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Reshaping Convex Polyhedra

Joseph O’Rourke*

Given two convex polyhedra P and @), with @) inside P, one can reshape P
to @ by repeated vertex truncations: slicing P with a plane that has a single
vertex to one side. For example, this is one way to construct the truncated
cube: see Fig. 1.

Figure 1: Truncated cube. [Image by Tilman Piesk, Wikipedial.

An alternative method of “snipping” off vertices we call digon-tailoring.
Here we locate a digon containing a vertex v, a subset of P bounded by two
equal-length geodesic segments 7y, v, that share endpoints. We excise the
digon and suture closed its two sides by identifying v; with ~5. This produces
a new convex polyhedron guaranteed by Alexandrov’s Gluing Theorem.

The main result of this presentation is that any P can be reshaped to
any () C P by a finite sequence of tailorings. This holds whether () has
fewer vertices than P or more vertices than P: see Fig. 2. For polyhedra of
n vertices, the reshaping can be accomplished algorithmically in O(n*) time.

*Smith College, Northampton, MA, USA. jorourke@smith.edu.



Figure 2: Cube inside dodecahedron. Icosahedron inside cube.

It is an easy corollary that, if S is the surface of any convex body inside
P, then P may be tailored to approximate S as closely as desired. So P can
be “whittled” to e.g., a sphere S.

I will also discuss consequences of this theorem, including “unfolding” @)
onto P, and continuously folding P onto Q).

This work is joint with Costin Vilcu [OV21].

References
[OV21] Joseph O’Rourke and Costin Vilcu. Reshaping convex polyhedra.

arXiv 2107.03153v2 [math.MG]J: arxiv.org/abs/2107.03153, July
2021.
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Counting cycles in regular and planar graphs

Carol T. Zamfirescu
Ghent University, Belgium

czamfirescu@gmail.com

Abstract

Motivated by an old and famous conjecture of Sheehan — namely that every hamiltonian 4-regular
graph has at least two distinct hamiltonian cycles — and two recent conjectures of Haythorpe, we
first discuss the problem of determining the minimum number of hamiltonian cycles occurring in
hamiltonian regular graphs. One of our results is that there exists a constant ¢ > 0 such that there
are infinitely many 4-regular 3-connected planar graphs, each containing exactly ¢ hamiltonian cycles.
Note that by a recent theorem of Brinkmann and Van Cleemput, we cannot replace “3-connected”
by “4-connected” in the preceding sentence. We then investigate several variations of Sheehan’s
conjecture, one of which is as follows: we still impose the uniqueness of the cycle but instead of
requiring it to necessarily be hamiltonian, we now simply ask for it to be a longest cycle.

Finally, we present a series of recent results on the enumeration of cycles in planar triangulations,
for instance that every m-vertex triangulation with at most one separating triangle contains 2(n)
many k-cycles for every k € {3,...,n}; this last part of the talk is based on joint work with On-Hei
Solomon Lo.
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Pushing Block Puzzles

Erik D. Demaine®

!Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA; edemaine@mit.edu (E. Demaine)

Abstract

Sokoban™ is perhaps the most famous puzzle video game involving pushing blocks, where a 1 x 1
agent must push various 1 x 1 blocks (at most one at a time) into designated locations, while avoiding
1 x 1 fixed obstacle blocks. Figure 1 shows an example puzzle. Many other video games — such
as the Legend of Zelda, Tomb Raider, and Half-Life series — feature similar pushing block puzzles,
sometimes allowing pulling blocks in addition to or instead of pushing. The computational geometry
and games community have since analyzed a wide range of pushing block puzzles, characterized by
the following parameters (among others):

1. Whether the agent can push blocks (as in Sokoban), pull blocks, or both. These variations are
referred to as PusH, PuLL, and PUsHPULL, respectively.

2. When moving away from a block, whether the agent must pull that block. This variation is
referred to as PULL!, whereas the optional pulling model is PULL?.

3. How many blocks the agent can push or pull at once. In Sokoban and variations such as PUSH-1,
this number is 1.

4. Whether there are fixed blocks that the agent cannot push, as in Sokoban and variations such
as PUsSH-1F.

5. Whether pushed blocks (and optionally the agent) automatically slide until they hit a block.
6. Whether blocks and/or the agent fall according to gravity.

7. Whether the goal is to store blocks in specified locations (as in Sokoban) or just for the agent
to reach a particular location (as in PusH, PuLL, and PUSHPULL variations).

The goal is to characterize the complexity of each puzzle variation. While most variations are
easy to show NP-hard, the more challenging question is which variations are PSPACE-complete.
Sokoban has been known to be PSPACE-complete since 1998 [Cul98]. A brand new result is the
PSPACE-completeness of PUSH-1F, which is essentially the same as Sokoban but where the goal is for
the agent to just reach a particular location (and blocks do not have designated locations) [ACD™22].
Figure 2 shows a simple PUSH-1F puzzle. We will survey these and many other historical results,
including pulling-block results from JCDCGGG 2019 [AADT20].

Pushing/pulling block puzzles have served as a testing ground for developing hardness proof
infrastructure. Many of the past PSPACE-hardness results use Nondeterministic Constraint Logic
[HDO09] or the recent motion-planning-through-gadgets framework that has developed over the past
few years [DGLR18,DHL20,ABD"20,Lyn20,Hen21,AAD"20,ADG"21,ADHoL22,ADD"22, DHHL22]|.
Our latest analysis of PUsH-1F introduces a powerful new tool for the gadgets framework called check-
able gadgets, which lets the gadget designer assume that certain traversals remain possible, effectively
preventing the player from breaking gadgets in previously difficult-to-prevent ways.

Figure 1: Sokoban level “Minicosmos 16” designed Figure 2: Simple PUSH-1F puzzle from [ACD*22,
by Peloux in 2001 [dP01]. Can you push the three ~ Figure la]. Can you push blocks to reach the flag
blocks onto the three flags? Playable at https://  position?

sokoban.info/74_16.

*Sokoban was created by Hiroyuki Imabayashi in 1980, and published by Thinking Rabbit in 1982.
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Rainbow cycles in edge-colored graphs

Xueliang Li
Center for Combinatorics
Nankai University
Tianjin 300071, China

Email: Ixl@nankai.edu.cn

Abstract

A cycle in an edge-colored graph is called rainbow if any two edges of the cycle have
different colors. In this talk we will survey the results on rainbow cycles in edge-colored
graphs. The results are mainly on short and long rainbow cycles, rainbow Hamiltonian
cycles and (vertex- and edge-)disjoint rainbow cycles, as well as the number of rainbow
triangles in edge-colored graphs. Some open problems are also presented for further study.
(Joint work with Dr. Xiaozheng Chen and Dr. Luyi Li)

References

[1] H.J. Broersma, X. Li, G. Woeginger, S. Zhang, Paths and cycles in colored graphs, Aus-
tralas. J. Combin. 31(2005), 297-309.

[2] X. Chen, X. Li, Note on rainbow cycles in edge-colored graphs, accepted by Discrete Math.

[3] X. Chen, X. Li, B. Ning, Note on rainbow triangles in edge-colored graphs, Graphs Combin.
38(3)(2022), No.69.

[4] M. Kano, X. Li, Monochromatic and heterochromatic subgraphs in edge-colored graphs -
A survey, Graphs & Combin. 24(2008), 237-263.

[5] LY. Li, X. Li, Vertex-disjoint rainbow cycles in edge-colored graphs, Discrete Math.
345(2022), 112878.

[6] L.Y. Li, X. Li, Rainbow edge-pancyclicity of strongly edgecolored graphs, Theoret. Comput.
Sci. 907(2022), 26-33.

[7] X. Li, B. Ning, Y.T, Shi, S.G. Zhang, Counting rainbow triangles in edge-colored graphs,
arXiv:2112.14458 [math.CO].

14



On the existence of almost Moore digraphs

Edy Tri Baskoro
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Let d and k be two natural numbers. An almost Moore digraph is defined as a
diregular digraph of degree d, diameter k and order d + d?> + ... + d*, and it is
denoted by (d, k)-digraph. The question of the existence of (d, k)-digraphs has
received a lot of attention. Fiol, Allegre and Yebra (1983) showed that (d,2)-
digraph exists for any d > 2, and one of them is the line digraph L(K441) of
the complete digraph Kg41 on d + 1 vertices. Miller and Fris (1988) showed that
there are exactly three (2,2)-digraphs and Gimbert (2001) proved the uniqueness
of (d,2)-digraphs for any d > 3. But, a (d, k)-digraph does not exist for d = 2,3
and k£ > 3, and for d > 2 and k = 3,4. For the remaining cases, namely for
d > 4 and k > 5, the existence of (d, k)-digraphs is still open. The structural
study on these digraphs (if they exist) was initiated by the work of Mirka Miller
by introducing a repeat function. In this talk, we will discuss the beauty of repeat
function used to explore the possibility of the existence of almost Moore digraphs
for d > 4 and k > 5. Open problems related to this study are also presented.
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Abstract

Given a collection C' of n geometric objects, define their intersection graph G(C) as
follows. Let the vertex set of G(C') be C, and connect two elements of C' by an edge if and
only if they have a point in common. The total number of graphs on n labeled vertices is
2(5). How many of them are intersection graphs of connected arcs (“strings”) in the plane?
Pach and Téth proved that the answer is 9(3/4+0)(3)

If we restrict our attention to intersection graphs of strings, any pair of which intersect
at most k times, for a fixed k, then the number becomes 2°("*) " On the other hand, it was
shown by Pach and Solymosi that the number of segment intersection graphs on n vertices
is 2(4to()nlogn  After giving a whirlwind tour of enumeration results and methods of this

kind, we present some recent results by Jacob Fox, Andrew Suk, and the speaker.
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Regular polygon on the equatorial section of regular n-simplex
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Regular polytopes are generated by the symmetry operations of an orthogonal reflection. Analogously
by using unitary reflection, regular complex polytopes are generated in complex space [1-3]. As an
application of the unitary reflection, Coxeter [4] constructed a regular pentagon on the equatorial
section of a regular 4-dimensional simplex in real space. By extending this approach, we can construct
an equatorial regular (n+1)-gon of the regular n-simplex. The regular n-simplex with n+1 vertices is
projected just like a Ky+1 graph onto 2-plane. Moreover, as dimension ‘n’ increase, the size of the
projected regular (n+1)-gon is convergent to a half size of the Ku+1 graph.

Background of the problem
Identify and connect four points - one on each triangular face - of a regular tetrahedron, subject to two
constraints: (a) the four points form vertices of a square on a 2-plane, and (b) this square passes through
the center of the tetrahedron (equatorial plane). In this study, we ask this simple question: is it possible
to make such an arrangement of points? The answer could be one of the following:

(0) impossible, (1) uniquely determined, or (°°) infinitely many
Majority of answers is (0) or (1). (°°) is minority, but contra-intuitively (o) is correct. Since seeing
is believing, a picture of Petrie bisection will be a help to your understanding.

As mentioned above, Coxeter [4] constructed a regular pentagon on the equatorial section of a regular
4-simplex. Such a problem can be extended a hyper-simplex in hyperspace as follows; identify a points
on each facet of a regular n-simplex and then connect all n+1 points. Is it possible to make a regular
(n+1)-gon on the equatorial section of the n-simplex? The answer is ‘yes, we can’, but the more
interesting question is ‘how we should do it’. As an introductory example, we will illustrate how to
construct an equatorial heptagon from a regular 6-simplex (Fig. 1).

The regular 6-simplex and its equatorial heptagon
Generally speaking, the coordinates of n+1 vertices of a regular n-simplex are irrational. Easiest way
to avoid irrationality is to choose n+1 unit-points after raising up one more dimension. In the regular
6-simplex, seven vertices are represented as (1,0,0,0,0,0,0), (0,1,0,0,0,0,0),:-+, (0,0,0,0,0,0,1) in the
hyperplane x+xo+x3+xatxstxetx7=1. Its center is (1/7,1/7,-+-,1/7,1/7) and the edge length is V2. By
the standard orthogonal projection, the regular 6-simplex with 7 vertices is projected onto the 2-plane,
just like a K7 graph.
[1] Typical vertex of an equatorial regular polygon
By choosing a temporary point (x1,X2,X3,X4,X5,X6,X7) on the 4-face, we can take x¢=x7=0. The other 6
points correspond to its cyclic permutations. Without loss of generality, we can let xo=0, x;=1 and
xo=1+2co0s(2m/7) =X, where, X denotes the diagonal length parallel to an edge of a regular heptagon
with unit edge length. Then, x3, x4 and X5 are determined as generalized Tribonacci sequence.

X3=X(X2—X1)+X0=X2—X,

X4=X(X3-Xz)+X1=X3 2X+1=X,

X5:)((X4—X3)+X2=X4—3X3 +x24+2X=1
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After the scale transformation by yi=xi/ X xi, X xi=X*-2X*+2X+2=X?+X+2, a typical vertex of the
heptagon on the equatorial section of the regular 6-simplex is given by (y1,y2,¥3,¥4,¥5,Y6,y7), Where 2
yi=1. We can confirm that each of vertices are situated on the 2-plane as evidenced by the rank of the
matrix (=2).
[2] Projection of equatorial polygon
By the projection into the unit circle, (y1,y2,y3,¥4,¥5,¥s,y7) is projected on (&,11), whose components are
given as a form of finite Fourier series, namely; E=Xy; - cos(i-1) @ and n=2Xy; * sin(i-1) 8, where
0=20=2m/7. Therefore, the projected distance ‘d’ and Euclidean distance ‘D’ between the vertex and
the center of heptagon are calculated as follows:

d?=E22=T7(X2-X+1)/(XPHX+2)?

D=2 (yi-1/7)?=2(X>-X+1)/(X*+X+2)>.

Theorems

If we choose (x1,X2,X3,X4,X5,X6,X7) on the facet (x7=0) or on the 3-face (xs5=x6=x7=0), the simultaneous
equation becomes indeterminate or inconsistent, respectively. The following theorem is derived
directly from the above-mentioned procedure.

[1] By appropriately selecting a point on each of the facets of a regular n-simplex, we can construct
infinitely many numbers of regular (n+1)-gon on the equatorial section. If n+1 points are chosen on
the (n-2)-faces, we can construct the equatorial regular (n+1)-gon of maximum size. If chosen on the
(n-3)-faces, it is impossible to construct the equatorial regular (n+1)-gon of any size.

[2] d>=1 (n=2), d>=1/2 (n=3), d>=1/1? (n=4), d>=1/3 (n=5), -, d>=1/(2cosa)? , where o=m/(n+1).

As dimension ‘n’ increase, d”> decreases monotonously and converges to 1/4.

[3] D*=2/3 (n=2), D*=1/4 (n=3), D*=2/57% (n=4), D*=1/9 (n=5),"*-, D*=2d*/(n+1).

This means d? is magnified (n+1)/2 times that of D?. As dimension ‘n’ increase, D? decreases
monotonously and converges to 0.

Points of Proofs
[a] One version of the proof roughly consists of lengthy and complicated trigonometric calculations,
which eventually in results the following.

xi=sin(io)sin((i+1)a)/sinasin20, a=m/(n+1).

(& n)=(-cos3asina/sin2a, sin3asina/sin2a) — d*=E*n?=1/(2cosa)’> — 1/4
[b] Another version of the proof is based on concepts in elementary geometry.
In odd dimension, (§,n) situates on the intersection of two diagonals of Kn+1. For an example, the
regular 7-simplex and its equatorial octagon are shown in Fig. 2. As n— oo, X=14+2cos(2r/(n+1)) —3.
By the ratio of two isosceles triangles, it divides a diameter in the ratio 3:1. No calculation necessary.

Fig. 1  6-simplex and equatorial heptagon Fig.2  7-simplex and equatorial octagon
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Universal Convex Covering

Mook Kwon Jung* Sang Duk Yoon'

Universal covering of objects

Given a set S of planar objects and a group G of
geometric transformations, a G-covering K of S'is a
region such that every object in .S can be contained
in K by transforming the object with a suitable
transformation g € G. Equivalently, every object of
S is covered by g~ 1K for a suitable transformation
g € G. That is,

Vv € S, dg € G such that gy C K.

We denote the group of planar translation by T'
and that of planar translation and rotation by T R.
Mathematically, TR = T'x R is the semidirect prod-
uct of T" and the rotation group R = SO(2,R). We
often call coverings for G-coverings if G is known
from the context. We are mainly interested in the
case where G is generated by translation and dis-
crete rotations in this paper.

The problem of finding a smallest-area covering
is a classical problem in mathematics, and such a
covering is often called a universal covering. In the
literature, the cases where G =T or G = TR have
been widely studied.

History

The universal covering problem has attracted many
mathematicians. Henri Lebesgue (in his letter to
J. Pal in 1914) proposed a problem to find the
smallest-area convex T R-covering of all objects of
unit diameter (see [7, 4, 10] for its history). Soichi
Kakeya considered in 1917 the T-covering of the set
Sseg Of all unit line segments (called needles) [13].
Precisely, his formulation is to find the smallest-
area region in which a unit-length needle can be
turned round, but it is equivalent to the covering
problem if the covering is convex [3]. Originally,
Kakeya considered the convex covering, and Fu-
jiwara conjectured that the equilateral triangle of
height 1 is the solution. The conjecture was af-
firmatively solved by P&l in 1920 [16]. Moreover,
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Allowing Discrete Rotations
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the equilateral triangle can contain all unit-length
curves. For the nonconvex covering, Besicovitch [5]
gave a construction such that the area can be arbi-
trarily small.

Generalizing Pal’s result, for any set of n seg-
ments, there is a triangle to be the smallest-area
convex T-covering of the set, and the triangle can
be computed efficiently in O(nlogn) time [1]. It is
further conjectured that the smallest-area convex
T R-covering of a family of triangles is a triangle,
which is shown to be true for some families [18].

The problem of finding the smallest-area cover-
ing and convex covering of the set of all curves of
unit length and G = T'R was given by Leo Moser as
an open problem in 1966 [14]. The problem is still
unsolved, and the best lower bound of the small-
est area of the convex covering is slightly larger
than 0.23, while the best upper bound was about
0.27 for long time [8, 7]. Wetzel informally conjec-
tured (formally published in [19]) in 1970 that the
30° circular fan of unit radius, which has an area
7/12 7~ 0.2618, is a convex T R-covering of all unit-
length curves, and it is recently proved by Paraksa
and Wichiramala [17].

There are many variants of Moser’s problem, and
they are called Moser’s worm problem. The history
of progress on the topic can be found in an arti-
cle [15] by William Moser (Leo’s younger brother),
in Chapter D18 in [8], and in Chapter 11.4 in [7].
It is interesting to find a new case of Moser’s worm
problem with a clean mathematical solution.

Universal covering of closed curves

From now on, we focus on the convex G-covering of
the set S¢ of all closed curves  of length 2. Here,
we follow the tradition of previous works on this
problem to consider length 2 instead of 1, since a
unit line segment can be considered as a degenerate
convex closed curve of length 2. Since the boundary
curve of the convex hull C(v) of any closed curve
~ is not longer than v, it suffices to consider only
convex curves.

This problem is known to be an interesting but
hard variant of Moser’s worm problem, and remains
unsolved for T" and T R despite of substantial efforts
in the literature [9, 19, 20, 8, 7]. As far as the au-
thors know, the smallest-area convex T R-covering
known so far is a hexagon obtained by clipping two
corners of a rectangle given by Wichiramala, and
its area is slightly less than 0.441 [22]. Tt is also
shown that the smallest area is at least 0.39 [11],
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which has been recently improved to 0.4 [12] with
help of computer programs. The smallest area of
the convex T-covering is known to be between 0.620
and 0.657 [7].

There are some works on restricted shapes of cov-
ering. Especially, if we consider triangular cover-
ings, Wetzel [20, 21] gave a complete description,
and it is shown that an acute triangle with side

lengths a, b, ¢ and area X becomes a T-covering
8x*2

abe

(resp. T R-covering) of S¢ if and only if 2 <

2 X
(resp. 2< a+7;7+c

eral triangle of side length 4/3 (resp. 2ﬂ£> is the
smallest triangular T-covering (resp. T R-covering)
of Sc. Unfortunately, their areas are larger than
those of the known smallest-area convex coverings.

). As a consequence, the equilat-

Our results

If H is a subgroup of G, an H-covering is a G-
covering. Since T C TR, it is quite reasonable
to consider groups G lying between them, that
is T ¢ G C¢ TR. The group R = SO(2,R)
is an abelian group, and its finite subgroups are
Zy = {2k | 0<i<k—1}fork=1,2,...,
where €?V~1 means the rotation of angle 8. We
consider the coverings under the action of the group
Gr =T % Zy. To the authors’ knowledge, there is
no previous work on the universal covering problem
under Gy.

We show that the smallest-area convex Ga-
covering of S. is the equilateral triangle A; of
height 1, whose area is @ ~ 0.577. A nice feature is
that the proof is purely geometric and elementary.
As a corollary, /A is the smallest T-contaier of the
set of all centrary-symmetric closed curve of length
2. This implies and includes the aforementioned
fact that A\ is the smallest-area convex T-covering
of unit-length curves, since a unit-length curve and
its rotated copy by 7 can be concatinated to be a
centrary-symmetric closed curve of length 2.

Then, we show that the equilateral triangle with
height 8 = cos(w/12) ~ 0.966 is a G4-covering of
Sc. Its area is 2‘(% ~ 0.538675, and we conjecture
that it is the smallest-area convex G4-covering. It
is a pleasant surprise that the equilateral triangular
covering becomes the optimal convex covering if we
consider rotation by 7 (Gaz-covering), and it also
seems to be true if we consider rotations by 7/2
(G4-covering).

However, the minimum area convex (G3-covering
is no longer an equilateral triangle. We give a con-
vex (z-covering of S. which has area not larger
than 0.568. Unlike the G3- and G4-coverings, the
(G3-covering is not regular under rotation. More-
over we can shave its portion of an area 0.005 to
have a smaller convex Gs-covering of triangles of
perimeter 2, which is conjectured to be also a G3-
covering of S..

We also determine the set of all smallest-area
convex G-coverings of Seeq, Which are all triangles.
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Abstract

We introduce a family of polyhedra generated by regular polylinks such that the edges of a polyhedron
are edges of regular polygons, and the vertices of the polyhedron are joints between those polygons. We
enumerate all possible polyhedra and introduce a criterion to verify whether a given polyhedron satisfies
the assumptions.

1 Introduction

Inspired by the traditional lantern in northern Thailand (Kome), the lantern’s shape is recognized as a
rhombicuboctahedron. Based on the manual for composing this kind of lantern, the rhombicuboctahedron
is composed of the (congruent regular) octagons by arranging the octagons in different directions such that
the edges of the rhombicuboctahderon are derived from octagons, and vertices of rhombicuboctahedron are
joints of octagon vertices as shown in Figure 1.

Figure 1: The processes to compose a traditional lantern (The figures are captured from the manual
published by the social welfare division of Lamphun municipal office, Thailand.)

From the mathematical viewpoint, it is interesting to investigate the existence, necessary and sufficient
conditions of convex polyhedra, which faces are regular polygons, and a polyhedron is composed of congruent
regular polygons. Holden [1] considered a similar problem by investigating the polylinks, but the condition
for composing to be a polyhedron has not been proposed yet. The studies of [5] proposed models of
polyhedral links considered by the method of cross-curve and single-line covering, which shows some results
on Archimedean polyhedra.

