point)
10:
11: return E.
```

# Comparison

|                             | Meyer et al.       | Ours                  |  |
|-----------------------------|--------------------|-----------------------|--|
| Initial Point(s)            | one point          | two points            |  |
| k-torsion                   | twice as the worst | twice as the worst    |  |
| $\mathfrak{l}_i^s$ -torsion | twice as the worst | the same as the worst |  |
| Isogeny (curve)             | twice as the worst | the same as the worst |  |
| Isogeny (point)             | twice as the worst | twice as the worst    |  |

### Experimental results

C implementation of CSIDH-512 on an Intel Xeon Gold 6130 Skylake

|                                | Clock cycles $\times 10^6$ | Wall clock time |
|--------------------------------|----------------------------|-----------------|
| Implementation by Meyer et al. | 215.3                      | 102.742ms       |
| Our implementation             | 152.8                      | 72.913ms        |

Our implementation has 29.03% fewer clock cycles than the implementation by Meyer et al.

### Table of contents

- Overview
- Isogeny-based Cryptography
- 3 CSIDH
- Our proposal
- **5** Summary

### Summary

- We constructed an efficient constant-time algorithm of CSIDH.
- Our algorithm uses the same secret key interval as the variable-time algorithm by keeping two points.
- Our algorithm is 29% faster than the previous work.