In this study, we focus on the enumeration problem of vertices and edges of polyhedra to consider all
possible candidates. After that, we introduce a criterion to verify whether a given polyhedron satisfies the
assumptions.

2 Modeling Assumptions

We focus on a polyhedron P whose faces are regular polygons, which are not necessary to be the same.
Based on the study of Johnson [1], [2], and the summarization in [4], there are no more than 92 convex
polyhedra with regular faces, in addition to Platonic solids, Archimedean solids, prisms, and antiprisms. In
this investigation, we consider the following assumptions:

P is composed by k n-gons;

each vertex of P is joint by vertices of P;

all edges of P are all edges of P;

each edge is not overlapped except its endpoint, and no edge is laid inside a polyhedron;

AR

those n-gons cannot be faces of P.

3 Enumeration on the number of vertices and edges of polyhedra

Assumptions (1), and (2) implies that each vertex of a polyhedron P has an even degree of at least 4. Also,
the number of edges F of a polyhedron P is equal to kn; i.e., E = kn.

For the base case, the octahedron is the only polyhedron that can be composed of three squares. Suppose
that the first square is oriented on the plane. To compose other squares with the first oriented square, the
diameter of other squares should be laid on the diameters of the first square only. Otherwise, the edges of
squares cannot be the edges of the octahedron. In this case, n =4 and k = 3.
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Let V and F' be the number of vertices and faces of polyhedra, respectively. Using the Euler theorem on
polyhedra, V' — E + F = 2, we obtain the simple condition kn = V + F — 2 with assumptions n > 4 and
k > 3. In addition, the summation of the degree of vertices, > deg is at least 4V, i.e. > deg > 4V . Using
handshaking lemma with the conditions of polygon edges, we obtain the inequality

19  kn
— < —+4+2<F.
7 =3 +2<

Based on the information of polyhedra in [1] with the considered conditions, there are 29 polyhedra each
vertex of which has an even degree, and the number of edges is a composite number. Remark that the
polyhedra satisfying the assumptions (1) — (5) have vertices of degree 4.

4 A criterion to verify whether a polyhedron satisfies those prop-
erties

We would verify whether a given polyhedron P enumerated in Section 3 satisfies the assumptions mentioned
in Section 2. Since the information on polyhedra in Section 3, such as the coordinate of vertices and the
connection between polyhedron vertices, is clearly considered, we assume to use that information in our
verification.

Let v be an arbitrary vertex of a given polyhedron P such that v connects vy, ...,v4 and vq,...v4 are
arranged in clockwise (with respect to a projection). We choose two set of vertices vy, v,vs and v, v, vy4.
Hence, there are two planes passing through v1,v,v3 and ve, v, v4. (The choice of those group of points are
guaranteed by assumption (5).) We then compute the angle Zvivvg and Zvyvvy. If Zvyvvg # Lvgvvy, then
the candidate is fail. Otherwise, assume Zvivvs = 0 = Zvsvvy. We firstly check the consistent from the
equation E' = kn such that n = 360°/(180° — @) with the information of [1]. The candidate fails if it does
not satisfy the condition £ = kn. If it satisfies the condition, we will find a regular polylink that specifies
the plane of the polygon by considering the next vertex in the direction of the previously chosen vertex and
checking the coplanarity of those points. Therefore, we finally obtain polylinks of the given polyhedron by
continuing to check the remaining vertices of the polyhedron.

Figure 2 shows examples of the polyhedra satisfying these conditions: octahedron (n =4,k = 3), cuboc-
tahedron (n = 6,k = 4), rhombicuboctahedron (n = 8,k = 6), and icosidodecahedron (n = 10,k = 5). The
different colors of edges shows the polygons in the different direction.

AN R AR
oD E

Figure 2: Examples of the polyhedra satisfying the assumptions by a proposed criterion: octahedron,
cuboctahedron, rhombicuboctahedron, and icosidodecahedron
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We consider graphs which have neither loops nor multiple edges. A graph G
is called an r-regular graph if every vertex of G has degree r. A 3-regular graph
is often called a cubic graph. A graph that has no induced subgraph isomorphic
to K13 is called a claw-free graph. Let G be a graph with vertex set V(G) and
edge set E(G). For a vertex v of a subgraph H of G, we denote by degy(v)
the degree of v in H. For a set S of integers, a spanning subgraph F of G is
called an S-factor of G if degp(v) € S for every vertex v of G. In particular,
an {a,b}-factor F of G satisfies degp(v) = a or b for every vertex v of G. A
{k}-factor is briefly called a k-factor.

We begin with some known results on degree-factors of regular graphs.

Theorem 1 (Petersen, Theorem 3.4 of [1]) Letr be a positive integer, and
let G be a 2r-regular graph. Then E(G) can be decomposed into v 2-factors of
G. In particular, for every integer k,1 < k <r, G has a 2k-factor.

Theorem 2 Let r and k be positive integers such that 1 < k < 2r + 1, and let
G be a connected (2r + 1)-regular graph. Then the following statements hold.

(i) G has a {k — 1,k}-factor (Tutte [6], Theorem 3.4 of [1]).

(i1) For a mazimal independent vertex set W of G, G has a {k—1, k}-factor
F such that degp(x) = k—1 for allx € V(G)—W, as well as a {k—1, k}-factor
H such that degy (y) = k for ally € V(G) —W (Egawa and Kano [2], Theorem
4.23 of [1]).

(iii) If 1 < k < 2(2r +1)/3, then G has a {k — 1, k}-factor, each of whose
components is reqular (Kano [5], Theorem 4.87 of [1]).

Let Sk and Sp be two sets of integers. We color every vertex of G red or
blue. Then a spanning subgraph F' of G is called a two-tone (Sg,Sg)-factor
of G if degp(x) € Sg for every red vertex x and degp(y) € Sp for every blue
vertex y.

In this paper, we prove the following theorems.

Theorem 3 ([3]) Let G be a connected claw-free graph. We arbitrarily color
every vertex of G red or blue so that the number of red vertices is even. Then
G has a two-tone ({1},{0,2})-factor.

The above theorem can be proved by using the following theorem, where w(G —
S) denotes the number of components of G — S.
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Theorem 4 (Lu and Kano [4]) A connected graph G satisfies
w(G=8)<|S|+1 forall SCV(G)

if and only if for any red-blue coloring of V(G) such that the number of red
vertices is even, G has a two-tone ({1},{0,2})-factor.

Note that a graph G has a two-tone ({1}, {0, 2})-factor if and only if G has
vertex-disjoint paths whose end-vertices are exactly the same as the red vertices
of GG, in particular, all the inner-vertices of the paths are blue.

Theorem 5 ([3]) Let G be a 3-edge connected claw-free cubic graph. We arbi-
trarily color every vertex of G red or blue so that the number of red vertices is
even and the distance between any two red vertices is at least 3. Then G has a
two-tone ({1}, {2})-factor and a two-tone ({2},{1})-factor.

Theorem 6 Let A > 2,k > 1 and r > 3 be integers, and let G be an A-edge
connected r-reqular graph. Assume that r/\ < k < r(1—1/X). We arbitrarily
color every vertex of G red or blue so that the number of red vertices is even if
k is odd, otherwise the number of blue vertices is odd. Then G has a two-tone

({k},{k — 1,k + 1})-factor.

Theorem 7 Let a, ¢ and r be positive integers such that 1 < a <randl <c <
r— 1. Let G be a connected r-regular graph. We arbitrarily color every vertex
red or blue so that the distance between any two red vertices is at least 3. Then
G has a two-tone ({a},{c,c+ 1})-factor.
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Abstract. Graph burning is a mathematical model that represents the
spread of an influence. In each round, the fire spreads to the neighbors
of the burned vertices in the previous rounds, and one additional un-
burned vertex is selected and burned. The burning schedule problem is
a decision problem whether the given graph is burned only using the
given subset of vertices as burning sources. In this paper, we study the
reconfiguration problem for burning schedule problems that is, given a
graph, a set of burning sources, and two feasible solutions of the burning
schedule problem, whether one of the solutions can be transformed into
the other. We show that the burning schedule reconfiguration problem
on path forests can be solved in polynomial time if there is one burning
source in each path and also solved if there are two burning sources in
fixed number of paths.

Keywords: Graph algorithm - Combinatorial reconfiguration - Graph
burning.

1 Introduction

To represent the spread of an influence with the discrete passage of time, graph
burning is introduced by Bonato et al [2]. Graph burning proceeds as follows.
As an input, a simple undirected graph G is given. Time is expressed in integer
rounds of O or greater. At the initial state, all vertices are unburned. In each
subsequent round, the fire spreads to the neighbors of the burned vertices in the
previous rounds, and one additional unburned vertex is selected and burned. If a
vertex is burned, it remains burned until all vertices are burned. With the above
setting, the minimum number of rounds required for all vertices on the graph
to burn has been studied in various graph classes such as graph products [6]
and path forest [3]. The decision problem whether the given graph is burned
less than or equal number of rounds to the given integer is NP-complete when
restricted to trees of maximum degree three [1], path forest or spider graph. On
the other hand, when the number of arms in the spider graph or the number of
components and the order of each component of path forest are fixed, there are
polynomial time algorithms. [1].

The burning schedule problem (BSP) is the decision problem, that is, given
a graph G and a set B C V(@) as input, the output is whether the given graph
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is burned within |B| rounds using the vertices in B as burning sources. BSP is
known as NP-hard [7].

The reconfiguration problem for a problem is given the input of the problem
and two feasible solutions as input and determines whether the feasible solutions
can traverse to each other on some adjacent relation. Various reconfiguration
problems have been studied, such as the independent set reconfiguration problem
or the satisfiability reconfiguration(4, 5].

Now we consider the burning schedule reconfiguration problem (BSRP) as
below. BSRP is given a graph G, the burning sources B C V(G), and the feasible
solutions s, t for BSP and determines whether s can traverse to ¢t by the operation
of swapping the order of two vertices in the schedule. In this setting, we show
that BSRP is PSPACE-complete using a polynomial-time reduction from the
3-SAT Reconfiguration problem. This reduction is almost the same way as the
NP-hardness proof of BSP|[7].

In this paper, we study the computational complexity of BSRP with some
restrictions. We show that BSRP can be solved in polynomial time if there is a
burning source in each path and there are two burning sources in fixed number
of paths.

Theorem 1. Let G be a path forest and B C V(G) be a set of burning sources
that there is one burning source in each path. Given G, B and two feasible solu-
tions of BSP, they are reconfigurable.

Theorem 2. Let G be a path forest and B C V(G) be a set of burning sources
that there are two burning source in fized number of path. Given G, B and two
feasible solutions of BSP, BSRP can be solved in polynomial time.
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Abstract

Given two graphs G; and G2, the set multipartite Ramsey number
M;(G1,G2) = t is the smallest integer such that every factorization of
graph Ky := F1 @ F5 satisfies the following condition: either F; contains
(1 as a subgraph or F, contains G as a subgraph, where F; & F> means
E(Ktxj) = E(Fl) U E(FQ) with E(Fl) n E(FQ) = () and V(Fl) = V(Fg)
In this paper, we establish exact value of the set multipartite Ramsey
number M;(P,, Ws) for all integers j > 2 where P, is a path on n vertices
and Wy is a wheel of order s + 1 vertices with s > 3, and 3 <n < 4.

For any natural number j > 2, clearly K2x; contains no W for each

integer s > 3. The following theorem determines the exact values of
M (Ps, W,) for n > 3,

4 for n = 3,
° MQ(P37 Wn) -
(2437 for n > 4.
5 for3<n <7,
5 +2 for n > 8 even,
o My(Pi,W,) =
[5]1+2 forn>9oddandn=0 mod 3,
"l 41 forn>11 odd and n # 0 mod 3.
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Abstract. Given a box of some specified size and a num-
ber of pieces of some specified shape, the anti-slide prob-
lem considers how to pack the pieces such that none of
the pieces in the box can slide. In this work, we focus on
the sparsest anti-slide packing for 2 x 2 x 1 pieces and L-
tricube pieces. Firstly, we show that there is an anti-slide
packing of 2 x 2 x 1 pieces with volume density 0.48 when
a box is torus. Secondly, we give a new construction of an
anti-slide packing of L-tricubes.

1 Introduction

“Anti-slide” [2] is a puzzle that asks us to pack 2 x 2 x 1
pieces into 4 X 4 X 4 box in such a way that none of the
pieces can slide. The objective is to find a packing with
the smallest number of pieces. The puzzle was originally
invented by William Strijbos in 1994. An optimal packing
uses 12 pieces (Fig. 1).

Fig. 1: A sparsest anti-slide packing for a 4 x 4 x 4 box.

In this work, we assume that each piece is aligned so
that every corner of the piece matches the coordinate of
integers, and that each piece slides toward an orthogonal
direction, i.e., parallel to x,y, or z-axes.

Knuth [3] gave a construction of an anti-slide packing
of 2 x 2 x 1 pieces whose volume density is 11/16=0.6875
when the size of a box goes to infinity. Amano et al. [1]
used an IP approach to show that the minimum density is
between 0.288 and 2/3. In this work, we show that there is
an anti-slide packing of density 12/25 = 0.48 when a box
is torus. We say that a packing for a torus is anti-slide if
none of the pieces in the box can slide and all pieces of the
packing move together as one block. We believe that the
same bound can be achieved for a usual three-dimensional
box. We will describe our construction in Sec. 3.

It is also quite natural to consider a general version of
the problem where the pieces are not rectangular.

In [4], we investigated the asymptotic behavior of the
minimum number of pieces in an anti-slide packing for an
n X n X n box for various shapes of polycubes (Fig. 2)
and observed that these could be categorized into three
groups. Namely, each polycube in Group A and B has a
packing with O(n) and O(n?) pieces, respectively. Note

that a non-zero density lower bound shown for a piece
in Group C implies that it needs ©(n?) pieces to pack
without sliding. We believe that a piece in Group B needs
Q(n?) pieces to pack.

In this work, we focus on the L-tricube, which would
be the easiest shape to get a quadratic lower bound. We
analyze anti-slide packings of L-tricubes in terms of pro-
jection. We also obtain a new construction of an anti-slide
packing of L-tricubes. We will discuss these in Sec. 4.

Group A
v

Group B

z

<

£ E)

tesseract-heptacube branch-hexacube Tripod-tetracube L-tricube

E)

branch-pentacube

X-pentacube

T-tetracube

Group C

v

2x2x1 d 4x2x1

Fig. 2: Several shapes of pieces analyzed.

See e.g., [5, 6, 7] for some related works on the anti-slide
problem.

2 Notations

For a positive integer n, [n] denotes the set {0,1,...,n—1}.
We view the | x m x n box as a three-dimensional array
of cells of unit size. Each cell is identified by (i,j,k) €
[[] x [m] x [n]. A piece is said to be placed at (i, j, k) if some
specified cell of the piece is placed at the cell (i, j, k). By
such a placement, several cells are occupied by the piece.

3 Density for 2 x 2 x 1 Pieces

In this section, we assume that a box is torus.

We say that a three-dimensional array is a torus with
size [ xmxn if (i, j, k) € N3 is equivalent to (i mod [, j mod
m, k mod n) for every (i,7,k) € N® . For example, if a
2 x 2 x 1 piece is placed in the 4 x 4 x 4 torus at (3,3, 3)
horizontally, then the cells (3,3,3), (0,3,3), (3,0,3), and
(0,0,3) are occupied by the piece. Let R(n) denote the
minimum ratio of the volume occupied by pieces in an anti-
slide packing of 2 x 2 x 1 pieces for the three-demensional
torus of side length n.
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We conducted a computer search for a sparse packing
of a torus of small size. We use an IP solver based on
the IP formulation developed in [1]. The sparsest packing
obtained so far is for the 5 x5 x5 torus and it uses 15 pieces
(Fig. 3). The volume density is 4 - 15/5% = 12/25. Since
we can obtain an anti-slide packing for a larger torus by
repeating its placement in the direction of z, y, and z-axes,
we have the following bound on R(n).

Theorem. R(5k) < 12/25 for every k > 1.

We believe that we can remove the assumption that a
box is torus without increasing the density by adjusting
the placement around the boundary of the box using an
extra, say O(n?) pieces.

2 2 I5 ‘ 3 5
15 7
6 4 6 6 6

| 3 3] 0
14 5

1st-layer

2nd-layer 3rd-layer

[[11 ] I 13 1| |13
|8 ]

15
12 12

9

4th-layer 5th-layer

Fig. 3: A sparsest anti-slide packing of 2 x 2 x 1 pieces for
a b x 5 x 5 torus. Each number represents a piece.

4 Minimum Number of L-tricubes

Let F(n) be the minimum number of L-tricube pieces of
an anti-slide packing for an n x n x n box. We conducted
computer searches based on the IP formulation developed
in [1] to find a better upper bound on F(n). We add
some heuristically found constraints to the IP model, and
obtain the values for n < 11. The results are shown in
Tab. 1, and the example of the packing for n = 8 is shown
in Fig. 4. Our experimental results suggest that F(n)

Tab. 1: Values of the upper bound on F'(n) for n < 11.
n 4 5 6 7 8 9 10 11
Fn)y< 9 15 23 31 40 50 61 72

Fig. 4: A packing of L-tricube pieces for an 8 x 8 x 8 box.

tends to n?/2 when n goes to infinity.
Next, we consider the lower bound on F'(n). For an
anti-slide packing of L-tricubes, we say that a pixel on the

xy-plane (resp., xzz-plane and yz-plane) is marked if the
orthogonal projection of the set of pieces in the packing
onto the plane includes this pixel. Given an anti-slide
packing, the shadow size of the packing is defined as the
maximum number of marked pixels in a plane among xy,
xzz and yz -planes. Let T(n) denote the minimum of a
shadow size over all anti-slide packings of L-tricubes for
an n xXn xn box. If one can show a quadratic lower bound
on T(n), then it would immediately imply F(n) = Q(n?).

We performed a computer experiment using an IP solver
to find an anti-slide packing having a small value of T'(n).
The results are shown in Tab. 2. The example of the

Tab. 2: Values of the upper bound on T'(n) for n < 8.
n 4 5 6 7 8
Tn)< 13 10 26 35 45

packing for n = 6 is shown in Fig. 5 (a). Fig. 5 (b) shows
the projection on the xz-plane given by this packing. The

Fig. 5: A packing of L-tricube pieces for a 6 X 6 x 6 box.

projections on the xy-plane and the yz-plane are similar.

The result suggests that T'(n) would be quadratic in n. We

conjecture that F(n)=0(n), or more ambitiously F(n)~
2

n®/2.
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Semi-restricted Rock, Paper, Scissors
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Abstract

Consider the following variant of Rock, Paper, Scissors (RPS) played by two players Rei and Norman.
The game consists of 3n rounds of RPS, with the twist being that Rei (the restricted player) must use
each of Rock, Paper, and Scissors exactly n times during the 3n rounds, while Norman is allowed to
play normally without any restrictions. Answering a question of Spiro, we show that a certain greedy
strategy is the unique optimal strategy for Rei in this game, and that Norman’s expected score is ©(y/n).
Moreover, we study semi-restricted versions of general zero sum games and prove a number of results
concerning their optimal strategies and expected scores, which in particular implies our results for semi-
restricted RPS.

1 Introduction

The game Rock, Paper, Scissors, or RPS for short, consists of two players simultaneously selecting to play
either Rock, Paper, or Scissors; where Rock beats Scissors, Scissors beats Paper, and Paper beats Rock. If
a player uses a move which beats their opponents move, then that player gains a point and their opponent
loses a point, with the match resulting in a draw if both players select the same move.

RPS, while fun to play, is not particularly interesting from a mathematical perspective. As a symmetric
zero-sum game, both players have an expected score of 0, and it is easy to show that the unique optimal
strategy for both players is to choose each of the three options with uniform probability; see for example [3,
Chapter 17]. In this paper we study a non-trivial variant of RPS, which is inspired by a game played in the
manga Tobaku Mokushiroku: Kaiji [1] and of work by Spiro [2], called semi-restricted RPS.

Semi-restricted RPS is a perfect-information zero-sum game played by two players named Rei and Nor-
man. The game consists of 3n rounds of RPS, with the twist being that Rei must use each of Rock, Paper,
and Scissors exactly n times during the 3n rounds, while Norman is allowed to play normally without any
restrictions. It is clear that Norman has an advantage in this game, since in particular he is guaranteed to
win the last round of the game (assuming he is paying attention and has a good memory). However, it is
unclear how much more Norman is expected to win over Rei when both play optimally, and it is also unclear
what the optimal strategies are for either player.

One simple strategy that Rei can implement is what we call the greedy strategy. Under this strategy, if
Rei can still play each of Rock, Paper, and Scissors, she selects each option with probability 1/3, regardless
of how many actions remain of each option. If she can only play, say, Rock and Paper, then she chooses
Paper with probability 2/3 and Rock with probability 1/3. More generally, if she has two options remaining,
she will choose the option which beats the other with probability 2/3 and the other option with probability
1/3. And of course, if only one option remains, she plays this with probability 1.

This strategy is “greedy” because with this strategy, Rei minimizes her expected loss for any given
round. Indeed, if she has all three options remaining, then playing each with probability 1/3 makes it so
that, regardless of what Norman does, Rei is just as likely to win as she is to lose. Similarly if only Rock

*Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA. Email: sspiro@ucsd.edu,
esurya@ucsd.edu, jzengQucsd.edu.
TSupported by the National Science Foundation Graduate Research Fellowship Grant DGE-1650112.
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and Paper remains, then Norman should only ever play Paper or Scissors (since Rock is guaranteed not to
win). If Rei follows the greedy strategy and Norman plays Paper, then Rei will lose with probability 1/3. If
Norman plays Scissors, then Rei will lose with probability 2/3 but win with probability 1/3. Thus regardless
of what Norman does, Rei will expect to lose 1/3 points each round under the greedy strategy, and one can
show that this is best possible.

While the greedy strategy is optimal if Rei is only concerned about a given round, it is far from clear that
this is a good strategy overall. Indeed, say the game reaches the point where Rei can play 100 Rocks, 100
Papers, and just 1 Scissors. Intuitively, in this scenario Rei should not play Scissors with high probability,
as doing so will severely limit her remaining options for the rest of the game. As such the following result
may come as a bit of a surprise.

Theorem 1.1. The greedy strategy is the unique optimal strategy for Rei in semi-restricted RPS. Moreover,
if the game consists of 3n rounds with both players playing optimally, then Norman’s expected score is ©(y/n).

The problem of studying semi-restricted RPS was first proposed by Spiro [2]. In [2], a semi-restricted
version of another classical zero-sum game, Matching Pennies, was studied, and again a certain greedy
strategy turned out to be optimal. One can easily generalize these problems to study semi-restricted versions
of arbitrary simultaneous zero-sum games. For simplicity, we will focus on games which come from digraphs,
though many of our results hold in broader generality.

Given a digraph D, we define the D-game by having two players simultaneously select a vertex of D. If
the selected vertices are u,v and uv € E(D), then the player who chose u gains a point and the player who
chose v loses a point, and nothing happens if uv,vu ¢ F(D). For example, if D is the circuit of length 3,
i.e. the 3-vertex digraph with arcs 1 — 2 — 3 — 1, then the D-game is equivalent to RPS. Observe that the
D-game is always a symmetric zero-sum game.

We will say that a vector r is a restriction vector (with respect to a digraph D) if it is a vector of
non-negative integers indexed by V(D). Given a digraph D and restriction vector r, we define the semi-
restricted D-game with parameter r by having two players Rei and Norman iteratively play the D-game for
a total of ) r, rounds such that Rei must select each v € V(D) exactly r, times. We let Sp(r) denote the
expected score for Norman when both players play optimally in the semi-restricted D game with parameter
r, and throughout we let 1 denote the all 1’s vector of dimension |V (D)|. For example, Theorem 1.1 says
Sp(n-1) = O(y/n) where D is the circuit of length 3.

Determining optimal strategies for semi-restricted D-games in full generality seems impossible. Never-
theless, we are able to obtain effective bounds on Sp(r) for all D. For example, a basic observation is that
for all vertices v € V(D), we have

Sp(n-1) > (d*(v) —d~ (v))n.

Indeed, if Norman uses the deterministic strategy of playing v every round, then he will win exactly d*(v)n
rounds and lose exactly d~(v)n rounds, so he can achieve an expected score of at least (dt(v) —d~(v))n
with this strategy. It turns out that this trivial lower bound is close to best possible.

Theorem 1.2. For all digraphs D and n > 1, we have
max{d*(v) —d~(v)}n < Sp(n-1) < max{d*(v) —d (v)}n+ Op(V/n).
More generally we can prove bounds for Sp(r) with r arbitrary, as well as effective bounds when D is an
Fulerian tournament by using techniques from linear algebra.
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Abstract

Combinatorial Game Theory is a branch of mathematics and theoretical computer science that
studies sequential 2-player games with perfect information. Partizan subtraction games are combi-
natorial games where two players, say Left and Right, alternately remove a number of objects from
a heap of objects, based on the different sets of subtraction sets given to them. The first player
unable to move loses. These games were studied by Fraenkel and Kotzig in 1987 and their properties
were further studied by Duchéne et al. in 2021. Here we generalize the alternating normal play to a
discrete bidding scheme, similar to Develin et al. Several properties of such bidding games related to
different subtraction sets of Left and Right are defined, namely Strongly dominating, Weakly domi-
nating and Fair. As the main result, we prove that for all sufficiently large heap sizes, the equilibrium
outcomes of bidding partizan games are eventually periodic.

Keywords: Discrete bidding, Combinatorial games, Partizan, Fairness.

1 Introduction

Partizan subtraction games were introduced by Fraenkel and Kotzig in 1987 [1]. There are two players, say Left
and Right, who play combinatorial games on a heap of items. The players are given a different combination of
subtraction sets. They remove items based on their subtraction sets and the player who removes the last object
wins the game. In other words, the player who cannot move loses. A combinatorial game belongs to one of the
following four outcome classes.

1. Left regardless of who moves first.

2. Right regardless of who moves first.

3. the Next player whether it is left or right.

4. the Previous player whether it is left or right.

We call £, R, N and P as the outcome classes. Games in the above classes are said to be in £, R, N, and

P positions. We have the following theorem for partizan subtraction games in Fraenkel and Kotzig [1]. The
outcome sequence of G is the sequence of the outcomes forn = 0, 1, 2, 3, -- -, i.e. 0(0),0(1),---.

Theorem 1.1. The outcome sequence of any partizan subtraction game is ultimately periodic.

Example 1.2. Consider the subtraction sets {1,4} and {2,3} for Left and Right, respectively. The outcome
sequence of the game is:

11213145 1011 |12 |13 14| . | .
NIRILINIRIP NIRIRIN|IR|R|R|R|R

(=
-3
oo
Nel
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2 Our Game and Results

Here we introduce the bidding variant of the Partizan subtraction games. Let N = {1,2,...}, and let Ng = NU{0}.
Discrete bidding here means that there is a given total budget of TB € Ny. One of the players has a budget
p € {0,...,TB}, and the other player has the budget ¢ = TB—p. At each turn, players submit a (closed) bid. The
player with the higher bid gets to play, and pays their bid to the player with the lower bid. Thus, if player Left
wins by bidding ¢, she pays this bid to Right, and makes her desired move. The new budget partition becomes
(p— £,q+ £). Ties are resolved using a tie-breaking marker: one of the players has the marker, and this player
wins the turn in case of equal bids. They make their desired move, pay the other player the bidding amount, and
pass them the marker. Similar to [3], we study pure bidding strategies, since this is closer to recreational play,
in the tradition of combinatorial game studies.

Example 2.1. Consider the subtraction sets {1,4} and {2,3} for Left and Right, respectively. The outcome
sequence of the Discrete Bidding partizan subtraction game for TB = 1 is shown in Table 1.

Definition 2.2. We say that a game converges at heap size z if, o(z +1i) = o(z +p+1), Vi = 0,1,--- ,p — 1,
where p is defined as a period. Also, we say that the rows from x to x +p — 1 form a convergence table.

We have a Strongly Dominating Game w.r.t. Left (Right) if the period of Tyuple 1. The equilibrium out-
the game is reduced only to L (R). We call a game Weakly Dominating w.r.t. comes for TB = 1 and S}, =
Left (Right) if the period of the game contains more L than R (more R than (1,4} and Sg = {2,3}

L). The game is Fair if the period contains an equal number of L and R. ! Lt L

We got some properties for Discrete Richman bidding partizan games for ’ L, P H L1 ‘ Lo H Rl ‘ RO ‘
TB = 1: 0 R | R L L
1 L L L L
Lemma 2.3. The period of the Bidding partizan subtraction game for Sp = 2 L | R L R
a and Sgp = b is a+b. 3 L R R R
Lemma 2.4. The ratio of L and R in the Bidding partizan subtraction game 4 L L L R
for St = a and Sr = b is the same as the ratio of b and a. > L L L R
6 L | R L R
Lemma 2.5. The Bidding partizan subtraction game for S, = a and Sr = b 7 L | R L L
is always Weakly dominating w.r.t. Left if a < b, and vice versa. 8 L L L R
9 L | R L R
Above three lemmas are the full results for the case when Left’s and Right’s 10 L R L R
subtraction sets contain exactly one element. We looked for different combi- 11 L L L R
nations of subtraction sets when they contain more than one element. For 12 L R L R
example, 3 | L|R| L |R
Lemma 2.6. The Bidding partizan subtraction game for Sr = {a,b} and Sgr 14 L R L R
= {b+1,c} where ‘a < ¢’ is always fair. 15 L R L R

The main theorem of this work is the result regarding convergence. For any set of subtraction sets for the
players, the equilibrium outcome always converges.

Theorem 2.7. The outcome sequence of any Discrete richman bidding partizan games is ultimately periodic.

3 Future Work

We hope to find the rate of convergence of the Discrete richman bidding partizan games. This work is carried
out at the Multi-agent Laboratory, Kyushu University, Japan; which is headed by Prof. Makoto Yokoo.
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Motion Bounded Maximum Volumes:
An Optimization Problem Applied to Kaleidocycle Shapes
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Geometric optimization problems result in fascinating shapes appearing in science, technology, and
design. Classical examples are minimal surfaces which are useful as well as esthetically pleasing and
are used in architectural design today. Shape optimization in engineering is another example where
shapes are derived based on given boundary conditions (eg., structural loads) and constraints (eg.,
limited supply of material).

We propose a new shape optimization problem where the only input is the motion of a collection
of rigid bodies. The objective is to find the shapes with the maximum volume still allowing the
bodies to perform the prescribed motion without collision. We will present first results of a currently
developed optimization algorithm and will also address interesting aspects of the problem, such as
uniqueness, local maxima, convexity, and additional boundary conditions.

Shapes bounded only by motion

We prescribe the time evolution (motion) of the reference points and orientations of N rigid bodies
Bi,...,By of identical (initially unknown) shape S. The objective is to find the shape Spax with
the maximum volume Vyax, such that no pair of bodies P;; = {B;, B;}, i,j = 1,...,N, i # j
overlaps at any time. No rolling or gearing condition is prescribed, the surfaces of any pair P;;
may contact and glide freely on each other.

For V5ax to be bounded, the prescribed motion is subject to certain conditions which are
problem specific and hard to define in general. But we can give one example of sufficient (but not
necessary) conditions as follows. The bodies By, ..., By with reference points 71,...,ry must
form a ring such that each body i has two neighbors i 1 (mod N) whose distance is bounded
|r; — rix1| < C with some positive constant C'. Further, the body orientations must describe a
periodic everting motion, meaning that the ring turns continuously inside out. The everting motion
ensures that every body has to “pass through” the finitely sized ring and is therefore bounded.
The motion of a kaleidocycle in the example below fulfills the described conditions.

Example: optimizing the volume of a six-hinged kaleidocycle

A classical six-hinged kaleidocycle (K6) is a ring made of six identical tetrahedra with opposing
edges used as hinges. Each tetrahedron corresponds to the identical shape S. A K6 has one
internal degree of freedom, it can perform one specific internal motion. For a K6 to be able to
evert (turn inside out continuously), the hinges can be at most 2/v/5 &~ 0.8944 times as long as
the other four edges in each tetrahedron. In the case of the maximum hinge length, all four faces
of each tetrahedron contact with faces of their corresponding neighboring tetrahedra at certain
times during the motion, see Figure 1 (left column, colors red and blue are used to distinguish
the six tetrahedra more easily). This contact might give the impression that the volume of S is
already maximized. But on the contrary, the volume can be increased considerably, as can be seen
from a two-step construction. First, each tetrahedron is cut into two identical smaller tetrahedra,
one of them remains in its position while the other one is rejoined at another face, resulting in
hexahedral shapes, see Figure 1 (middle column). Second, each hexahedron is extended by two
additional polyhedra (colored yellow for the red hexahedra and cyan for the blue hexahedra),
leading to decahedral shapes, see Figure 1 (right column). This increases the volume of the
shapes by approximately 60% compared to the initial tetrahedra (left column), while still allowing
the object to evert without collisions. This can be considered as the first iteration of a volume
maximization procedure for S. The shape with maximized volume Spax Will be highly nontrivial.
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Figure 1: An everting motion sequence (from top to bottom) of a 6-hinged kaleidocycle. Left:
classical tetrahedral shapes. Middle: hexahedral shapes obtained through cutting and rejoining of
tetrahedra. Right: decahedral shapes obtained through yellow and cyan extensions of the red and
blue base hexahedra. Please see the final section of the main text for details.
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Abstract

A cluster is a set of points, with a predefined similarity measure. In this paper, we study
the problem of computing the largest possible convex hulls, measured by length and by area,
of the points that are selected from a set of convex-hull disjoint clusters, one per cluster. We
show that the largest convex hulls for convex-hull disjoint cluster of constant size, measured
by length or area, can be computed in O(n?) time, where n is the sum of cardinalities of
all clusters. Our solution of either considered problem is doubly founded on a structure
of clusters, whose all points are in convex position. The restricted problem for the set of
clusters, whose points are in convex position, can be reduced to a sequence of subproblems
of computing the single-source shortest-paths in a weighted graph. Not only our results
significantly improve upon the known time bound O(n?), but also the obtained solutions are
unified and simple. Moreover, our algorithms can be used to improve the known results on
several other variants of the considered problem.

Keywords: Computational geometry; Convex hull; Clusters; Imprecise points single-source
shortest-paths problem

37



All Paths Lead to Rome

Kevin Goergen, Henning Fernau, Esther Oest, Petra Wolf*

Universitat Trier, Germany.
{sdkegoer,fernau,sdesmeck,wolfp } Quni-trier.de

The field of computational complexity of games and computer games is a
broad vivid field as it also allows a playful entry to the field of computational
complexity theory, see for instance the surveys by Demaine et al. [2] and Kendall
et al. [7]. The rich history and impact of research on puzzle games is also
reflected in a huge number of publications at different international conferences
over decades, such as in the conferences JCDCG? [1] and FUN |[4].

All roads lead to Rome is the core idea of the Japanese puzzle game Roma
(A — %), see |6] for a playable version of the game. It is played on an n x n grid
consisting of quadratic cells. Those cells are grouped into boxes of at most four
neighboring cells and are either filled, or to be filled, with arrows pointing in
cardinal directions. The goal of the game is to fill the empty cells with arrows
such that each box contains at most one arrow of each direction and regardless
where we start, if we follow the arrows in the cells, we will always end up in the
special Roma-cell. We study the computational complexity of the puzzle game
Roma and show that completing a Roma board according to the rules is an NP-
complete task, counting the number of valid completions is #P-complete, and
determining the number of preset arrows needed to make the instance uniquely
solvable is ¥1-complete. We further show that the problem of completing a
given Roma instance on an n X n board cannot be solved in time O (20("))
under ETH and give a matching algorithm.

A full version of this article can be found in [5].

The Rules of Roma Roma is a one-person puzzle game. A Roma board
consists of a quadratic game board, which in turn consists of n x n quadratic
individual cells. One of these cells is a previously determined Roma-cell which
serves as a target cell. Cells which directly border on each other are called
true neighbors. Cells which are true neighbors can be gathered in a collection
called a box. These boxes can consist of 1 to 4 cells. The boxes are preset at
the beginning of a game and every cell is contained in exactly one box. The
boxes can take any form, as long as every cell within a box can be reached
from any other cell within that box by only traversing other cells from the same
box, where traversal refers to single-cell steps from one cell to one of its true
neighbors. The Roma-cell is always contained in its own 1-box. Each empty cell
must be filled by the player with an arrow, pointing in one of the four cardinal
directions. Cells can contain preset arrows before the game starts. Each box
can contain only one arrow pointing in a given cardinal direction. The goal of
the game is to fill each cell such that, beginning in any cell, following the arrows
will always lead to the Roma-cell. An example game board may look as follows.

*Supported by Deutsche Forschungsgemeinschaft (DFG), project FE560/9-1.
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Example of a 4 x 4 Roma game board where O marks the
v[> target Roma-cell. The indices explain how cells are ad-
dressed on the board. Boxes are defined by drawing thicker
boundaries. A typical reasoning is: Consider cell (3,1).
(0.1 (3.1 We cannot leave the board, which excludes [3]. The pre-
0] S AN set 2-box excludes [v],[a]. Hence, we fill cell (3,1) with [<].
Similarly, (3, 3) gets [€], which implies (2, 3) getting [v], etc.

Our contribution. We show that the question whether a partially filled in-
stance of Roma can be completed according to the rules of Roma is an NP-
complete problem by a reduction from PLANAR 3SAT. As this reduction is
parsimonious, we directly get that the counting variant of Roma, counting the
number of solutions, is #P-complete. The parsimonious reduction further im-
plies that the question of how many hints must be added to a Roma instance
in order to make it uniquely solvable is ¥4’ -complete. Questions of these types
have been introduced under the name fewest clue problem in [3] and are of
importance when it comes to design good and enjoyable puzzles for humans.

We continue our study of the complexity of Roma by giving matching upper
and lower bounds. We show that the reduction by Lichtenstein from 3SAT to
PLANAR 3SAT can be translated into our Roma setting with only a constant
factor increase in space. Especially, we have that the number of variables and
the number of clauses each correspond to the dimension n of an n x n Roma
board and hence, assuming ETH, Roma cannot be solved in time O (2"(”)). As
our second main result, we match this lower bound by a dynamic programming
algorithm, using the idea of Catalan structures.
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Crossing Minimization Given a graph and a condition we wish to draw the
graph with the minimum number of edge crossings satisfying the given condition.
Such problems are called crossing minimization problems.

In general, to draw a given graph with the minimum number of edge crossings
is N'P-hard [3].

Given a bipartite graph (U UV, E) and two parallel straight lines it is N'P-
hard [3] to draw the bipartite graph with the minimum number of edge crossing
so that the vertices in U are on a straight line and the vertices in V' are on
the other straight line. The problem is A'P-hard [2] even if the ordering of the
vertices in U is given.

Given a bipartite graph (U UV, E) and two concentric circles and the cyclic
ordering of the vertices in U it is A"P-hard [1] to draw the bipartite graph with
the minimum number of edge crossing so that the vertices in U are on a circle
with the given cyclic ordering and the vertices in V' are on the other circle with
any ordering.

Our Results In this paper we consider a very restricted version of the problem.
Given a matching M = (U UV, E) as a bipartite graph, two concentric circles,
the cyclic ordering of the vertices in U and the cyclic ordering of the vertices
in V, we wish to draw M with the minimum number of edge crossings so that
the vertices in U are on the smaller circle with the given cyclic ordering and the
vertices in V" are on the larger circle with the given cyclic ordering. We call the
problem the doughnut routing problem. We design an O(n?) time algorithm to
solve the problem. The main idea of the algorithm is a reduction to a set of the
minimum generator sequence problem.

Preliminaries For the doughnut routing problem let n be |E| and we can
assume that the cyclic ordering for U is (1,2, --,n). (Otherwise we can rename
them.) So the input has one permutation (for V).

Given a set of generators mi,me,--- of a permutation group G, a target
permutation P = (p(1),p(2), - ) in G, the minimum generator sequence problem
ask to find a sequence of the generators with the minimum length so that the
composition of them to the identity permutation (1,2, ---) results in P.

If the set of the generators consists of all cyclically adjacent transpositions,
that is (1,2),(2,3),--+,(n— 1), (n, 1), then one can solve the problem in O(n?)
time [4]. In this paper we only consider this set of generators.
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We have the following observations.

Observation 1 If the minimum generator sequence problem with the permu-
taion P has a solution with the length of the sequence k then there is a drawing
with k edge crossings so that the vertices in U are on the smaller circle with the
cyclic ordering (1,2,3,---,n) and the vertices in V are on the larger circle with
the given cyclic ordering P.

Observation 2 If the doughnut routing problem with the cyclic permutation
P has a solution with k£ edge crossings then there is a minimum generator
sequence problem with a permutation P’ (which can be derived from the cyclic
permutation P) having a solution with the length of the sequence k.

Also we can compute P’ as follows. We regard the direction of each edge
in the drawing from the vertex on the smaller circle to the vertex on the larger
cycle. For the edge of 1, let L be the number of edges crossing with the edge of
1 from left to right, and R be the number of edges crossing with the edge of 1
from right to left. P’ is the permutation derived from the cyclic permutation P
so that 1 appears at the (R — L)-th element.

Algorithmn Our algorithm to solve the doughnut routing problem is as follows.
The input is a cyclic permutation P. We first choose an arbitrary permutation
P’ derived from a cyclic permutation P.

Then compute the minimum generator sequence problem with the permu-
tation P;, for i = 0,1,2,---,n — 1 (so in total n problems), where P; is the
permutation derived from the permutation P’ by ¢ cyclic shifts (so it corre-
sponds to the cyclic permutation P). Choose the one with the solution of the
minimum length of the sequence. Compute the corresponding (doughnut rout-
ing type) drawing to the solution of the (selected) minimum generator sequence
problem. The derived drawing is the solution of the doughnut routing problem.

Since we solve the minimum generator sequence problem n times and we can
solve each problem in O(n?) time [4], the running time of above algorithm is

0(n?).
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A circle graph is a graph in which the adjacency of vertices can be represented
as the intersection of chords of a circle. The problem of calculating the chromatic
number is known to be NP-complete, even on circle graphs. In this paper, we
propose a new integer linear programming formulation for a coloring problem
on circle graphs.

It is well known that circle graphs and overlap graphs are of the same class.
A graph is an overlap graph if its vertices are intervals on a line such that
two vertices are adjacent if and only if the corresponding intervals partially
overlap (that is, they have non-empty intersection), but neither contains the
other. Hereinafter, we assume that an input of a given circle graph G = (V, E)
is a corresponding interval representation Z(G) = {I(j) C R | j € V}, where
I:j— [l,r;]. We also assume that all the terminal points of intervals in Z(G)
are mutually distinct.

Given an interval representation Z(G) of a circle graph G = (V, E), we
introduce a partial order < defined on the vertex set V. For any pair of vertices
i,j € V, we define ¢ < j if and only if either ¢ = j or r; < [; holds, where I(i) =
(li,r;] and I(j) = [l;,7;]. Obviously, (V, =) is a partially ordered set. Although
every chain of (V, <) is an independent set of GG, the converse implication does
not hold.

Given a circle graph G = (V, E) and corresponding interval representation
Z(G), we introduce a directed graph T" as follows. The vertex-set of T" is defined
by V U {0}, where 0 is an artificial vertex called a root. The arc-set of T,
denoted by A, is defined by A = {(0,¢) | i € V}U{(4,4) | I(¢) 2 I(j)}. The
above definition implies that I is acyclic.

An arc subset T C A is called an arborescence if and only if |T| = |V| and
each vertex ¢ € V has a unique incoming-arc in 7. When a given arborescence
T has an arc (i,j), we say that j is a child of ¢ and i is a (unique) parent of j
with respect to T. For any arborescence T and a vertex i € V U {0}, Ch(T,1)
denotes the set of children of ¢ with respect to T

In the following, we associate each coloring with an arborescence on I'. Let
¢V — {1,2,...,¢c} be a c-coloring of G. For each vertex j € V, we define
a parent of j with respect to ¢, denoted by Prt(¢,j), as follows: if V! = {i €
V| @) = ¢(4),I(i) 2 I(j)} is empty, then we define Prt(¢,j) = 0 (root);
else, Prt(¢, j) denotes a vertex in V' corresponding to a unique (inclusion-wise)
minimum interval in V'. Given a coloring ¢ of G, T(¢) denotes an arborescence

{(Prt(¢,5),j) € AljeV}
Lemma 1. Let T be an arborescence of I". Then, there exists a c-coloring ¢ of
a given circle graph G satisfying T' = T'(¢) if and only if

C1: for each i € V, Ch(T,i) is a chain of (V| =) or the empty set and
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C2: the size of every antichain of (V, <) contained in Ch(T,0) is less than or
equal to c.

Let P C R be a set of (positions of) terminal points of intervals in Z(G).
Recall that terminal points of intervals in Z(G) are mutually distinct and thus
|P| = 2|V|. Let M = (mp;) be a 0-1 matrix whose entries are indexed by P x V/,

satisfying
. { 1 (i p e I(0)),
P71 0 (otherwise).

Now, we give our formulation for a circle graph coloring problem. For any
vertex i € V U {0}, we define a vertex subset VI = {j € V| (i,5) € A}. We
define V* = {i € V | V1 # (}. Here, we note that V1% =V and 0 ¢ V* hold.
For each arc (i,7) € A, we introduce a 0-1 variable z%. The vector of all 0-1

variables is denoted by « € {0,1}4. For any vertex i € V* U {0}, (!l denotes a
subvector of  indexed by arcs emanating from 7, and M denotes a submatrix
of M consisting of column vectors of M indexed by V. Then, we have the
following formulation for a circle graph coloring problem:

CG :min. ¢
s.t. Mzl < cl,
MUzl <1 (viev®),
Z i =1(VjeV),
i:(4,j)EA
ot €{0,1}  (Y(i,j) € A),
cE Z+.
Theorem 1. A pair (z,¢) € {0,1}* x Z, is optimal to CG if and only if
¢ = x(G) and there exists a ¢-coloring ¢ satisfying T'(¢) = {(i,7) € A | T = 1}.
The above formulation satisfies the following property.

Theorem 2. Let LR be a linear relaxation problem of CG obtained by substi-
tuting z; > 0 and ¢ > 0 for T € {0,1} and ¢ € Z4, respectively. Then, the
optimal value of LR is equal to the fractional chromatic number of a given circle
graph.
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A dominating set D C V(G) of a graph G is a set such that each vertex v € V(QG) is either in the set
or a adjacent to a vertex in the set. The domination number of G is the minimum cardinality over all
dominating sets of G and denoted by v(G). In 1996, Matheson and Tarjan[1] proved that v(G) < n/3
for any n-vertex triangulated disc G, and conjectured that v(G) < n/4 for any n-vertex triangulation G
with n sufficiently large.

In 2013, Tokunagal2] (and independently Campos and Wakabayashi[3]) proved that if G is an n-vertex
maximal outerplanar graph with n > 3 having k vertices of degree 2, then v(G) < L”THCJ by a simple
coloring method.

An annulus triangulation is a 2-connected plane graph with two disjoint special faces f; and fs such
that every face of G except for fi; and fy are triangular, and that every vertex of G is contained in the
boundary cycle of f; or fo. Using a similar method as in [2], Abe, Higa and Tokunagal4] proved the
following theorem

Theorem A (Abe, Higa and Tokunaga, 2020) Let G be an annulus triangulation with n vertices
and k vertices of degree 2. If n > 7, then v(G) < L%’“HJ, where this estimation is sharp.

Note that an annulus triangulation might not have vertices of degree 2, so we could consider the case
k = 0. Further, the case when an n-vertex annulus triangulation with no vertex of degree 2 does not
have a dominating set of size at most n/4 seems to be restricted. In this talk, we will show a sufficient
condition for an m-vertex annulus triangulation with no vertex of degree 2 to have a dominating set of
size at most n/4 as follows.

Theorem 1 Let G be an annulus triangulation with n vertices and no vertex of degree 2. If G does
not contain any of graphs which belongs to any of the six types illustrated by the following figures as a
spanning subgraph, then v(G) < | ] .
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Extended Abstract. We prove that counting 2-factors (i.e., spanning 2-regular subgraphs or vertex
disjoint cycle covers) of 4-regular bipartite graphs is #P-complete under many-one counting (“weakly
parsimonious”) reductions. This resolves a missing case in the proof by Felsner & Zickfeld [3] that
counting 2-factors of k-regular bipartite graphs is # P-complete V (k > 3 | k # 4). Furthermore, observing
the bijection between the number of Eulerian orientations (i.e., orientations where every vertex has equal
in- and out-degree) and number of 2-factors in 4-regular bipartite graphs [3], this concomitantly extends a
# P-completeness (under Turing reductions) proof for counting Eulerian orientations of 4-regular graphs
[4]. We remark that, due to additional bijective correspondences (see, e.g., ref. [2,5,8, 10]) between
objects known as Fully Packed Loop (FPL) configurations, where FPLs are modeled in many settings as
2-factors of toroidal or higher genus 4-regular bipartite graphs, Alternating Sign Matrices (ASMs), and
microstates of the 6-vertex model, our results have implications for the hardness of calculating partition
functions of “ice-type” systems (e.g., Pauling’s model [6, 7] for the residual entropy of water ice).

Briefly, recall that to establish a many-one counting reduction from a #P problem f : X* — N, with
input string z, to a #P problem h : X* — N, it suffices to show the existence of a pair of O (poly (|z|))
functions, R; : X¥* — X* and Ry : N — N, where we have that f(z) = Ra(h(R1(x))). A sketch for the
proof of the main theorem is now as follows:

Theorem 1. Counting 2-factors of 4-regular bipartite graphs is # P-complete under many-one counting
reductions.

Proof sketch. We will proceed via reduction from the # P-complete problem of counting 2-factors of 3-
regular bipartite graphs [3]. To begin, let G be an arbitrary 3-regular bipartite graph with vertex partite
sets Vx and Vy, where we necessarily have that |Vx| = |Vy|, vertex set Vg = Vx U Vy, and a set of
2-factors Fa. As a consequence of G being a cubic graph, each perfect matching of G will induce a unique
2-factor. Here, we construct a graph G’ from G by sequentially replacing each vertex v; € Vg, adjacent
to vertices vq,vp,v. € Vi, with a 6-cycle given by the edge set {v 1) <> v(i6), V1) € Va,2):V6,2)
V(i,3): V(5,3) < U(5,4), V(i,a) < V(i5), V(i,5) < V(i,6) ) Where v(; 1), v 3), and v(; 5) are made adjacent to
vertices v,, vp, and v., respectively.

We next construct a graph H from G’ by replacing all (3 - [Vz]/2) edges of the form vy < v, ) in
G’ with linear assemblies, denoted B, gadgets, consisting of w = 2 - |Vg| 4+ 1 copies of the boost gadget
shown in Fig. 1(a—c). More specifically, to be build B, for each i € [1,w — 1] we assemble the w copies
of the boost gadget together by identifying the vertex v; on the ith gadget with the vertex vs on the
(i + 1)th gadget (e.g., as shown in Fig. 1(d)), then identify the remaining degree 2 vertices v, and v,
at either ends of the assembly with the vertices v(; ) and vy ., respectively (deleting the original
V(i,...) < v(,...) edge). Subsequently, we construct a graph H’ from H by first creating (3 - |[V[/2) linear
assemblies of ¥ = |Vg|? copies of the boost gadget in the same manner as before, though here denoting
these assemblies By gadgets. Then for an arbitrary pairing of the vertices in opposite partite sets having
labels of the form v; 2), v(; 4), Or v(;6) — Where we note that such a pairing must exist as a consequence
of the fact that the vertex partite sets of G’ have equal cardinality — for every vertex pair {v;,v;}, we
identify the degree 2 vertices v, and v; on a distinct By gadget with v; and v;, respectively. We can
observe that H' will be a 4-regular bipartite graph if G is cubic bipartite.

We remark that the boost gadget shown in Fig. 1(a—c) can be covered by a 2-factor in three distinct
manners: (type «; example shown in Fig. 1(a); 92 instances) a cycle ingresses and egresses via the labeled
vertices vy and vy; (type B; example shown in Fig. 1(b); 25 instances) two cycles ingress and egress while
covering only the vertices vs and vy; (type v; example shown in Fig. 1(c); 25 instances) no cycles ingress
or egress. Observe that, for any instance of the B, or By gadgets, a 2-factor must cover all boost gadget
subgraphs in the type a manner, or in the type 8 and v manners in an alternating fashion. Now let Fg

This work was supported by JSPS Kakenhi grants {20K21827, 20H05967, 21H04871}.
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be the set of 2-factors for H', and let F};, C Fp be a subset of 2-factors satisfying the constraint that
exactly |V | of the (3 |V|/2) instances of B, gadgets have boost gadget subgraphs uniformly covered
in the type o manner (this being the maximum possible number), and that all of the boost gadget
subgraphs of By gadgets are covered in either the S or v manner.

Here, an analysis (omitted due to space constraints) yields that: (1) every 2-factor in F¢g corresponds

to T = 2lVal/2. (92“’)|VG‘ : (25‘*’)'VG|/2 . (25w)3'IVG|/2 2-factors in Fj;,, where we additionally have that
|Fi |l =71 - |Fal; (2) assuming V| > 12, for each k € [1,3 - |Vz|/2], the number ny of 2-factors in FJ,
with at least k instances of By gadgets having boost gadget subgraphs uniformly covered in the type «
manner, is exponentially larger by a known value (> 2/V¢l) than the number of 2-factors where at most
k — 1 instances of By gadgets are covered in the same manner, and one can recover each ny via an integer
division operation by another known value; (3) that with the value of ny for each k € [1,3-|Vg|/2],
|F7;/| and subsequently |Fg| can be recovered via a similar integer division operation (again assuming
|Ve| > 12). Putting everything together, we have that (1) through (3) implies the existence of a simple
recursive algorithm to determine the cardinality of F¢ provided the cardinality of Fp.

Finally, we can observe that the # P-completeness proof of Felsner & Zickfeld [3] for counting 2-factors
of 4-regular bipartite graphs, and hence the current result, transitively depends on a proof by Dagum
& Luby [1] that counting perfect matchings in k-regular bipartite graphs is #P-complete Vk > 3. It
now suffices to note that many-one counting reductions are transitive, that Dagum & Luby’s proof [1]
corresponds to a many-one counting reduction from computing the 0-1 permanent, and that this latter
permanent computation is known to be #P-complete under many-one counting reductions [9]. O

(a) (b) (c)

N

Vs Vi Vs Vi Vs Vi

Boost Gadget Boost Gadget Boost Gadget

Type @ 2-Factor Cover Type B 2-Factor Cover Type y 2-Factor Cover
(92 Instances) (25 Instances) (25 Instances)
(d)
(w=3) or (¢-3)
Additional Boost Gadgets
Vs @ O/ /——0 QO O /A 1/—® @ Vi
®.

Fig. 1. Illustrations for the Theorem 1 reduction from counting 2-factors of 3-regular bipartite graphs to counting
2-factors of 4-regular bipartite graphs.
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Abstract

Facility location problems are a class of problems which have been well studied in operations
research. The weighted k-center problem in graphs is a classical example of a facility location problem.
Kariv and Hakimi [4] introduced this problem in 1979 and showed it to be NP-hard for general graphs.
However, the problem has efficient polynomial runtime for restricted graph classes. The algorithm
of Wang and Zhang [5] for the weighted k-center problem on trees uses Frederickson’s parametric
search technique [3] to bring down the runtime to O(nlogn). We generalize Frederickson’s technique
to present an O(knlogn + nlog?n) time algorithm for the problem on cactus graphs. This is the
first time that such a generalization could be achieved for a graph class other than trees and is an
improvement on the previous state of the art [1] for £ = o(n/logn). We also propose an optimal
O(n) time algorithm for the decision version of the problem.

Keywords: k-center problem, facility location problem, parametric search, cactus, cactus stem.

2010 MSC: Primary 68WO01; Secondary 05C85, 68R05.

1 Preliminaries

Let G be a graph with vertex set V(G) and edge set E(G) with |[V(G)| = n. We say G is a cactus if no
two cycles of G share a common edge. Each vertex v € V(G) is associated with a non-negative weight
w(v) and each edge e € E(G) is associated with a positive length /(e). We interpret e as a line segment
of length I(e) so that any point x on e can be referred to. The set of all points on all edges of G is
denoted by A(G). For any two points =,y € A(G), the distance between x and y, denoted by d(z,y), is
the length of the shortest path between them in G. For a point € A(G) and a vertex v € V(G), the
weighted distance between the point x and the vertex v is equal to w(v) - d(x,v). Given a set of points
X, the cost of covering the vertices of G by X is given by the expression

max {min{w(v) : d(x,v)}}

veV(G) zeX
The objective of the weighted k-center problem in G is to find a set of k points X such that the cost
of covering V' (G) is minimized. This cost is also called the optimal cost of the weighted k-center problem
in G. We say a point (or a center) x € A(G) covers a vertex v € V(G) with cost A, if w(v) -d(x,v) < A.

2 Feasibility Test

The decision version of the problem is commonly referred to as the feasibility test in literature. Let
A* € Rxq be the optimal cost of the weighted k-center problem in G. The feasibility test takes as input
a value A € R>g, and returns feasible if A > A\*, and infeasible otherwise. Note that A* is an unknown
quantity. For a given A, our algorithm works by placing a minimum number of centers X, such that
every vertex in G is covered by some center in X with cost A. If | X| < k, then X is feasible; otherwise
A is infeasible. We have the following result.

Theorem 2.1. The feasibility test for the weighted k-center problem on cactus takes O(n) time, where
n is the number of vertices in the cactus.
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3 k-Center on Cactus Stems

A cactus stem, is a generalization of the (path) stem defined by Frederickson [3] for trees. Let S’ be a
graph whose structure is an alternating sequence of paths and cycles. We call a vertex a pendant vertex
if its degree is 1. Let S be the graph generated from S’ by attaching any number of pendant vertices
to the vertices in V(S’). We call S a cactus stem. For two vertices v and v and a path 7, connecting
them in S, let cost(u, v, m,,) represent the cost of covering u and v by a single center restricted to lie on
Tuw- We have the following observation.

Observation 1. The optimal cost A\* of the weighted k-center problem in S equals cost(u, v, my,), for
some vertices u and v and a path m,, of S.

We can map the vertices of S into a collection of set of lines £ = {L1, Lo, ..., Lo} in R? such that
for every u,v € V(S) and 7,,, the value cost(u, v, Ty, ), and hence the optimal cost A*, is represented as
the y-coordinate value of the intersection point of a pair of lines which belong to some set L; € L.

With respect to the feasibility test as defined in Section 2, let p; (resp. p2) be the highest (resp.
lowest) point in the set L; € £ whose y-coordinate value is infeasible (resp. feasible). We have the
following result by Chen and Wang [2].

Lemma 3.1 (Chen and Wang [2]). Given L;, both p1 and pa can be found in O((m + 7)logm) where
m = |L| and T is the running time of the feasibility test.

Using Observation 1 and Lemma 3.1 we can show the following result.

Theorem 3.2. We can find A1, 2 € R>o in O(kmlogm) time such that \* € (A, A\2] and no value of
type cost(u, v, Ty, ) lies in the range (A1, \2).

4 The Main Algorithm

For a cactus G, the subgraph S; is a leaf cactus stem of G if S; is a maximal cactus stem of G and the
rest of the graph G \ S; is connected to S; at one of its two endpoints. Our algorithm for the weight
k-center problem on the cactus G is as follows.

Initialize A1 to 0 and Ay to co. Let S = {51, Sa,...} be the collection of leaf cactus stems of G. We
run the cactus stem algorithm of Section 3 on all leaf stems in & simultaneously and update A; and Ay
accordingly such that A\* € (A1, A2] and no value of type cost(u, v, Ty, ), where u,v € V(S;) for some
S; € S, lies inside (A1, A2). If we perform a feasibility test on G with input A € (A1, A2), then the centers
placed by the feasibility test on the leaf stems are optimal. Let &’ be the number of centers placed on
those leaf stems. We replace these leaf cactus stems with pendant vertices to get a new graph G’ such
that the (k — k’)-center solution in G’ along with the &’ centers in the leaf stems is the k-center solution
of G. We repeat this process O(logn) time until a single cactus stem remains for which we can find the
solution optimally. We have the following result.

Theorem 4.1. The weighted k-center problem on a cactus G can be solved in O(knlogn + nlog? n)
time, where n is the number of vertices of G.
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Abstract. Quarto! is a board game for two players, in which one player
chooses a piece to place, and the other player places it in a vacant cell on
the board. In this paper, we define a generalized Quarto! and analyze its
computational complexity using a reduction from generalized geography.
In our reduction, we construct some gadgets on the board for generalized
Quarto! and fill almost all cells on the board due to its unique rule. As
a result, we prove that the generalized Quarto! is PSPACE-complete.

Keywords: Combinatorial game theory - Generalized geography - Board
game - PSPACE-complete - Quarto!

1 Introduction

Quarto! is a board game for two players invented by the Swiss mathematician
Brades Mueller [1]. The game has a board with 4 x 4 cells, and 16 pieces that
have four types. The first player (after we denote N) chooses a piece, and then
the second player (after we denote P) places that chosen piece in any vacant cell.
After that placement, player P chooses a new piece, and then player N places
that piece and chooses the next piece after placement. These steps are repeated
alternately until a player makes a run of row or column, or diagonal of 4 pieces
having the same type. When the run is completed, the player who places the last
piece wins the game. It would be said that Quarto! is a unique game because of
the rule that the opponent chooses pieces to be placed.

In this paper, we analyze the computational complexity of the decision prob-
lem to determine the winner on an arbitrary board of generalized Quarto!. To
simplify, we restrict the number of types of piece into two; shape (o/x) and color
(black/red). We also discuss on a board with m x m cells. In this setting, the
player who makes a run of 4 pieces with the same type in vertically, horizon-
tally, or diagonally wins the game. Then we define the decision problem of the
generalized Quarto! as follows.

GENERALIZED QUARTO!

Input : A m x m board that may contain some pieces.

Output : If there is a winning strategy for the player who chooses the
next piece to place on the input board yes, otherwise no.

It is easy to show that the generalized Quarto! is in PSPACE since players
can place a piece at most once on finite cells. Therefore, using a DFS, we can
solve the problem using O(n?) space. Then we focus on its hardness and prove
that generalized Quarto! is PSPACE-hard.
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Fig. 1. board example Fig. 2. A gadget for the starting vertex

2 QOur contribution

Our proof technique is based on a reduction from generalized geography [3]. It is
known that generalized geography is PSPACE-complete even if its input graph
satisfies the following constraints [2] :

Plane bipartite graph.

All vertices are on grid points and edges are horizontal or vertical.

All edges lengths are 1 or 2.

The angle between two edges starting at the same vertex is 180 degrees.
All vertices except the starting vertex must have at least 1 in-degree and at
least 1 out-degree.

G LD

Therefore, it is sufficient for the reduction to construct gadgets for subgraphs
under the above constraints. In our reduction, players are forced to choose a
patient piece and place it in a patient cell. Fig. 1 shows a case where players
are forced. In this case, player N must choose a (o,black) piece. If not, player
P wins to place a x or red piece in the cell labeled *. After player N chooses
a (o,black) piece, player P must place it in the cell labeled *. If not, whatever
piece player P chooses after this placement, player N wins. Using this technique,
we make gadgets on generalized Quarto! which leave players only a few way for
preventing the opponent’s win.

Fig. 2 shows a gadget for reduction. This gadget forces player N to choose
a (o,black) piece, and forces player P to place it in the cell labeled *. Then a
token’s move on generalized geography is reduced to a consequential move on
the shaded cells.

To complete the proof, the input must not have free cells except for patient
moves. Therefore, our reduction fills almost all cells. Furthermore, each gadget
needs only a constant number of cells. Then we show the following theorem.

Theorem 1. Generalized Quarto! is PSPACE-complete.
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1 Introduction

Many combinatorial puzzles are hard, and pinpointing the exact computational complexity classes for the puzzles are
also difficult. Sokoban is one of the most famous puzzles, and its computional complexity was shown to be NP-hard
[4]. Culberson proved Sokoban is PSPACE-complete by constructing several sophisticated Sokoban gadgets to emulate
Turing machine [3]. A new proof of the PSPACE-completeness of Sokoban was obtained by Hearn and Demaine in
2005 [6]. The new proof is based on a new framework called non-deterministic constraint logic (NCL). The NCL
framework is quite powerful in determining the computational complexity of other puzzles with a motion planing
flavor [5].

Another puzzle that has been extensively studied is Rush Hour. With the NCL framework, Hearn and Demaine
were able to prove that 1 x 2 Rush Hour is PSPACE-complete [6]. But the complexity of 1 x 1 Rush Hour remains
open for almost twenty years before finally being solved in [2]. Yet another new framework was invented to tackle the
1 x 1 case. This new framework is named oriented Subway Shuffle, which was inspired by [1].

In this paper, we study the complexity of a puzzle called Pushing Machine which first appeared as an Android
game® in 2012. The game mechanism of Pushing Machine looks like Sokoban or sliding block puzzles at first glance,
but is siginificantly different. In Pushing Machine, there are two kinds of objects in the 2-dimensional maze with walls
(i.e. fixed blocks). One is the pushers, the other is the boxes. Unlike Sokoban, there is no agent in Pushing Machine,
and the pushers cannot move by their own. Instead, each pusher has an arm that can be extended or retracted. When
extending, the arm can push other pushers or boxes. Like Sokoban, the extending arm can only push one box or one
other pusher at a time. The goal is to push all the boxes to marked locations (see Figure 1).

There is another game named Push It Sokoban Edition? which generalizes the Pushing Machine in two ways. First,
each pusher may have up to four pushing arms (in four directions) instead of just one. Second, boxes have different

colors, and they should be pushed to marked locations with the same colors (see Figure 1).

2 Main results

We first give the following definition of the decision problem related to the puzzle of Pushing Machine.

Definition 1 (k-PushingMachine Problem). Given a 2-dimensional maze with walls, several pushers with up to k
(1 <k <4) arms each, several bozes (with no color distinction), decide whether the bozes can be all pushed to marked

locations.

Thttps://play.google.com /store/apps/details?id=com.reactor.pushingmachine
2https://en.gruv-apps.com /push-it-sokoban-edition/
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Figure 1: Screenshots of the games Pushing Machine (left) and Push It Sokoban Edition (right)

Despite the similarity with Sokoban or sliding block puzzles, it is not easy to determine the computational complex-
ity of k-PushingMachine. We have work on this problem for several years. At first, we try using the NCL framework,
but with no success. Then we switch to the framework of oriented Subway Shuffle which is recently developed in [2].

With this new tool at hand, we are able to prove the following main result for k = 2.
Theorem 1. The 2-PushingMachine problem is PSPACE-complete.

It remains open to decide the computational complexity of the 1-PushingMachine problem.
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Abstract

A class of discrete Bidding Combinatorial Games that generalize alternating normal play was
introduced by Kant, Larsson, Rai, and Upasany (2022). The major questions concerning optimal
outcomes were resolved. By generalizing standard game comparison techniques from alternating
normal play, we propose an algorithmic play-solution to the problem of game comparison for a class
of bidding games that include game forms that are defined numbers. We demonstrate a number of
consequences of this result that, in some cases, generalize classical results in alternating play (from
the famous books Winning Ways and On Numbers and Games). We state a couple of conjectures
and open problems for readers to dive into this promising path of bidding combinatorial games.

Keywords: Bidding Combinatorial Game, Constructive Comparison, 0-bid strategy, Number game, Dyadic
rational game, 0-Game, Group structure.

2010 MSC: Primary 91A46; Secondary 91A05.

1 Introduction

Normal play is the Combinatorial Game convention where a player who cannot move loses [1, 2, 7].
Recently [4], we generalize classical 2-player alternating play to infinitely many game families, by means
of a Discrete Richman Auction [3,5,6]. The two players have split a total budget, TB, between them,
and winning bids are transferred to the loser of the auction. In [4] we establish that games have pure
subgame perfect equilibria, and we resolve all essential structure problems regarding their perfect play
outcomes.

In this paper our focus is on generalizing the results available for alternating play (i.e., TB = 0) to
bidding combinatorial games with TB > 0. We generalize standard game comparison techniques from
alternating play. Our main result proposes a constructive i.e., algorithmic solution to the problem of
game comparison. Further we establish results on the structural and arithmetical aspects of games, both
in general as well as for some particular types of games like Numbers, Integers and Dyadic Rationals.

2 Preliminaries

For a given TB, a game is a triple (TB, G, p), where Left’s part of the budget is p € {0,...,TB,0,..., @},
and where ~ indicates that Left holds the tie-breaking marker. Here the bidding convention is that the
marker may be included in a bid. Right’s monetary budget is TB — p. If TB is given, we generally write
(G,p). The game formis G. Games are recursively defined, with G = {GC | GR}, where G* and G® are
the current Left and Right options from the game G. If G* = @ or G® = @ then G is terminal, i.e., the
current player, Left or Right, cannot move. In case G* = G® = @, then G := 0 is terminal irrespective
of move order. Games are finite and contain no cycles, i.e., each game has finitely many options and the
rank of the game tree is finite. We define o(G, p) as the perfect play outcome of the game G if the game
is played with Left’s budget equal to p.

If the current player cannot move, they lose. Hence a player does not want to win an auction at a
terminal position.
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The disjunctive sum of the game forms G and H is defined recursively as:
G+H={G+H"G*+H|G+H®GF+H},

Where G + H* = {G + H* : HY € H*}, in case H* # @, and otherwise the set is not defined and
omitted. The conjugate of a game form G is the game form where players have swapped positions, and
is recursively defined as G = {GR | Gﬁ}.

The partial order of games is defined as usual. Consider games G, H. Then G > H if, for all games
X, 0(G+ X) > o(H + X). Game equality satisfies G = H if G > H and H > G. The games G > H if
G > H but H # G. The games G and H are confused if G 2 H and H % G; this is denoted G || H.

A game form G is a number if for all G¥ € G* and for all G € G®, G < G < G, and all options
are numbers.

Some of the standard games are: 1) 0 = {&|@}, II) * = {0]|0}, III) For k¥ € N: Integer games are
i) k = {k — 1|@}, ii) =k = {@| — (k — 1)}, and Dyadic rational games are i) 1/2¥ = {0[1/2"~1}, ii)
—1/2% = {~1/2%71|0}. These notations are motivated by Theorem 3.6.

3 Main Results

Theorem 3.1 (Main Theorem, Case Study Numbers). Consider any total budget and a number game
G. Then G = 0 if and only if o(G,0) = L.

Theorem 3.2 (Constructive Main Theorem). Consider a game form G and any total budget. Suppose

that Left has an optimal 0-bid strategy in (G,0). Then G = 0 if and only if o(G,0) = L.

Observation 3.3 (No Generic 0-optimal Strategy). We demonstrate that, for any non-zero total budget,
there is a game form G such that o(G,0) = L, but Left does not optimally bid 0 at each follower.

Theorem 3.4 (0-Games). For all positive integers k, {—k|k} =0 and {—1/2F|1/2*} = 0.
Theorem 3.5 (No Group Structure in general). Consider TB > 0. There is no game G such that
*+G=0.

Theorem 3.6. Consider game forms that are integers and dyadic rationals, respectively. Both are
numbers and subgroups of the full game monoid.

Theorem 3.7. Standard arithmetic rules and total order continue to hold for bidding games that are
dyadic rationals.

Conjecture 3.8. If a bidding game G has an inverse H, then H = G.

We believe that several classical results on alternating play numbers, such as number avoidance,
continue to hold in general bidding.

Conjecture 3.9. All numbers are dyadic rationals.

However, we conjecture that the Archimedean property distinguishes non-trivial bidding convention
from positive total budgets.

Conjecture 3.10. Consider TB > 0. All positive games are dyadic rationals.
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Abstract

We study the following game version of generalized graph Turdn problems. For two fixed
graphs F and H, two players, Constructor and Blocker, alternately claim unclaimed edges of
the complete graph K,,. Constructor can only claim edges so that he never claims all edges of
any copy of F, i.e. his graph must remain F-free, while Blocker can claim unclaimed edges
without restrictions. The game ends when Constructor cannot claim further edges or when all
edges have been claimed. The score of the game is the number of copies of H with all edges
claimed by Constructor. Constructor’s aim is to maximize the score, while Blocker tries to
keep the score as low as possible. By g(n, H, F') we denote the score of the game when both
players play optimally and Constructor starts the game.

We obtain the exact value of g(n, H, F') when both F and H are stars and when F = P,
H = P;. We determine the asymptotics of g(n, H, F') when F' is a star and H is a tree and
when F' = P;, H = K3, and we derive upper and lower bounds on g(n, Py, Ps).

1 Introduction

The Turan problem for a set F' of graphs asks the following: What is the maximum number
ex(n, F) of edges that a graph on n vertices can have without containing I as a subgraph? This
function has been intensively studied, starting with Mantel and Turdn who determined ex(n, K,.)
where K, denotes the complete graph on r vertices with r = 3.

There is a generalization of the Turdn problem, when we count the maximum number of copies
of a certain graph H in a graph G on n vertices, provided that G does not contain a graph F' as
a subgraph. To be more precise, let us introduce some notation: for two graphs H and G, let
N(H,G) denote the number of copies of H in G. Given graphs H and F, let

ex(n,H,F) = mgx{N(H, G) : G is an F-free graph on n vertices}.

This problem was initiated by Zykov in 1949, who determined ex(n, K, K;) exactly, however the
systematic study of the function ex(n, H, F) started just recently in [1] by Alon and Shikhelman,
followed by a number of other results in the recent years.

Our goal is to introduce a game analogue of the parameter ex(n, H, F') and provide some results.
For two fixed graphs F' and H, two players, Constructor and Blocker alternately claim unclaimed
edges of the complete graph K,,. Constructor can only claim edges so that he never claims all
edges of any copy of F, i.e. his graph must remain F-free, while Blocker can claim unclaimed
edges without restrictions. The game ends when Constructor cannot claim further edges or when
all edges have been claimed. The score of the game is the number of copies of H with all edges
claimed by Constructor. Constructor’s aim is to maximize the score, while Blocker tries to keep
the score as low as possible. We denote by g(n, H, F') the score of the game when both players
play optimally and Constructor starts the game.
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and FK 132060.
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Our Constructor-Blocker games borrow some aspects of two well-studied classes of combinatorial
games on graphs — the Maker-Breaker positional games (see, e.g., [3]), and the saturation games
(see, e.g., [2]). In our Constructor-Blocker games each player builds his own graph, as it is the case
in Maker-Breaker games, and in addition Blocker, like Breaker, has no restrictions on his moves.
As for Constructor, his graph must remain F-free resembling the settings in saturation games.
Note that for every two graphs H, F' and n = 1 we trivially have g(n, H, F') < ex(n, H, F').

2 Our results

The first case we consider is when both H and F' are stars, determining the game score exactly.

Theorem 2.1. For 2 < { < k there exists ng(k,£) such that if n = ng(k,£) we have

(1;) (n-2)+2- (kzl) if nk is even,

g(na Sﬁa Sk+1) =

('E)(n —-1)+ (kzl) if nk is odd.

For 1 =1/ <k, we have g{(n, Sy, Sg41) = ["kz_lj,
Next we look at the case when H is a tree and F' is a star.

Theorem 2.2. For any k = 2 and tree T' with mazimum degree at most k, we have

g(ana Sk+1) = e$(n7T7 Sk+1) - Ok,T(l)

We consider two games with both H and F being paths. Let B(n) := ([?QJ) + ([;]) In the
case H = P3, F = P, we can determine the exact game score.

Theorem 2.3. There exists an integer ng such that for every n = ng, we have
g(n, P, Py) = B(n).
When H = P, and F' = P5 we provide the following bounds.

Theorem 2.4.

4
n? - o(ng) <g(n, Py, Ps) < —n’ + o(n2).

19 =923

Finally, we study the case H = K3, F' = Ps.
Theorem 2.5. n
g(n7K37P5) = Z

More details and all of the proofs can be found in the full version of our paper [4].

—o(n).
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Abstract

A shortest path passing on the surface of a polyhedron is called a geodesic path. A geodesic
path of a polyhedron has the property that it becomes a single line segment on a development. A
geodesic path is a shortest path and it mostly passes a small number of face. We, however, consider a
problem “is there a case that a geodesic path passes all faces of a polyhedron?” For this problem the
answer is “yes”: we found that a regular tetrahedron has such a geodesic path. The next question is
“what polyhedra have such geodesic paths?” We define a face-guard geodesic path (FGG path) as a
geodesic path connecting two points on a polyhedron and passing through all its faces, and propose
an FGG path problem which asks whether a given polyhedron has an FGG path. We considers that
this is a new idea. In this talk, we will present some results on this problem.

Keywords: Geodesic path, convex polyhedron, security problem

1 Introduction

It is known that a geodesic path connecting two points on opposite sides of some rectangle passes through
five faces (Fig.1). However, no two points have been found where the geodesic path passes through all the
faces of a cube/cuboid. This naturally raises the question of whether there is a case where the geodesic
passes through all the faces. We call a geodesic path connecting two points on a polyhedron and passing
through all its faces an face-guard geodesic path (FGG path for short). We propose a face-guard geodesic
path problem (FGG path problem), which asks whether a given polyhedron has an FGG path or not. The
FGG path problem also has an aspect of a security problem, i.e., whether a geodesic path guards all
faces. This idea was first discussed at the 32nd Bellairs Winter Workshop on Computational Geometry
held in Barbados in 2017.

Figure 1: The geodetic path through five faces

2 Preliminaries

All polyhedra in this research are assumed to be convex polyhedra.
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2.1 Definitions

Definition 2.1 (geodesic path). For a given polyhedron and two points s and ¢ on its face, the shortest
paths passing on the face of the polyhedron between s and ¢ is called a geodesic path. They are sometimes
called an s-t geodesic paths for explicitly indicating the endpoints. A path through the faces of a
polyhedron with s and ¢ as its two ends, such that it is locally shortest, is called an s-t local geodesic
path. From the definition, the shortest one among s-t local geodesic paths is the s-t geodesic path.

Definition 2.2 (FGG path). A geodesic path passes through all the faces of the polyhedron is called a
face-guard geodesic path or an FGG path for short. A polyhedron that has an FGG path is called an FGG
polyhedron. For a polygon, an FGG path is the shortest path connecting two points on the perimeter
and passing on the perimeter of the polygon.

Definition 2.3 (FGG number and face-pair FGG number). On a given polyhedron, the maximum
number of faces guarded (passed) by a geodesic path is called the FGG number. Given a polyhedron and
its two faces, the maximum number of faces guarded by a geodesic path whose endpoints are selected
from each face is called the face-pair FGG number.

2.2 Problems

Following problems are proposed.

Problem 1. FGG path problem
Input polyhedron II
Output Does IT have a FGG path?

Problem 2. FGG number problem
Input polyhedron II
Output FGG number of II

Problem 3. Face pair FGG number problem
Input Polyhedron IT and its faces S1, S
Output face pair FGG number of II between S; and Ss.

3 Results

Theorem 3.1. Tetrahedra (Fig.2), and triangular prisms are FGG polyhedra, conversely, reqular hexa-
hedra (cubes), reqular octahedra, reqular dodecahedra, regular icosahedra, and rectangular prisms are not
FGG polyhedra. Furthermore, the FGG number of a cube is 5.

Theorem 3.2. For any positive integer n > 4, there exists an FGG n-faced polyhedron.

Lemma 3.3. A polygon has an FGG path if and only if there is a pair of adjacent edges AB and BC
such that the sum of the lengths of AB and BC' is larger than the sum of the lengths of the other edges.

Theorem 3.4. If a polygon has an FGG path, then a prism whose base is the polygon has a FGG path
if the height is large enough.

Figure 2: An example of FGG paths of a tetrahedron

Acknowledgments. We would like to express my sincere gratitude to Assistant Professor Takuya Mieno
and members of Ito-Mieno Laboratory for their discussions.
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Nonrealizable Planar and Spherical Occlusion Diagrams
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The art gallery problem in R3 asks for the minimum number of guards that can jointly see all points in a nonconvex
polyhedron P, where points s and ¢ see each other if st C P. It is well known that guards stationed at vertices do
not always suffice, as some points in P may not see any of the vertices [1, Sec. 10.2]. Viglietta [4] recently introduced
spherical occlusion diagrams (SOD) to analyze the visibility map of such points. Formally, a SOD is a finite nonempty
collection of arcs of great circle on the unit sphere satisfying the following axioms: (A1) if two arcs intersect, then
an endpoint of one is in the interior of the other, (A2) each endpoint of an arc lies in the interior of another arc, and
(A3) all arcs that end in the interior of an arc a lie on the same side of a.

It is not difficult to verify that if a point s in the interior of a polyhedron P (in general position) and s does not
see any vertices of P, then its visibility map is a SOD. Alternatively, for a polygonal scene P (i.e., a finite collection
of interior-disjoint polygonal faces in R3), if a point s € R3 does not see any vertices of P, then its visibility map is a
SOD. Viglietta [4, version 1] conjectured that every SOD is the visibility map of a point s in some polyhedron P in
R3, that is, every SOD is realizable as a visibility map. The main result of this paper is to disprove this conjecture:
We construct a SOD that is not realizable.

Our result raises several open problems: Can one recognize efficiently whether a given SOD is a visibility map?
If so, can one find a realization efficiently? What is the (combinatorial or topological) complexity of the realization
space? Many further open problems are related to SODs, and in general to visibility problems in 3-space, see [3].

1 Construction

Our construction of a nonrealizable SOD is reduced to planar occlusion diagrams (POD), which are defined
analogously to a SOD, but with line segments in the plane. Formally, a POD is a finite nonempty collection of line
segments and rays (for short, segments) in R? satisfying the following axioms: (A1’) if two segments intersect, then
an endpoint of one is in the interior of the other, (A2’) each endpoint of a segment lies in the interior of another
segment or the boundary of B, and (A3’) all segments that end in the interior of a segment ¢ lie on the same side of
. Again, it is not difficult to verify that if P is a polygonal scene in R?, and its lower envelope does not contain any
vertices of P, then the orthogonal projection of the lower envelope to the xy-plane is a POD. We construct a POD
that is not realizable in this way.

The key component of the construction is a nonregular triangulation. A triangulation in R? is regular if it is the
orthogonal projection of the lower envelope of a convex polytope [2]. Let e > 0. We start with the triangulation T
in Fig. la, which is known to be nonregular, and then modify it in several steps as follows. Each triangle ¢ in T is
replaced by a convex polygon ¢(t) C int(¢) that e-closely follows the boundary of ¢; these are called sub-faces.

= a B2 s By
/ L \\
(a) Sub-faces in the triangles of a nonregular triangulation. (b) A gadget between sub-faces fi and fo.

Figure 1: Modification of a nonregular triangulation to construct a planar occlusion diagram.

To complete the construction, we replace every edge between a pair of triangles in T' by a sequence of small faces,
B1,a1, B2, ..., Bk, shown in Fig. 1a, where «; and ; are trapezoids: Two opposite sides of «; (resp., ;) are contained
in (resp., contain) some sides of the two sub-faces in the two triangles. A subsequence (8;, «;, B;11) of faces is called
a gadget (Fig. 1b). These replacement operations yield a POD, satisfying axioms (A1’)—(A3’).

*Department of Mathematics, CSU Northridge. Email: kimberly.kokado.43@my.csun.edu, csaba.toth@csun.edu
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2 Non-Realizability

Suppose, for the sake of contradiction, that the POD constructed above is realizable, that is, it is the orthogonal
projection of the lower envelope of some polygonal scene P, in R2. Note that the lower envelope and the orthogonal
projection are invariant under orientation-preserving linear transformations that modify only the z-coordinates. In
particular, we may assume that the minimum and maximum z-coordinates, resp., of the polygons in P. are 0 and 1.

The gadgets ensure that for any pair of adjacent sub-faces, f; and fs, and in any realization, f; lies below the
plane span(f2) and fo lies below the plane span(f1), with the exception of at most one or two vertices (Lemma 2.1).
In particular, the dihedral angle between span(f1) and span(f3) is convex from below. Furthermore, the orthogonal
projection of the line ¢15 = span(f;) N span(fz) separates the sub-faces f; and fy in the POD, with the exception
of one or two vertices (Lemma 2.3); see Fig. 2a. Denote by span(f;)~ the lower half-space bounded by the plane
span(f;) for a sub-faces f;. Then Q. = ﬂzzl span(f;)” is a convex polytope. As e goes to zero, (. converges to a
polytope Q) whose upper envelope is the triangulation 7. However, T is a nonregular triangulation, and it can be
neither the lower nor the upper envelope of a convex polytope: a contradiction.

lya
/ f 2
o8 Al
span( f]) ay B2 Qs
span(fa) i "
8 J2 \Q.
(a) Convex dihedral angle betwee sub-faces fi and fo. (b) Labelling of vertices in a gadget.

Figure 2

In the remainder of this section, we sketch how the gadgets between sub-faces f; and f are used in the proof.
Consider a single gadget in Fig. 1b. Note that 51, 82, and 3 occlude the sub-faces f; and f5, and a; and ay occlude
b1, B2, and B3, but are occluded by f; and fs.

Let ¢ be the an endpoint of a segment ¢; in the POD. By axiom (A2’), ¢ lies in the interior of another segment
l5. In the realization P, ¢; and ¢y are edges of some polygons p; and po in R?; and ¢ is the orthogonal projection of
two points: a point p1(t) € p; and a point pa(t) € ps. Since t is the endpoint of segment ¢; C p;, then polygon po
occludes py at t. Thus the z-coordinate of py(t) is less than the z-coordinate of p;(t); denoted as pa(t) < p1(t).

We use above-below relationships to show that in any gadget between sub-faces f; and fo, at least one vertex of
f2 lies below span(f;) (and similarly, at least one vertex of f; lies below span(fs)).

Lemma 2.1 In any realization, a1(6) = f1(6) or az(1) = f1(1), and f2(8) < f1(8) or f2(12) = f1(12); that is, the
point f2(8) or f2(12) is below the plane span(fy).

A swirl in a POD is a cyclic sequence of line segments in which one endpoint of each segment is in the interior
of the next segment. Each gadget contains four swirls, denoted by A, B, C, and D in Fig. 2b.

Lemma 2.2 Assume that the ratio between the diameter of a swirl and the distance between two swirls in a gadget
is less than some fixed § > 0. Then the altitudes of the points in the swirls are less than 106.

It follows that each swirl approximates a single point in a realization. Since the four corners of the polygon (-
are co-planar, the four swirls around these corners are almost co-planar (and, in particular, cannot be on a saddle
surface). This, in turn, determines the position of the line ¢15 = span(f;) N span(f2) approximately.

Lemma 2.3 The vertices of f1 and fo are on opposite sides of €15 with an exception of at most two vertices of each.
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Imagine that two squirrels try to fetch and divide 2n nuts to their nests.
Since each time a squirrel can only carry a nut back, this naturally gives the
following problem: they should travel along the edges of an n-star, centered at
the corresponding nest, such that each leaf (e.g., nut) is visited exactly once (in
and out) and the maximum distance they visit should be minimized (assuming
that they travel at the same speed, there is no better way to enforce the fair
division under such a circumstance). See Figure 1 for an illustration.

o O

A O O O B
o © ©

Fig. 1: Two squirrels A and B try to fetch and divide 2n nuts.

A star S is a tree where all vertices are leaves except one (which is called the
center of the star). An n-star is a star with n leaf nodes. When the edges in S
carry weights, the weight of S is the sum of weights of all the edges in S. Given
two points p, ¢ in the plane, with p = (2,,9,) and ¢ = (24,y,), we define the
Euclidean distance between p,q as d(p,q) = /(zp — 24)% + (yp — yq)2- (Note
that the coordinates of the input points change the complexities of the problems
in some way — see below.)

Formally, the Two-Squirrel problem can be defined as: Given a set P of 2n
points in the plane and two extra point sites ¢; and c¢s, compute two n-stars
S1 and Sy centered at c; and cy respectively such that each point p; € P is a
leaf in exactly one of S; and S3; moreover, the maximum weight of S; and S,
is minimized. Here the weight of an edge (c;,p;) in S; is w(c;, p;) = d(ci, p;) for
i=1,2.

This problem can be thought of as an example for destination and capacity
constrained commodity transportation, or as a constrained version of the two-
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median problem. A more general version of the problem is when the two squirrels
only need to split the 2n nuts and each could travel along a Minimum Spanning
Tree (MST) of the n points representing the locations of the corresponding nuts,
which we call the Two-MST problem: Compute a partition of P into n points
each, P; and Py, such that the maximum weight of the MST of P, U{¢;} (say T1)
and PoU{co} (say Tv), i.e., max{w(T1}), w(T>)}, is minimized. Likewise, we can
replace ‘MST’ with TSP (Traveling Salesman Problem) to have the Two-TSP
problem. These kind of ‘equal-size’ constraint is interesting by nature, and has
not been considered in geometric optimization (to the best of our knowledge).
On the other hand, there have been results on covering a (weighted) graph with
stars and trees [1, 6, 2].

It turns out that Two-Squirrel, with rational inputs, is strongly NP-hard
under both the Euclidean and L; metric. (With integral inputs, it is obviously
weakly NP-hard.) The proofs can be directly from a variation of the famous
Set-Partition problem [3,4], namely, (Equal-Size) Set-Partition for Rationals,
which is strongly NP-hard with the recent result of Wojtczak [5]. For the ap-
proximation algorithms, Two-Squirrel (with rational inputs) admits an FPTAS
(note that this does not contradict the known result that a strongly NP-hard
problem with an integral objective function cannot be approximated with an
FPTAS unless P=NP, simply because our objective functions are not integral).
This can be done by first designing a polynomial-time dynamic programming
algorithm through scaling and rounding the distances to integers, obtaining the
corresponding optimal solutions, and then tracing back to obtain the approx-
imate solutions. For Two-MST and Two-TSP such a dynamic programming
based technique does not work, due to the fact that the structure of MST’s and
TSP’s are much more complex than stars with fixed centers ¢; and co. Also, for
Two-MST and Two-TSP we mainly focus on rational/real coordinates.

We state our main results as follows:

Theorem 1. Two-MST is strongly NP-hard and can be approzimated with a
factor of 3.6402.

Theorem 2. Two-TSP can be approximated with a factor of 4 + €.
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Extended Absract

A graceful labeling of a tree T with m edges is a labeling f of the verticies of T" with the integers
0,1,2,...,m such that {|f(u) — f(v)| :wv € E(T)} ={1,2,...,m}. A tree is graceful if it admits a
graceful labeling. A well-known conjecture due to Ringel, Kotzig and Rosa [3, 2, 5] asserts that all
trees are graceful.

Later, Gnana Jothi [1] conjectured that all trees admit an odd-graceful labeling, where an odd-
graceful labeling of a tree T with m edges is a labeling g of V(T') with integers in the set {0, 1,2,...,
2m — 1} such that {|g(u) —g(v)| :wv € E(T)} ={1,3,...,2m — 1}.

As for graceful labelings, many classes of trees (like caterpillars and binary trees, among others)
are known to admit odd-graceful labelings.

A graceful labeling f of a tree T is called an a-labeling if there is an integer A\, such that either
flu) <Ay < f(v) or f(v) <Ay < f(u) for every edge uv of T'. It is an easy exercise to show that if
f is an a-labeling of a tree T', then an odd-graceful labeling g of T" is obtained as follows:

f2) i) <,
9lv) = {Qf(v) 1 i f() > A

Therefore, if a tree admits an a-labeling, then it also admits an odd-graceful labeling. Unfortu-
nately, not all graceful trees admit an a-labeling (see for instance Fig. 1).

Figure 1: Tree R admits no a-labelings.

A tree T with root r belongs to class I' if: i) There is a plane representation of 7' which is
symmetric with respect to a vertical line through r, and ii) For each vertex v of T the number of
vertices in all branches of T at v is the same. Tree R, above, is in class ' as well as tree T in Fig.
2. Rivera-Campo [4] proved that all trees in class I' are graceful.

In this paper we show every tree in I' also admits an odd-graceful labeling in spite of the fact
that many trees in I' do not admit a-labelings. We also present a class A of edge-centered symmetric
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Figure 2: A tree T in class I' with a graceful labeling.

trees (see Fig. 3 for an example) and prove that all trees in A admit an a-labeling and therefore
also an odd-graceful labeling.

27 29 31

Figure 3: An odd-graceful labeling of a tree in class A.
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Abstract

Deciding whether there exists a graph such that its crossing number and pair crossing num-
ber are distinct is an important open problem in geometric graph theory. We show that cr(G) =
O(per(G)?/?) for every graph G this improves the previous bound by a logarithmic factor. Answer-
ing a question of Pach and Téth, we prove that the bisection width (and, in fact, the cutwidth as
well) of a graph G with degree sequence d1,da, . .., dn satisfies bw(G) = O(y/pcr(G) + Y p_, d2).
The proofs of these results rely on a separator theorem for string graphs, proven by Lee. We also
obtain a bound on the pair crossing number of toroidal graphs and graphs that can be made planar
by removing few edges.

1 Introduction

We consider only simple undirected graphs.

Given a graph G = (V, E), a drawing of G is a representation such that the vertices correspond
to distinct points in the plane and the edges are represented by simple continuous curves which go
from one endpoint to the other but do not pass through any point representing a vertex. We further
assume that no two curves are tangent or share an infinite number of points, and no three curves
have a point in common. The crossing number of G, cr(G), is the least number of crossing points
amongst all drawings of G. The crossing number is one of the most important and studied measures of
non-planarity, and it is also relevant from a practical point of view, particularly in graph visualization
and VLSI. Similarly, the pair crossing number, pcr(G), corresponds to the minimum number of pairs
of crossing edges in all drawings of G. The systematic study of the pair crossing number was started by
Pach and Té6th [10]. Deciding whether cr(G) = per(G) for all graphs is one of the most tantalizing open
problem in geometric graph theory, and a considerable amount of effort has been put into bounding
cr(G) in terms of per(G).

2 Previous work and our main results

Toth [12] showed that cr(G) = O(per(G)7/41og®? per(G)) and, using the same technique in conjunc-
tion with a result by Lee [6], the bound was later improved to ¢r(G) = O(pcr(G)3/2log per(Q)) [7], [4].
We strengthen this result by getting rid of the logarithmic factor.

Theorem 1. For every graph G we have that cr(G) = O(per(G)3/?).

The bisection width of a graph G, denoted by bw(G), is the least number of edges whose removal
disconnects the graph into two (not necessarily connected) subgraphs having no more than §|V| vertices
each. The bisection width and the crossing number are related by the following inequality (see [11], [8]):
If G is a graph with degree sequence di,ds, ..., d,, then

bw(G) < 158, | 16cx(G) + > d2.
k=1

This has become one of the most useful tools for studying the crossing number. From now on, we
write ssqd(G) = >_;_, d3. Pach and Téth [9] asked whether an analogous result holds for the pair
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crossing number, namely, is there a constant C such that bw(G) < C(y/per(G) + /ssqd(G)) for every
graph? Almost providing a positive answer to this question, Kolman and Matousek [5] showed that
bw(G) = O(log n+/per(G) + ssqd(G)).

The cutwidth of G, cr(G), is the least integer ¢ for which there is an ordering vi,vs,..., v, of
its vertices such that the number of edges which have one endpoint in {vy,...,v;} and the other
in {viy1,...,v,} is at most £ for every ¢ with 1 < ¢ < n — 1. Djidjev and Vrt’o [1] showed that
cr(G) = O(y/er(G) + ssqd(G)). We prove that this holds for the pair crossing number as well, which
settles the question of Pach and Toth mentioned in the previous paragraph.

Theorem 2. For every graph G, cr(G) = O(y/per(G) + ssqd(G)). Since cw(G) > bw(G), this implies
that bw(G) = O(y/pcr(G) + ssqd(Q)).

A string graph is an intersection graph of a collection of curves in the plane. The aforementioned
results rely on a modified version of a separator theorem for string graphs by Lee [6].

Finally, we provide a bound on the crossing number of toroidal graphs' and graphs that can be
made planar by removing k£ edges.

Theorem 3. Let G be a graph of mazimum degree A. If G is toroidal, then cr(G) = O(A? per(G)).
If G can be made planar by deleting k edges, then cr(G) < kA per(G) + k2.

This result performs better than Theorem 1 for a wide variety of graphs, and its proof relies on the
techniques developed by Hlinény and Salazar in [3] and [2].
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Extended Abstract

This work is parallel to the work of Egawa, Kano, and Tan [8] On cycle graphs. For any graph G, the
cycle graph [4] of G, denoted by € (G) is the graph whose vertices are the induced cycles of G and where
two vertices are adjacent if and only if the associated cycles share at least one edge in common. For any
integer n > 1, we define €"(G) = €' (€(G)). If G has no cycles, we put €(G) = 0 and also we define
%°(G) = G for convenience. Egawa, et al. showed that for any graph G exactly one of the following
holds:

(1) There exists an integer n > 1 such that €"(G) = 0.
) lim |[V(€"(G))]| = co.
n—oo
(3) There exist integers m > 0, p > 0, such that €"*P (G) = €"(G) for all n > m.

The graphs satisfying (1), (2), (3) are called cycle-vanishing graphs, cycle-expanding graphs, and cycle-
periodic graphs respectively. Characterizations of these three classes of graphs were established in their
paper. Further results on cycle graphs can be found in the paper of Seema, et al. [9]

We introduce here a graph operator & similar to the graph operator €.

Defnition 1. For a given graph G, the path graph of G, denoted by 2(G), is the graph whose vertices
are the nontrivial induced paths in G, and where two vertices are adjacent if the corresponding induced
paths share at least one common edge. If G has no nontrivial paths, we put %(G) = 0 and refer to this as
the null graph.

For any integer n > 1, and any graph G, we define 2"*(G) = %"~! (%(G)). For convenience, we set
P%G) =G.

We show here that for any graph G, exactly one of the following holds:

1. There exists an integer n > 1 such that 2" (G) = 0.

2. nll_r)rgo [V(P"(G))| = co.

3. There exist integers m > 0, p > 0, such that #"*P(G) = €"(G) for all n > m.

Following the terminology of Egawa, et al., we shall call a graph path-vanishing, path-expanding, or
path-periodic if G satisfies 1 or 2 or 3, respectively.

The following three theorems characterize these three classes of graphs.
Theorem 1. A graph G is path-vanishing if and only if every component of G is a complete graph.
Theorem 2. The following statements are equivalent.

(1) G is path-expanding.
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(2) G has a component which is neither complete nor isomorphic to K,, — e.

(3) G has two induced paths of length 2 sharing a common edge.

(4) G has an induced subgraph isomorphic to one of the graphs K 3, K4 — E(P3), P4, Ca.
(5) G has a component of order n and size less than (g) -1

Theorem 3. A graph G is path-periodic if and only if it has at least one component isomorphic to K, — e,
and all other components are complete graphs.
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Fewest Moves Inequality Constraint Puzzles'
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Abstract

Inequality constraint games are normal play impartial games where users place available numbers,
while respecting existing inequalities on the board. While the 1D and 2D 1-player versions are known
to be in P, other versions have yet to be explored. Here, we show that the 2D 1-player fewest moves
version is NP-complete, i.e., given an n x n board (with [n?/2] spaces), and an integer k > 0, can
you place k unique numbers from {1,..., [n?/2]} such that there are no more available moves? This
is true whether the inequalities are strict or not, and with only one direction of inequalities on all
left /right comparisons (only <’s or >’s).

1 Introduction

An inequality constraint puzzle is a game where 1-player plays on an n x n checkered board, placing
[n2/2] numbers in spots where inequalities are satisfied. The numbers may only be used once (Fig. 1a).
Although it could be more general, for any north/south comparison, we use north on left, south on right.

Problem 1.1 (Inequality Constraint Game). Given an n x n checkerboard with [%2] spaces and in-
equalities (inequality constraint board), and a k € N, can k& numbers be placed from universe U?

There are many variations to the 1-player game, such as non-unique numbers, a limited universe (only
0 or 1), pattern objectives (four consecutive numbers or four 0’s in a row), specific inequality patterns,
more placement constraints (a row must sum to less than a value), etc. There are also the obvious
extensions to 2-player normal-play impartial (or partizan) combinatorial games.

The 1D 1-player version is simple (see [4]). The 2D 1-player version was proven to be in P if all
numbers must be placed, regardless of the inequalities used [3]. A similar generalized version has been
explored where 4-sided tiles are used with a different number on each side [1]. If the tiles have the same
number on all sides, the models are similar, but slightly different (in ICG, an inequality used to compare
a north/south pair is also used to compare a west/east pair). There is also considerable combinatorial
work counting the permutations of numbers given a sequence of inequalities (Up-Down Sequences) [2].

2 Unique Fewest Moves 1-player ICG is NP-complete

We show that, if a number may only be placed once, deciding whether k& numbers can be placed is
NP-complete. We use a reduction from a restricted version of Set Element-Label Cover, which we show
is hard by a reduction from Vertex Cover in cubic graphs (VC3) [5] following a similar reduction as [6].*
Given space constraints, the ideas are outlined without the formal proof.

Problem 2.1 (Unique Fewest Moves Inequality Constraint (k-UIC)). Given an Inequality Constraint
board B with strict inequalities, a universe of numbers U = {1,...,n}, and an integer k£ > 0. Can k
unique numbers from U be placed on B such that no more moves are possible?

Problem 2.2 (k-Set Element-Label Cover (SELC)). Given sets S = {s1,..., 8, } over some universe
U={z,...,x,} and k € N. A Set Element-Label Cover is an injective mapping M : S’ — U’ where
S'C Sand U CU, and M(s;) € s;. Does there exist a maximal partial cover such that |S'| < k7

Theorem 2.3 (SELC is NP-complete). Set Element-Label Cover is NP-complete even with sets of size
2 and when an element may occur in at most 4 elements.

Proof. For clarity, we reduce to a graph variant of Set Element-Label Cover where, for an undirected
simple graph G = (V, E), let S = E and U = V such that each edge is defined as {v;, v;} where v;,v; € V
and 7 # j. This is essentially uniquely labeling edges with an incident vertex, and the labels can not
be used more than once. Using only k edges for the bipartite labeling graph (Examples in Fig. 1) is
equivalent to finding a minimal maximum matching.

Given a cubic VC3 graph G = (V, E), create a graph G’ = (V', E’) where every v; € V is replaced
with the 3-clique u;, m;,p; € V' and edges {u;, m;}, {m;,p;},{pi,u;} € E' as a vertex gadget (Fig. 1b).
WLOG, for an edge {v;,v;} € E, we add one vertex z;; € V' and edges {X;,Y;}, {Xi, 2}, {7, Y;} € &
where X,Y are one of the u, m,p vertices from v;, v;, respectively (Fig. 1b). G’ has max degree 4 and
[V'| =3|V| + |E| and |E’| = 3|V |+ 3|E]|.

We show a bound on the minimum number of labels assigned with no other labeling possible. Let
Bar be the size of a minimum labeling on G’, and Cg be a minimum vertex cover of G. We assert that
Bar = 2|V| 4+ 2|E| — 2|Cg|, and thus, G has a vertex cover of size k if and only if G’ has a minimal

I This research was supported in part by National Science Foundation Grant CCF-1817602.
2{robert.alaniz01,robert.schweller,timothy.wylie}Qutrgv.edu,

Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX, USA.
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4VC3 usually refers to Vertex Cover on graphs of max degree 3, but we use it as cubic graphs for convenience.
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Figure 1: (a) Example game with 32 blanks, thus the pieces are {1,...,32}. Given the board with 8
numbers placed, can you fill in 10 numbers s.t. there are no more valid moves? (b) Edge gadget connected
to two vertex gadgets. (c) k-UIC gadget for two numbers a,b with a > b. Each a,b can be in up to 4
gadgets- each using a different i (1 < ¢ < 4). (d-e) Vertex gadget and the mapping in SELC based on
whether v is part of the vertex cover. x,y, z are vertices of adjacent vertex gadgets. (f-g) Edge gadget
labeling based on whether one or both vertices are in the vertex cover. Red indicates an unlabeled edge.

maximal labeling of size 2|V| + 2|E| — 2k (|V| + |E| + 2k unlabeled edges). The basic idea is, if a vertex
v; ¢ Cg, then the edges in the vertex gadget can be labeled by the nodes u;, m;, or p;. If v; € Cg, then
u;, m;, and p; are used to label edges to neighboring nodes. Note that a minimum labeling is not unique.
Obs. 1. A minimum labeling on a vertex gadget (with no other edges) labels 2 edges. (Fig. 1d).
Obs. 2. A minimum labeling on a vertex gadget with vertices of degree 3 can label 0 edges. (Fig. le).
Obs. 3. For two adjacent vertices v;,v; € V. The edge gadget between the two vertex gadgets in G’
can always have one unlabeled edge.
Obs. 4. For the subgraph of two adjacent vertex gadgets connected by an edge gadget, if one is part of
a vertex cover, the minimum labeling labels 4 edges (Fig. 1f).
Obs. 5. For the subgraph of two adjacent vertex gadgets connected by an edge gadget, if both are part
of a vertex cover, the minimum labeling labels 2 edges (Fig. 1g).

Obs. 4-5 note how to always give a minimum labeling for the 3-clique on the edges with 2 vertex
gadgets. The assertion is that any deviation from this labeling will not yield a smaller labeling (since it
is not unique). Finally, the problem is in NP since k assignments can be guessed. O

Theorem 2.4. k-UIC is NP-complete.

Proof. Given an instance of SELC with (S,U, k), we enumerate U and let U" = {1,...,(9|U| + 4)}.
Further, take S’ to be the pairs of enumerated values times 9, i.e., if s; = {z7, 211}, then s, = {63,99}.
Now, since each s € S’ is simply two numbers, say a,b € U’ and WLOG, assume a > b. We create
|S’| gadgets as shown in Figure lc. Either a or b may be placed in their space, but not both, nor any
numbers besides a or b. Since the game only allows a number to be placed once, this is equivalent to
picking one of the numbers as the mapping for the set (gadget). Note that number a may occur in up
to 4 pairs, so the multiplication by 9 lets us use unique numbers for each gadget a isin (a — i << a +1
for 1 < i <4). Let ¢ = [/|U’| |, g; represent the 5 x 3 gadget for s;, and X represent a 3 x 3 gadget
used for spacing that is nonplayable (prefilled with numbers). The gadgets are laid out in a grid with
the first row being g1, X, g2, X, ..., X, g4, then a spacing row of X gadgets. In general, gadget row r
is gg(r—1)41, X, -+, X, gg(r—1)+¢- This grid has size (5¢ + 3(¢ — 1)) x (3¢ + 3(¢ — 1)), which we fill out
to a square with nonplayable prefilled area. Let T = 5¢ + 3(¢ — 1), so we have a T' x T board with
U'={1,...,[T?/2]}. Finally, the problem is in NP since k numbers can be guessed with location. [
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Reachability in Population Protocols is PSPACE-Complete!

Bin Fu?, Tim Gomez?, Elise Grizzel?, Andrew Rodriguez?, Robert Schweller?, Tim Wylie?
Abstract

Recently developed motion planning techniques lend powerful tools to formulate insights across
numerous research fields. This work investigates the application of motion planning gadgets to
reachability problems for the small agent-based Population Protocols model of Distributed Comput-
ing and, in turn, the nearly equivalent research fields of Vector Addition Systems [7], Petri-Nets [5],
and Chemical Reaction Networks [8]. By two reductions derived from the edge encoding of graphs
into the interactions of a Population Protocol, we show that general reachability is PSPACE-complete
and is NP-hard in Feed-Forward versions.

1 Introduction

Population Protocols are a model of distributed computation where there is a discrete count of agents
that interact pairwise and change their states according to a set of rules. This model has been shown to
be able to compute exactly semi-linear sets [1]. Here, we focus on the Reachability problem and show it
is PSPACE-complete. For the case of Feed-Forward Population Protocols, where there is an ordering on
the rules such that agents transition in a directed way [3], we show it is NP-hard.

Definition 1.1 (Population Protocol). A Population Protocol P = (A, R), where A is the set of states
and R : A? — A? is a partial function mapping pairs of states to other pairs, which are called the rules.
For convenience, the rules of R, R(x1,x2) = (y1,y2), are usually denoted as z1 + 2 — y1 + y2. We use
1 + T2 = y1 + yo to denote that a rule is reversible. A configuration ¢ is a multiset over the elements
of A. Each element of ¢ is called an agent.

Definition 1.2 (Reachability). Given a Population Protocol P and two configurations ¢ and ¢, does
there exist a sequence of rule applications (replacing a pair of agents (a, b) within the domain of R with
R(a, b)) to reconfigure ¢ to ¢/?

Proper Chemical Reaction Networks (CRNs) can be seen as a generalization of Population Protocols
where there is no bound on the size of the rules, and only that they must keep the same number of agents.
Previous work on the Reachability problem in CRNs shows it is PSPACE-complete if using rules up to
size 5 (up to 5 agents in a rule) [8]. Our result improves this to rules of only size 2. When considering
only rules of size 1, i.e., agents that cannot interact and just change states, the reachability problem is
equivalent to a directed path and thus is NL-complete.

2 Reachability is PSPACE-complete

We reduce from the reconfiguration 2-Toggle gadgets presented in [2, 4]. A motion planning system
consists of a set of gadgets with labeled ports, a set of wires denoting port connections*, and an initial
signal location. Each gadget (Fig. 1a) has 2 parallel directed tunnels. A gadget’s direction is the direction
of its indicated tunnel arrows. Completing a traversal of a tunnel by a signal toggles the direction
of the gadget and associated tunnels. Given an initial gadget system and target configuration, the
reconfiguration problem asks if there exists a traversal of the gadgets such that the system reconfiguration
meets the target configuration.
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Figure 1: (a-b) Two states of a 2-Toggle gadget. (c) Bidirectional rules which implement a single gadget.
(d) Example initial system and configuration. (e) Target system and configuration.
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Figure 2: Our starting configuration ¢ = {S§,A,B,C,T}. Our goal configuration is ¢ =
{Sv, A, BY,C?,T*}. In order to reach the target, each vertex must be changed to the visited state
and the T must be the last vertex.

We divide our states into two sets. The first set contains the location states, denoting each of the
wires where the signal might be (states {a,b,c,d, f} in the example). Reachable configurations always
contain exactly one agent in a single location state that represent the signal’s location in the system.
The second set contains the gadget states that correspond to each gadget of the system and its current
direction (states {W, W', X, X' Y, Y’ Z Z'} in the example). Each reachable configuration has one agent
for each gadget to represent that gadget’s current direction.

The rule set contains rules to facilitate traversal of the gadget system. Each rule takes in one agent
state and one gadget state if the agent can traverse the gadget in its current state. The location state
changes to the location prescribed by the relevant gadget after the traversal, and the gadget state switches
to its toggled version. We note these rules are reversible, meaning for every rule the opposite rule also
exists. The provided Population Protocol reaches the target agent configuration if and only if the given
toggle system is reconfigurable into the destination system, yielding the following theorem:

Theorem 2.1. The Reachability Problem in Population Protocols is PSPACE-complete.

3 Reachability in Feed-Forward Systems is NP-hard

Feed-Forward Population Protocols permit an ordering on the rules such that a state occurring in the
output of the i*" rule cannot be used in the input for the j** rule for i > j. We show NP-hardness for
such systems by a reduction from the Hamiltonian Path problem with vertices of in and out degree of
at most 2 [6]. For each vertex X in the graph G = (V, E), we include 2 + |V/| states: an initial state X,
a visited state XV, and |V| signal states X;. We encode the edges of the graph in the rules as follows,

RulesR:{ Si+A—= S+ AL, | B/ +C = B"+Cfyy Bf+TﬁB”+Tle}

Af+B— A" +B;,, | C;+A—CV+ A, | CF+T = CY+Tf,

An example reduction is shown in Figure 2. Given this reduction, we see that any Hamiltonian path of
graph G has a corresponding sequence of rules that end with every vertex, other than T, represented with
the visited state, and T represented with the signal state matching the count of the vertices. Conversely,
the only way to reach such a configuration corresponds directly to a Hamiltonian walk of G from S to
T, yielding the following result:

Theorem 3.1. The Reachability Problem in Feed-Forward Population Protocols is NP-hard, even if each
state appears on the left side of at most two rules, and on the right side of at most two rules.
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Reachability in Pikmin Cave Sublevels is PSPACE-Complete

Andrew Rodriguez!

Abstract

Pikmin 2 is a real-time strategy and puzzle video game developed by Nintendo. I prove that Pikmin cave
sublevel reachability is PSPACE-complete. The reduction is constructed from a relatively recent motion-
planning-through-doors framework shown in [Ani et al. 2020].

1 Introduction

Pikmin 2 is a 3D real-time strategy and puzzle video game developed by Nintendo originally released for the
GameCube and later ported to the Wii. You lead plant-like creatures called Pikmin to aid in your quest to pay off
a large debt by collecting treasure while surviving the harsh environment filled with hazards and enemies. There
are various species of Pikmin each with their own strengths and weaknesses. Pikmin 2 introduced underground
caves which are dungeons with various sublevels and a boss. I focus on the decision problem of reachability in
a generalization of these cave sublevels.

Definition 1.1 (PikMIN CAVE SUBLEVEL REACHABILITY). Given a Pikmin cave sublevel, a starting location
and an exit, can the player reach the exit from the starting location?

I show that this problem is PSPACE-complete via a reduction from 1-player motion planning with the
symmetric self-closing door shown in [1]. Section 2 gives more detail about the mechanics of the game and
highlights the important features used in the reduction. Section 3 shows the gadget construction and proves
the problem’s PSPACE-completeness.

2 Pikmin 2 Mechanics

The player takes control of one of the protagonists; Captain Olimar, Louie or The President. While you only
control one at a time, you can switch who you are controlling to take advantage of multi-tasking, but this feature
isn’t used in this paper. I will refer to the player as Captain Olimar for the rest of this paper. Olimar can
walk around the map but has no ability to jump or climb around the environment. His biggest power is being
able to lead Pikmin and direct them to complete certain tasks. Pikmin initially start idle waiting on Olimar’s
commands and will continue to stay where they are. Olimar can blow his whistle to call nearby Pikmin and
have them become part of his party and follow behind him. The whistle has an area of effect which any Pikmin
outside of that area won’t hear and continue to stay idle.

Under the leadership of Captain Olimar, Pikmin can interact with the world and help Olimar and his party
access certain areas not normally accessible. Pikmin can build bridges across bodies of water, destroy hazards,
fight enemies and interact with various other obstacles in Olimar’s way. Olimar can direct Pikmin at certain
tasks by throwing them at the target. Pikmin will begin to interact with their target until the task is complete
and sit idle until called again.

An important obstacle used in the reduction is a seasaw block. Seasaw blocks come in pairs and act like a
scale that can grant Olimar and his party access to higher elevation. Standing on the low block, Olimar can
lift himself and his party by throwing Pikmin on the high block until it is heavier than the low block, swapping
the elevations of the blocks. This results in some Pikmin being left behind. In Pikmin 2 specifically, Olimar
does not affect the weight of the blocks. This makes it possible to raise a lone Olimar up by throwing a single
Pikmin on the high block.

3 Pikmin Cave Sublevel Reachability is PSPACE-Complete

X X X X

A

Figure 1: The two states of the symmetric self-closing door from [1]. Each arrow is a tunnel connecting two
entrance/exit locations. Dotted line indicates that the tunnel is closed. Solid line indicates that the tunnel is
open. The "X’ indicates that the tunnel will close after traversal. The gadget in Figure 2 starts in the left state.

In this section I prove that PIKMIN CAVE SUBLEVEL REACHABILITY is PSPACE-complete. [1] shows that
we need only to construct a symmetric self-closing door gadget and show how to connect these doors to show

Landrew.rodriguez09Q@utrgv.edu,
Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX, USA.
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(b) Isometric view exposing the Pikmin burrow .

Wall Seasaw blocks

High elevation @ Port

Q  Pikmin burrow

(¢) Top-down view.

Figure 2: Various views of the symmetric self-closing door gadget in Pikmin 2.

PSPACE-hardness. The gadget we are going to be constructing in Pikmin 2 can be seen in Figure 1 while the
implementation can be seen in Figure 2. It is constructed of two pairs of seasaw blocks, varying elevation, a
single Pikmin of no specific species and small burrows big enough for only the Pikmin to walk through. The
gadget is split into two tunnels, divided by the center wall, each tunnel named after the ports available on each
side; 1 — 2 on the left side and 3 — 4 on the right. One block from each seasaw pair is designed to be flush
with the center wall.

Theorem 3.1. PIKMIN CAVE SUBLEVEL REACHABILITY is PSPACE-complete.

Proof. Containment is given by nondeterministically making moves until we reach the exit, putting the problem
in NPSPACE. Using Savitch’s theorem, our NPSPACE problem is also in PSPACE. Hardness is shown by
reducing from 1-player motion planning with the symmetric self-closing door shown in Figure 2.

Olimar starts in 1 — 2 by entering from port 1, and drops down off the high elevation. He then calls the
single Pikmin and continues to the seasaw blocks A and B. While standing on A, he throws the Pikmin onto
B, lifting him up giving him access to port 2. The Pikmin is now trapped and Olimar can no longer access the
Pikmin in 1 — 2, switching the state of the gadget. Olimar can repeat the process for 3 — 4. Olimar enters
from port 3 and drops down from the ledge. When Olimar calls the Pikmin with his whistle, it will traverse
through the Pikmin burrow ¢ until he meets with Olimar. Olimar can then use seasaw blocks C' and D to reach
port 4.

Connecting the door gadgets together is simple as Pikmin 2 is 3D. As long as the terrain isn’t too steep,
Olimar can simply walk from door to door. O
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Weights of Convex Quadrilaterals in Weighted Point Sets

Toshinori Sakail

! Department of Mathematical Sciences, Tokai University, Japan
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Extended Abstract

Let P be a set of points in the plane. P is said to be in general position if no
three of its elements are collinear. All point sets considered in this talk are in general
position in the plane. We say P contains a convex k-gon if P contains k elements
that are vertices of a convex k-gon.

Erdds and Szekeres [5] proved that for any integer & > 3, there is an integer N (k)
such that any set of at least N (k) points contains a convex k-gon. In 1984, Erdds [4]
asked the minimum number convy(n) of convex k-gons contained in a point set with
n elements. In particular, for £k = 4, this problem is equivalent to the problem of
determining the rectilinear crossing number of K,, and has been studied extensively
for a long time [7, 8, 3, 6, 1, 2].

P is called a weighted point set if each point is assigned a number called a weight.
We denote by P(n) the collection of weighted point sets P with n elements each of
which receives a different weight in {1,2,...,n}. For a polygon @ with vertices in a
weighted point set P, we denote by w(Q) the sum of the weights of its vertices.

10e
5o @ 0
1o 13
4e
LX) 7
15
.3 11e 14 e

Figure 1: An example of P € P(15) and a convex quadrilateral @ with w(Q) =
5+ T7+9+15 = 36.

Obviously, for any P € P(n), n > 3, and for any integer k between 1+2+4+3 =6
and (n—2)+(n—1)+n = 3n—3, there exists a triangle 7" with w(T") = k. However,
convex quadrilaterals in a weighted point set P € P(n), n > 4, do not necessarily
have all integers between 1424344 = 10 and (n—3)+(n—2)+(n—1)+n = 4n—6 as
their weights. For example, the point set P € P(6) shown in Figure 2 contains three
convex quadrilaterals, but they have the same weight 14. The point set P € P(n)
shown in Figure 3 does not have any convex quadrilateral with odd weight.
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Let f(P) denote the total number of different weights of convex quadrilaterals
contained in P € P(n), and let F(n) = ngrg : f(P). The point set shown in Figure
eP(n

3 implies that
F(n)<2n—-7 forn>4.

In this talk, we show the following theorem:
Theorem 1 F(n) >n—5.

We also show the following result on weights of empty triangles, i.e., triangles
that have vertices in P € P(n) and do not contain points of P in their interiors. Let
g(P) denote the total number of different weights of empty triangles contained in
P, and let G(n) = min g¢(P).

()= min g(P)
n—1
12

Theorem 2 [ -‘ <G(n)<2n->5 forn>3.
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Numerically balanced dice on isohedral polyhedron

Hiro Ito* , Shunsuke Kanaya' , and Risa Tamechika

Abstract
Bosh et al., proposed an idear of numerically balanced dice and presented a icosahedral numerical dice in 2018. In
this study, we try to extend their idea on other isohedral polyhedra. This is a progress report of our research.

1 Introduction

Even though we commonly use dice forming regular hexahedra, there are dice forming other regular polyhedra and
nonregular polyhedra that have high symmetry. It is well known that the sum of the numbers on each pair of the opposite
sides of a hexahedral die is fixed to seven. By extending this constraint Bosh et al. [1] proposed new constraints on
numerical symmetries, balanced vertices and balanced faces, and presented a icosahedron die satisfying all of the three
constraints, including the opposite numbers convention. We are trying to apply these constraints to other polyhedra
[3][4]. This is a progress report of our research. We are dealing with all regular polyhedra, all Catalan’s polyhedra, and
other twelve isohedral polyhedra. First we found that any of these polyhedra never forms a die satisfying all of the three

constraints. Next restricting the conditions two or one, we are trying to find dice satisfying the conditions.

2 Isohedral polyhedron

A polyhedron P is isohedral if, given any two faces F} and Fs of P, there exists a symmetry o € S(P) such that
o(Fy) = F,, that is, 0 maps one of the given faces onto the other [2]. An isohedral polyhedron is also called a face-

transitive polyhedron, or simply an isohedron. Due to its property, it is suitable for designing fair n-sided dice.

3 Numerically balanced dice

Let P = P, ,, be an n-hedron whose faces are all congruent m-gons. Throughout this report, P, is sometimes
expressed as P for notational simplicity. Let Vp and Fp be the set of vertices and faces of P, respectively. We consider a
bijection z : Fp — N,, from Fp to a set N,, = {1,...,n} of integers from 1 to n. An n-sided die is represented by a pair
(Pn.m,x). Bosch et al. proposed an idea of “numerically balanced dice” as an ideal arrangement of numbers for dice [1],
that is, an n-sided die is called a numerically balanced die when all three constraints, defined as follows, are met.

For showing the definitions of the constraints, we introduce some notations: For a vertex v € Vp, the set of faces
meeting at v is denoted by F'(v). For a face f € Fp, o(f) denotes the face on the opposite side if exists and F'(f) denotes
the set of faces adjacent to f. For a set F of faces, the sum of the numbers on the faces in F' is denoted by xp, i.e.,
Tpi=. fer z(f). In addition, x(f) may be expressed as x¢ or sometimes more simply as f unless no misunderstanding

arises.

e Opposite Numbers Convention

For any face f € Fp, the following equation holds.
Tf+Top) =10+ 1.

e Balanced Vertices

For any vertex v € Vp, the following inequality holds.

Fw)|(n+1
S LES N
e Balanced Faces
For any surface f € Fp, the following inequality holds.
m(n +1
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Satisfiability of numericelly balanced constraint on isohedral polyhedron dice

JCDCG2022

4 Current Results

The current results are shown in Tables 1 and 2. The abbreviations O, V, and F stand for the constraints of opposite

numbers, balanced vertices, and balanced faces, repectively. In addition, v' means that there is an arrangement that

satisfies the constraint, a number means the number of arrangements that satisfies the constraint, (v') means that there is

an arrangement that satisfies the constraint in the polyhedron that does not have a pair of opposite faces, and — means

that there is no pair of opposite faces. (0) indicates that the result is trivially derived from the result on the left (V only,

F only, etc.).

Table 1: Current achievements on regular polyhedra

and Catalan solids

=)

o,V

V,F

F,0

~

Regular tetrahedron

Regular hexahedron

Regular octahedron

Regular dodecahedron

SIS S

Triakis tetrahedron

Rhombic dodecahedron

Regular icosahedron [1]

NlolN|olo|lo|lo]| <

N|o|l]o|lo|lo|~m|o]|™

—
N|o|sN|o|lo|o|lo

N|o|lo|lo|lo|lo|o

\N|]o|]o|lo|lo|~n]|oO

Triakis octahedron

Tetrakis hexahedron

Deltoidal icositetrahedron

SNIS|IS NS

Pentagonal icositetrahedron

Rhombic triacontahedron

Hexakis octahedron

Triakis icosahedron

o|lo|o|lo|O| O

Pentakis dodecahedron

Deltoidal hexecontahedron

SISNISINS

Pentagonal hexecontahedron

Hexakis icosahedron

OOOOOOOOOOO\OOOOOOS

5 Summary and future work

Table 2: Current achievements on other isohedral poly-

hedron
0 v F o, v |V,F |FO0 |OV,F
Bipyramid, dipyramid up- | n: Even v/ 2 2 )| o ) (0)
down skewed, dipyramid | n:0dd —
in-out skewed (n = 3)
Same as above (n = 4) Same as 6 0 0 (0) (0) (0)
above
Same as above Same as v 0 (0) (0) (0)
(n =5 or more) above
Trapezohedron, n:Even— | 0 0 0) | (0 | (0) (0)
Trapezohedron with n:0dd v
asymmetric sides
Isosceles tetrahedron - 0 0 (0) | (0) | (0) (0)
Scalene tetrahedron - 0 0 (0) | (0) | (0) (0)
Octahedral pentagonal v 0 0 (0) | (0) | (0) (0)
dodecahedron
Tetragonal pentagonal v/ 0 0 0 | (0 | (0 (0)
dodecahedron
Deltoidal dodecahedron v 0 0 (0) (0) (0) (0)
Hexakis tetrahedron v 0 (0) (0) (0)
Dyakis dodecahedron v 0 0 (0)

We still have several unresolved polyhedra regarding balanced vetices and balanced faces. To fix them is a future work.

For this purpose, we consider it is necessary to generalize and integrate the proofs. Currently, we are trying to express a

part of a geometric development by a graph. It is also an issue to cont the number of arrangements satisfy the constraints

for each combination of a polyhedron and constraints.
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Abstract for JCDCG3
We consider some graph theoretical properties of polytopes, in particular rela-
tionships between the number of vertices and the number of edges.

Any vertex of a d-dimensional polytope must have degree at least d. It is
natural to define the excess degree of a vertex as its degree minus the dimension,
and the excess degree of a polytope as the sum of the excess degrees of its vertices.
The excess degree of a polytope is routinely checked to equal 2f; — dfy, where
fo and f; are the numbers of its vertices and edges.

We show that having low excess degree (less than or not much more than
the dimension) imposes some strong restrictions on the structure of a polytope.
Some sample results include the following.

1. A d-polytope with excess 0 (i.e., a simple polytope) must satisfy fy €
{d+1,2d,3d — 3,3d — 1} or fo > 4d — 8.

2. There are no d-polytopes with excess degree in the range [1,d — 3].

3. A d-polytope with excess d—2 must satisfy fy € {d+2,2d—1,2d+1,3d—2}
or fo > 3d (unless d = 4). Moreover, there is either a single vertex with
excess d — 2, or there are d — 2 vertices with excess 1.

4. If a d-polytope has excess degree d — 1, then all nonsimple vertices have
the same degree, and either d = 3 or d = 5.

5. If a d-polytope has excess d, and d # 3,4 or 6, then there are d nonsimple
vertices each with excess degree 1, and either fo = d+ 2, fo =2d+ 1 or
fo > 3d.

6. For d > 8, there is no d-polytope with excess d + 1.

Assertion 1 is well known. It can be deduced most easily from the g-theorem,
but the Lower Bound Theorem is actually sufficient. Moreover, one can char-
acterise the polytopes with each of these values of fj.

The following observation is the starting point for this work. Suppose two
facets F} and F, of a d-polytope P intersect in a face K which is not a ridge. If
k is the dimension of K, then every vertex in K has at least d — 1 — k neighbors
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in Iy \ K, at least d — 1 — k neighbors in F5 \ K and at least k neighbors in
K. Thus each such vertex has excess degree at least d — k — 2. Since K has at
least k + 1 vertices, the excess degree of P is at least (k+1)(d — k —2), and this
expression is at least d — 2 for k in the range [0,d — 3]. This almost establishes
Assertion 2; the case when every two facets are either disjoint or intersect in a
ridge requires separate treatment.

Building on the idea in the previous paragraph and considering the case of
equality, we see that k£ must be 0 or d — 3. This leads to the second part of
Assertion 3. Again, we can characterise the polytopes with each of these values

of fo.
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Extended Abstract

Let G = (V(G), E(G)) be a nontrivial connected graph with order n > 2. The diameter of
G, denoted by diam(G), is the maximum distance d(u,v) between any two vertices u and v in
G. Tt follows that 1 < diam(G) < n — 1, where n is the order of G.

Consider a coloring ¢ of the vertices of G such that for v € V(G), ¢(v) is either red or white
and there exists at least one vertex v such that c¢(v) is red. For a vertex v € V(G), define the
code of v to be the vector d(v) := (a1, as, --@diam(@)), Where a; is the number of red vertices at
distance ¢ from v; that is, a; = [{u : d(v,u) = i and ¢(u) is red}|. The coloring c is called an
identification coloring or an ID-coloring of G if J(v) # cf(u) for any two distinct vertices
u and v in G. The identification number of G is the least number of red vertices among all
ID-colorings of G, and is denoted by ID(G). A graph with an identification coloring is called an
ID-graph. The concept of ID-coloring of a graph was introduced fairly recently by Chartrand,
Yoko, and Zhang in [1].

Given an ID-graph G, a related question that was explored in [1] is that of finding all values
of r for which an ID-coloring consisting of r red vertices exists. The set of all positive values of
r for which such is the case is called the identification spectrum of G. Identification spectra
for paths and cycles have been determined in [1].

There have only been a few studies so far on ID-coloring of graphs since its introduction.
In [3], ID-caterpillars were characterized, and in [4], ID-numbers of grids and prisms were
determined. In this paper, we extend some of the results in [4] by investigating the identification
spectra of ladders P, [ P,, and, more generally, of grids P, (1 P,.

We begin by presenting an alternative formulation of ID-colorings. Given a red-white color-
ing c of a graph G, for each vertex v, we denote by M (v) the multiset {d(v, u) : u is a red vertex}.
Note that when v is colored red, we have 0 € M (v). Then it is evident that c is an ID-coloring
if and only if M (v) # M (w) for any pair of distinct vertices v, w.

Our first results pertain to ID-colorings of paths and grids. We say that a coloring of the
path P, (say, 1 - 2 — --- — n) is symmetric if ¢(i) = ¢(n + 1 —9) for each i € {1,2,..n}.
Then we have the following lemma, which provides sufficient conditions for a red-white coloring
of a path to be an ID-coloring.

Lemma 1. Letn > 4 and let ¢ be a red-white coloring of the path P, under which the endvertices
of P, are colored red. If c is not symmetric, then ¢ is an ID coloring.

We then consider two types of red-white colorings of P,,. Let ¢ be a red-white coloring of
P,, under which exactly r vertices are red, where 3 < r <n — 1. We say that c is of Type 1 if
the r red vertices are 1,2, ..., — 1, and n. On the other hand, we say that c is of Type 2 if the
r red vertices are 1,...,7 — 2, n — 2, and n. By Lemma 1, it is evident that Type 1 and Type 2
colorings of P, are ID-colorings. In fact, we also establish the following stronger result.

Lemma 2. Let ¢ be a Type 1 or Type 2 coloring of P,. Then for any two distinct vertices i
and j of P,, we have
M(i) # M(j) + k

for any integer k.
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Lemma 2 allows us to prove the following theorem, which implies that {3,4,...,n — 1} is a
subset of the identification spectrum of any grid P,, O P,, where m and n are integers with
m > 1 and n > 4.

Theorem 3. Let m > 1 and n > 4 be integers. For each r € {3,4,....,n— 1}, the grid P,, O P,
has an ID-coloring in which exactly r vertices are colored red.

We then proceed to consider the problem of completely determining the identification spectra
of ladders P, O P,. Given Theorem 3, it is left to determine if, for each r € {n,n+1,...,2n—1},
the ladder P, [J P, has an ID-coloring in which r vertices are colored red. The following result,
which applies to grids in general, implies that 2n — 1 is not in the ID spectrum of the ladder
P, O P, if n is even.

Lemma 4. Let m, n be positive integers. If m and n have the same parity, then P, O P, does
not have an ID-coloring in which mn — 1 vertices are colored red.

By finding ID-colorings with the appropriate number of red vertices, and applying Lemma
4, we determine the spectra of the ladders.

Theorem 5. Let n > 5 be odd. Then P, O P, has identification spectrum {3,4,5,...,2n — 1}.

Theorem 6. Letn > 6 be even. Then Py O P, has identification spectrum {3,4,5,...,2n — 2}.
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Abstract

All the graphs considered in the paper are finite, simple and undirected. Let
G = (V(G), E(G)) be a graph and let A be an non-trivial additive abelian group
with identity 0. A mapping [ : V(G) — A\ {0} is said to be a A-vertex magic
labeling of G if there exist a p in A such that w(v) = ZueN(v) l(u) = p for
any vertex v of G. If G admits such a labeling, then it is called an A-vertex
magic graph. If G is A-vertex magic for any non-trivial abelian group A, then
G is called a group vertex magic graph. The concept of group vertex magic
graphs was motivated by the V4 magic labeling for edges, which was introduced
by S. M. Lee[2]. Here V, denotes the famous Klein’s four group. R. M. Low
and S. M. Lee[3] extended the study of Vj-magic labeling for the product graphs
by considering an arbitrary abelian group instead of V. By getting motivated
by this concept, analogously the concept of group vertex magic graphs was
introduced and studied in [1]. In this paper we consider A-vertex magic and
group vertex magic labeling of join of two graphs. The following theorems, were
proved in [1].

Theorem 1. Let A be any abelian group with |A| > 2. Then the complete
bipatite graph kp,, where m,n is A-vertex magic.

Theorem 2. Let G = Ky, my,...m, be complete k-partite graph. Let A be an
abelian group having at least one element a such that o(a) > lem{my, ma, ..., my}.
Then G is A-vertexr magic.

Theorem 3. Let T be a tree of order n and diameter 2.

1. The tree T is Vy-vertex magic.

2. If n is even, then T is group vertex magic.

In this paper we generalise the above theorems and we prove some results
on A-vertex magic, group vertex magic labeling of join operation of graphs. We
prove the following results,

Using the Cauchy’s theorem, Sylow’s first theorem and Fundamental theorem
of finite abelian groups, we prove the following results.
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Theorem 4. A graph G is Zy-vertex magic for all primes p if and only if G is
A-vertex magic for all finite abelian groups A.

Theorem 5. Let G = Ky ...,
A-vertex magic, where |A| > 2.

n, be a complete k-partite graph. Then G 1is

Corollary 1. Let G = Ky, n,,...n, be a complete k-partite graph with each
partite size is of same parity. Then G is group vertex magic.

Theorem 6. Let G be an arbitrary r-reqular graph with n vertices. Then the
graph G + K,¢ is A-vertex magic, where |A| > 2,m > 1.

Theorem 7. The graph G = C), + K,,, is A-vertex magic, where |A| > 2 if and

only if
(i) n=3 or
(ii)) n=4 or

(iii) n = 4my + 2, where my = 2F, k > 0.

Theorem 8. Let G be a graph. If P, + G is A-vertex magic, where |A| > 2
then n < 3

Theorem 9. The graph G = P, + C,, is A-vertex magic, where |A| > 2 if and
only if n < 3 and

(i) m =3 or

(ii) m =4 or
(iii) m = 4my + 2, where my = 28,k > 0.
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Abstract. A reconfiguration problem is a problem which asks the reach-
ability from a solution to another solution in a solution graph defined
by feasible solutions and a certain adjacency relation among them. In
this paper, we consider a reconfiguration problem of directed graph ho-
momorphisms. As a main result, for a directed acyclic graph G and a
reflexive transitive directed complete graph H, we give a sufficient con-
dition for the existence of a symmetric path between homomorphisms
from G to H in the solution graph.

1 Introduction and Preliminaries

Reconfiguration is a framework which analyzes the connectivity and reachability
of solution graphs for combinatorial problems. We focus on a reconfiguration
of directed graph homomorphisms. For directed graphs G and H, the solution
graph has homomorphisms from G to H as vertex set, and (f,g) is an arc if
(f(u),g(v)) € E(H) for any (u,v) € E(G). The reconfiguration problem of
graph homomorphisms is defined as a problem which asks the reachability of
two homomorphisms in the solution graph. Wrochna [5] has shown that for an
undirected graph G and a square-free undirected graph H, the reconfiguration
problem is solvable in polynomial time. Brewster [1][2] also has shown that for
a directed graph G and a reflexive directed cycle H, (i) if G is reflexive or (ii) if
H does not contain 4-cycle of algebraic girth 0, the reconfiguration problem is
solvable in polynomial time. Furthermore, Dochtermann [3][4] has proved that
for any directed graph G and a transitive tournament H, the solution graph is
connected.

Let G = (V(G), E(G)), H=(V(H), E(H)) be directed graphs. A homomor-
phism from G to H is a mapping f : V(G) — V(H) such that (f(u), f(v)) €
E(H) if (u,v) € E(G). Let Hom(G, H) be the set of all homomorphisms from
G to H, and (H%)° be the solution graph which has Hom(G, H) as vertex set
and (f,g) is an arc if (f(u),g(v)) € E(H) for any (u,v) € E(QG).
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2 KoTAarO TsuTsuMmi , YOSHIO SANO, and TAKAHITO KUNO

Let us define the reconfiguration problem of directed graph homomorphisms
REecoN(G, H) as follows.

RecoN(G, H)
Instance : f,g € Hom(G, H)
Question : Is there a "symmetric” path from f to g in (H%)° ?

In this paper, we consider REcoN(G, H) for a directed acyclic graph G and
a reflexive transitive directed complete graph H. As a main result, we give a
sufficient condition for homomorphisms to be yes-instances of REcon(G, H), and
a polynomial time algorithm to find the symmetric path in the solution graph.

2 Main Result

Let G be a directed acyclic graph and H be a reflexive transitive directed com-
plete graph. A topological ordering of G is an ordering X = {xi}?jllv(G)‘ of the
vertices of G such that i < j if (x;,2;) € E(G). For f € Hom(G, H), a topological
ordering X = (x1,...,zy) of G is said to be compatible with f if (f(z;), f(z;)) €
E(H) whenever i < j. For a topological ordering X = (z1,...,z,) of G compat-
ible with f, we denote (f(x1), f(x2),..., f(x,)) by f(X). By the definition, we
can define an equivalence relation ~ between f and g on Hom(G, H) such that
f(X) =g(Y), where X is a topological ordering of G' compatible with f and YV’
is a topological ordering of G' compatible with g.

Remark 1. By using a method to find a topological ordering and priority queue,
for f € Hom(G, H), we can find a topological ordering of G compatible with f
in O(|E(G)|log [V(G))).

Theorem 1. Let G be a directed acyclic graph and H be a reflexive transitive
directed complete graph. If f,g € Hom(G,H) are f ~ g, then there exists a
symmetric path from f to g in (H%)°. Furthermore, there exists a polynomial
time algorithm that finds such a path in O(|V(G)|?).
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Ollivier Ricci curvature of Cayley graphs for dihedral,
generalized quaternion, and cyclic groups

Iwao Mizukai*and Akifumi Sako!

We calculate Ricci curvature of Cayley graphs for dihedral groups, general quaternion
groups, and cyclic groups. Ricci curvature of graphs are introduced by Ollivier[4]. In [3]
[4], some important properties are proposed. The Ricci curvature of an edge of a graph
is denoted by k in this article.

First, we calculate Ricci curvature of Cayley graphs for the dihedral group of the
minimum generator set S = {7,771, 0,07'}. S makes two types the edges in Cayley
graphs. One type of the edge set is A = {(g,90) | g € D, }, and the other is the edge set
B ={(g,97) | g € D, }. We call the edge in set A and B type A and type B, respectively.

Theorem 1 LetT'(D,, S) be a Cayley graph of dihedral group D,, with S = {r,77 1, 0,07},
Ricci curvature of the edges in Cayley graph T'(D,,, S) with n > 6 is given as follows.
Ricci curvature of type A is k = 0.

Ricci curvature of type B is k = %

Second, we calculate the Cayley graph for the generalized quaternion group with the
generating set S = {a,b,a™t,b7'}. We distinguish between the two sets of edges. One is
the edge set A = {(g,9a) | g € Qan}, and the other is edge set B = {(g,9b) | g € Qam}-
We call the edge in set A and B type A and type B, respectively.

Ricci curvature of Cayley graph for generalized quaternion group ()2, with minimum
generating set S = {a,b,a™t, 071} is obtained as follows.

Theorem 2 For the Cayley graph I'(Qopm, S) with m > 4,
Ricci curvature of type A is k =0, and

Ricci curvature of type B is k = %

For D, and @)s,,, the Ricci curvature are obtained for all remaining Cayley graphs for
which the generators are the same ones.

*Tokyo University of Science, Graduate school of Science, mathematical and science education, E-
mail: get_mizukai@hotmail.com
tTokyo University of Science, E-mail: sako@rs.tus.ac.jp
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Finally, we calculate the Cayley graph for the cyclic group. It is known that Ricci
curvature of infinite or finite paths are known to be zero.[1][2][5][6]

We consider the Cayley graph for the cyclic group Z/nZ with a generating set S; j, =
{+1,+k,—1,—k}, where k is a positive integer not equal to 1. We distinguish between
the two sets of edges. One is the edges A = {(g9,9 + 1) | g € Z/nZ} , the other is edges
B={(g.g+k) | g € Z/n}.

Theorem 3 Let n and k be positive integers satisfying n > k. Consider the Cayley graph
for the cyclic group I'(Z/nZ, S 1)-

If k> 5 and n > 2k + 4, then Ricci curvature of the type A is k = 0.

If n and k satisfy the following conditions 1, 2, 3, or 4. then the Ricci curvature of type
Bisk=0:

1. k>5and 3k +3 <n <4k —2,
2. k>3 and 4k +2 <n < bk —1,
3. k>3 andn > 5k +1,

4. k>6 and 2k +3 <n <3k-—3.
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Arithmetic Mean and Geometric Mean
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Abstract

Although the arithmetic mean and geometric mean are well-known, very few things are known
except the well-known inequality. Comparison between these means is quite difficult even when we
use simple numbers such as 1, 2,3, and the authors present some methods to compare them.

1 Arithmetic Mean and Geometric Mean

Most people know the following inequality of the arithmetic mean and geometric mean, and nothing

more than that.
a1 +ag+---ap

n

Vaias - an < (1.1)

These simple means have many kinds of applications. See [2]. But, for some people, comparing the
arithmetic mean and geometric mean is an important topic. They have to choose one of them in a
certain situation. See [1].

The authors are interested in the situation when we have the following (1.2) or (1.3) for two sequences
of real numbers {a; : i =1,2,--- ,n} and {b;: 1 =1,2,--- ,n}.

iai > ibl and ﬁai < ﬁbz (12)
i=1 1=1 1=1 i=1

n n n n
Zai < sz and Hai > HbZ (13)
=1 =1 =1 =1
This article aims to answer the following question.

Question. What is the probability of getting (1.2) or (1.3)7
Clearly, the answer to this question depends on the range of the variables a; and b;.

1.1 The case when we use only 1,2,3.

Theorem 1.1. We suppose that a; = 1,2,3 and b; = 1,2,3 fori=1,2,--- ,n. Then, (1.3) is satisfied
if and only if

x log 2
n n—rn—p— [Foas ]

n! n!
ZZ Z (p!(Q‘HU)!(”—iL’—p—Q)!)( Z (p-l-x—y)!q!(n—x—p—q—l—y)!)' (1.4)

y=[34]

Theorem 1.2. The probability of getting (1.2) or (1.3) is less than %
Example 1.3. By using (1.4), we calculate the probability of getting (1.2) or (1.3). The graph of the

probability is Figure 1. It seems that the probability increases and getting nearer and nearer to the limit,
but the authors have not managed to prove this fact, and they do not have any prospect of proof at all.

90



R. Miyadera et al. Arithmetic Mean and Geometric Mean

0

Figure 1: 1,2,3 Figure 2: 1,2,3,4

Figure 3: scatter plot

1.2 The case when we use only 1,2,3.4.

When we use 1,2,3,4 for values of a; and b; for i = 1,2,--- ,n, the problem of finding patters that
satisfy (1.3) becomes very difficult. The authors proved Lemma 1.4, but this is not enough to make
a mathematical formula as presented in Theorem 1.1. At least this lemma make computer calculation
easier. For the graph using this lemma, see Figure 2.

Lemma 1.4. (a) Suppose that a; = 3 and b;=1,2,4 fori=1,2,--- ,n. Then we have the following: (i)
We never have (1.2).

(ii) We have (1.3) for some a;,b;.

(b) Suppose that a; = 3 for i = 1,2,--- ,n. Then we have (1.3) for some b; = 1,4 or some b; = 2,4
i=1,2,--- 0.

(¢) Suppose that a; =2 fori=1,2,--- ,n. Then we have (1.3) for some b; =1,3,4 or some b; =1,3 or
some b; = 1,4.

(e) Suppose that a; = 2,3. Then we have (1.3) for some b; = 1,4 or some b; =1, 3.

(f) Suppose that a; = 2,4. Then We have (1.3) for some b; = 1,3.

1.3 The case when n is infinitely large.

The situation is different when n — co. Then we have the following theorem by prof. Tetsuro Kamae of
Osaka Central Advanced Mathematical Institute.

Theorem 1.5. Let X1, X5, -+, X,, be independent and identically distributed random variables such that
there exists a positive number L such that 0 < X; < L. Let S = Z?Zl X, and T = H?:l X;. Let S’ be
a random variable that is independent of S and has the same distribution of S, and let T’ be a random
variable that is independent of T and has the same distribution of T. Then P({S > S} n{T <T'}) —
% - %arcsinr, where r is correlation coefficient of X; and logX;.
1.4 The case when we use real numbers.

Suppose that n = 2 and a;, b; are real numbers.

10 bz b2
0 0 Jby

10 by

(—x+b1b2—%)d$dbldb2+fom by Jbo

Theorem 1.6. The probability of getting (1.3) is
byby — 202 dwdby dbs.

(—x+

1.5 The case when we use real numbers.

Let a;,b; = 1,2,3,4,5 and n = 10. We consider the scatter plot of 5000 randomly generated samples,
where the horizontal axis is for large and small relationship based on the arithmetic mean and the vertical
axis is for geometric mean. See Figure 3.
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Finding triplets in “Dobble”
Junyi Guo, Hsiang-Chun Hsu

“Dobble” is a very popular card game since it released in 2009. It consists of 55
cards, with 8 different symbols on each card. Any two cards have exactly one symbol in
common. The object of dobble is to spot the identical symbol between two cards, name it
out loud and then take the card, place it or discard it, depending on the rules of the games
you are currently playing.

Fig. 1: What symbol is on both cards?
Suppose there are b different symbols in dobble. According to the condition “Any
two cards have exactly one symbol in common”, it’s easy to show that 57 < b < 386. In
general, suppose there are n cards and g + 1 symbols on each card. We get n(q + 1) <

b [bq;ll and b < nq + 1. Indeed, dobble has 57 different symbols that reaches the lower

bound.
It is well-known that if q is a prime power

andn = b = q* + q + 1, then the structure of E@%@ - ‘\% @ & ﬂi JQ@

the symbols arranged on dobble cards is 2 ‘- @ & ;r%
isomorphic to the finite projective plane :J/Q&J@ e -

PG(2,q). Dobble is marketed with 55 cards

which is PG (2,7) removing 2 lines. i 08, .y S &
In the newest official rulebook of dobble, g f@ iﬁ é

there are 5 mini-games: The Tower, The Well, < ";g. . ‘ b %x

Hot Potato, The Poisoned Gift, and Triplet. ; |,

Let’s focus on “Triplet.” The object of

“Triplet” is to find any 3 cards which have the & Q -

same symbol from the 9 face-up cards on the T ¥ o p “ K

table (as shown in Fig. 2). Does the solution ‘ Txa i @ & ‘ 2

always exist for any 9 cards? The answer is %,_o - L } & & g

positive. How about any 8 cards? And we
proved more general results. Fig 2: Finding 3 cards which have a common symbol.

Let e(n) be the smallest even integer larger than n. For instance, e(2) = 4 and e(7) = 8.
We have

Theorem 1. There exist e(q) lines in PG (2, q), no three of which are concurrent.
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This theorem extends the dual axiom of the finite projective plane of order g, “There are
four points such that no line is incident with more than two of them.”

On the other hand, we also prove that the bound e(q) is tight.

Lemma 2. In PG(2, q), for any line L, there exist 2 lines L, and L, from any other
q + 2 lines such that L, L, and L, are concurrent.

This lemma can be concluded by the pigeonhole principle immediately. Additionally, we
use Wilson Theorem to prove

Theorem 3. For any e(q) + 1 lines in PG (2, q), there must exists three of which are
concurrent.

Then we conclude the mini-game “Triplet” of dobble always has a solution. And we
designed a new 6th mini-game called “Finding Triplets” according to Lemma 2. In the
beginning, deal one card to each player and place 9 cards face-up on the table. All players
try to spot the one symbol that appears both on their own card and on 2 cards within 9
cards on the table. If you are the first player to do so, call the symbol out, take these 2
cards, place them on top of your pile, and reload with 2 new cards to the table. When
fewer than 9 cards left in the game, the game ends, and the player with the most cards
wins.

¥ A Find 2 cards that share

»@ e & common symbol with

your own card.

Fig.3: The new game of dobble, “Finding Triplets.”
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Some extensions of Delete Nim

Tomoaki Abuku* Ko Sakaif

1 Introduction

Combinatorial games are 2-player games with neither
chance elements nor hidden information (for the details
on the combinatorial game theory, see, e.g., [2] and [3]).

Delete Nim is a combinatorial game. There are two
heaps of tokens. Each of the 2 players on his/her turn
selects one heap, deletes it, and then splits the remain-
ing heap into two heaps. The player’s turn then ends,
and the other player’s turn begins. If the player cannot
split a heap, then he/she loses. The winning strategy
and the closed formula for the Sprague-Grundy value
for this game have been fully analyzed by Abuku and
Suetsugu [1].

In this study, we propose several rules for the case
where the number of heaps is three or more, and we
give the winning strategy. Note that in each valuation
of Delete Nim in this paper, every heap is always as-
sumed to contain at least one stone after division. The
number of heaps after a move is always constant.

2 Main Results

Given a combinatorial game G, a game position
is called an N-position (resp., P-position) if the
next (resp., previous) player has a winning strategy.
Clearly, each game position is either an A -position or
a P-position.

Definition 2.1 (Single-delete Nim). There are n
heaps of tokens. The player performs the following
two operations in succession on his/her turn.

e Selects one heap and deletes it.

e Selects one heap of the remaining n — 1 heaps and
splits it into two heaps.

Denote by v,(n) the p-adic valuation of n.

Theorem 2.2. If n = 3 in the Single-delete Nim, the
position (x,y, z) is a P-position if and only if vy (z) =
v2(y) = v2(2).
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Theorem 2.3. Denote by Ij(z) the k-th digit from the
bottom of the binary representation of non-negative
integer z. For n = 4 in the Single-delete Nim position
(w,z,y,2), let a = va(w), b = va(x), ¢ = va(y), d =
va(2). Ifa < b <ec<d (wmzvy,z2) is a P-position
if and only if a, b, ¢, and d satisfy one of the following
conditions (1), (2), (3), (4), or (5).

(1) a=b=c=d.
(2) a <b=c=d and
(2A) Iz (w)=0.

(3) @ < b < ¢ =d and the following conditions (3A)-
(3C) are satisfied.

(3A) lat1(w) = Iaga(z) = 0.

(3B) Ii(w )+I( )>1forb+2<k<d.
(3C) Ipa(w) =
(4) a < b < ¢ < d and the following conditions (4A)-
4E) are satisfied.
(4A) Tapr(w) = Taa(x) = Laa(y) = 0.
(4B) Ij(w) + Ij(x) + Ij(y) > 2 for c+2 < j < d.
(4C) Ier(w) = Ieya(z) = 1.
(4D) Ik( )+Ik( )> lforb+2<k<c
(4E) Ipa(w) =1

(5)

a < b < ¢ < d and the following conditions (5A)-
(5F) are satisfied.

(bA) Ii(w) + Li(x) + Li(y) + Ii(2) € {0,3,4} for
i >d+2.

(5B) lat1(w) = L1 (2) = Laa(y) = 1.

(6C) Lj(w) + Ij(x) + Li(y) > 2 for c+2 < j <d.

(5D) Leqr(w) = Ieqa(x) = 1.

(5E) In(w)+ Ix(z) >1forb+2<k<ec

(5F) Ip1(w) = 1.



Definition 2.4 (All-but-one-delete Nim). There are
n heaps of tokens. The player performs the following
two operations in succession on his/her turn.

e Selects n — 1 heaps and deletes them.
e Splits the remaining 1 heap into n heaps.

Theorem 2.5. All-but-one-delete Nim position
(21,22,-..,2n) is a P-position if and only if for every
i, the remainder of z; divided by n(n — 1) is between
1and n—1.

Definition 2.6 (Less-than-half-delete Nim). There
are n heaps of tokens. The player performs the fol-
lowing two operations in succession on his/her turn.

e Chooses a positive integer k such that £ < 3,
selects k heaps, and deletes them.

e Selects k heaps of the remaining n — k heaps and
splits each heap into two heaps.

In particular, if n = 2, this game is the same as
Delete Nim, and if n = 3, this game is the same as
Single-delete Nim with n = 3.

Theorem 2.7. Less-than-half-delete Nim position

(a1,a9,...,a,) is a P-position if and only if
ai,as, ..., a, satisfy one of the following conditions:

e if nis odd, va(ar) = va(az) =+ = va(ay),

e if n is even, vo(ar) = vo(ag) = -+ = va(ay,) = 0.

Definition 2.8 (Half-delete Nim). There are 2n heaps
of tokens. The player performs the following two op-
erations in succession on his/her turn.

e Selects n heaps and deletes them.

e Splits each of the remaining n heaps into two
heaps.

In particular, if n = 2, this game is the same as
Delete Nim.

Hereafter, a heap with an even number of tokens is
called an even heap and a heap with an odd number of
tokens is called an odd heap.

Theorem 2.9. Let (a1, as, ..., as,) be the Half-delete
Nim position, where each a; is the number of tokens
and a; < a;y1. (a1,a9,...,as,) is a P-position if and
only if ay,as, ..., as, satisfy both of the following two
conditions:

(1) all a1,aq9,...,an+1 are odd,

(2) let 2™ be the smallest power of 2 greater than
ap+1. Forl (I > n+1),if a; is even, then a; > 2™.

This theorem is a special case of Theorem 2.13.
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Definition 2.10 (%!n-delete Nim). There are kn
heaps of tokens. The player performs the following

two operations in succession on his/her turn.

o Selects (k — 1)n heaps and deletes them.

e Splits each of the remaining n heaps into k heaps.

In particular, if £ = 2, this game is the same as
Half-delete Nim, and if n = 1, this game is the same
as All-but-one-delete Nim.

Definition 2.11. A positive integer whose remainder
divided by k(k—1) lies between 1 and k—1 is called an
oddoid number, and any other positive integer is called
an evenoid number. A heap with an oddoid number
of tokens is called an oddoid heap, and a heap with an
evenoid number of tokens is called an evenoid heap.

In particular, if £ = 2, oddoid and evenoid numbers
are consistent with the usual notion of odd and even
numbers.

Lemma 2.12.

(1) It is not possible to divide an oddoid number into
k oddoid numbers.

(2) All integers = between k and k(k — 1) can be di-
vided into k integers that are between 1 and k— 1.

(3) All evenoid numbers y less than k™ can be divided
into & oddoid numbers that are less than k™1,

Using this lemma, by replacing the odd and even
heaps of Theorem 2.9 with oddoid and evenoid heaps,
respectively, we can give the following winning strategy
for (k — 1/k)n-delete Nim.

Theorem 2.13. Let (a1,as9,...,ar,) be the (k —
1/k)n-delete Nim position, where each a; is the num-
ber of tokens and a; < a;+1. (a1,a9,...,ak,) is a P-
position if and only if ay, aso, . . ., ag, satisfy both of the
following two conditions:

1) all aq,a9,...,a(—1)n+1 are oddoid,
(k—=1)n+

(2) let k™ be the smallest power of k greater than
a(g—1ynt1- For (I > (k—1)n+1), if a; is evenoid,
then a; > k™.
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Continuous flattening of polyhedra with rigid edges
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We use the terminology polyhedron for a polyhedral surface in three-dimensional Euclidean space R?
that is permitted to touch itself but without self-crossing. The flat-folding of a polyhedron refers to its
folding by creases, without self-crossing, into a multi-layered flat folded state with a finite number of
creases. The continuous flattening of a polyhedron is flat-folding through a continuous motion (see [2]).
That is, the solution of the continuous flattening of a polyhedron P requires not only the existence of a
flat folded state of P but also the existence of a continuous motion from P to the flat folded state. There
are many types of continuous flattening of polyhedra described in the literature.

The authors recently proposed the problem of the maximum number of rigid edges (or faces) in flattening
motions for a given polyhedron (see [4]). Now, we show two examples of flattening methods of a cube in
the literature (Fig.1). Figs. 1(b) and (c) (respectively, (e) and (f)) are continuous flattening motions with
8 (respectively, 11) rigid edges. Figs.1(d), (g), and (h) are flat folded states with 8, 11, and 12 rigid edges,
respectively. This talk focuses on a continuous flattening motion for a given polyhedron, keeping every edge
rigid during the motion, e.g., keeping 12 edges rigid for a cube. We call such flattening edge-rigid-flattening,
denoted by ER-flattening. Moreover, we also call a folded state of P such that every edge is not folded
edge-rigid-state, denoted by ER-state.

(a) (e) (0

N\

Figure 1: (a) A cube, (b), (c¢) a flattening motion with eight rigid edges, (d) a flat folded state with eight
rigid edges, (e), (f) a flattening motion with 11 rigid edges, (g) a flat folded state with 11 rigid edges, and
(h) a flat folded state with 12 rigid edges (ER-state).

To the best of the authors’ knowledge, for any convex polyhedron (e.g., a cube in Fig. 1), no continuous
ER-flattening motion has been described in the literature, even if a flat folded ER-state exists. However,
the non-existence of the motion has not also been proven. On the other hand, it is shown in [4] that some
non-convex polyhedra have continuous ER-flattening motions, as shown in Fig. 2. In this talk, we discuss
the continuous ER-flattening of several types of polyhedra.

The Bellows theorem in [1] shows that the volume of any polyhedron with every face rigid is invariant
even if the polyhedron is flexible. Hence, the following result can be obtained.

Lemma 1. Let P be a polyhedron with every face triangular. Then there is no continuous ER-flattening
motion of P.
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Figure 2: (a) A non-convex quadrangular prism, (b) an ER-flattening motion, and (c) a flat folded ER-
state.

Lemma 1 can be applied to three of the regular polyhedra. We can obtain the following table of the
continuous ER-flattening of Py, where Py is a regular polyhedron with £ faces.

Py Ps P Py Py
ER-flattening motion | not exist | unknown | not exist | unknown | not exist
flat folded ER-state | not exist exist, exist, unknown | not exist

Moreover, we can prove the non-existence of the continuous ER-flattening motion for any regular
pyramid. On the other hand, we can give the continuous ER-flattening motions for some prisms.

Theorem 2. There is no continuous ER-flattening motion for any regular n-gonal pyramid with n > 3.

Theorem 3. There exists a continuous ER-flattening motion for any prism whose base is a non-convex
polygon A1Asz--- Ag, with edges of equal length, where the interior angles £Asi—1A2;A211 = « and
LA Agii1Asiio =06 (1=1,2,...,n) for some a <7 and 8 > .

It does not seem easy to show the existence (or non-existence) of the continuous ER-flattening motion of
a given polyhedron P in general. However, the assumption of rigidity of one face during the ER-flattening
motion yields the following non-existence result.

Theorem 4. Let P and Q be any regular n-gonal prism and anti-prism with n > 3, respectively. Then,
for each of P and Q, there is no continuous ER-flattening motion such that the base is rigid during the
motion.

Remark. Any regular n-gonal pyramid with even n has a flat folded ER-state, but any regular n-gonal
pyramid with odd n does not have a flat folded ER-state. Moreover, a regular n-gonal prism with n > 3
has a flat folded ER-state with a rigid base if the height of the prism is suitable.

We conjecture that there is no continuous ER-flattening motion for regular prisms and anti-prisms
even without the rigidity of the base in Theorem 4. However, the problem is still open, even in the case
of a cube. More generally, we also conjecture that there is no continuous ER-flattening motion for any
polyhedron with every face convex.
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1 Introduction

Can we flatten the surface of a polyhedron of flexible material such as paper
without cutting or stretching? (See [2]). This problem was solved for all convex
polyhedra in [1, 4] using moving creases to change the shapes of some faces. In
particular, the result in [1] includes 3-dimensional convex polyhedra and some
arrangements of hyperplanes in an n-dimensional space, e.g., the surface of an
n-dimensional hypercube. However, in [1], if we consider the portions of the
surface used for moving the creases of a given convex polyhedron they almost
cover the entire surface (except at most two facets). Here, we continuously fold
the surface of a four dimensional hypercube using the kite property introduced
in [3, 5] such that the volume of the portions used to move creases is less than
half of the portions used in [1].

Definition 1. Let P be a four dimensional reqular polytope and Q = OP the
surface consisting of the facets. We say Q is continuously folded in a hyperplane
if there is a set of polyhedral manifolds {Q; : 0 < t < 1}, each of which is
intrinsically isometric to QQ and possibly overlap each other without self-crossing
in some parts, such that Qo = Q, Q1 is in a hyperplane, and the mapping from
t to P; 1s continuous.

With the moving creases shown by red line segments, Fig. 1 shows two ex-
amples of flattening OP of a cube P continuously by: (a) the kite property in [3]
and (b) the straight skeleton in [1]. We have six square faces in P: the top (T),
bottom (BO), right (R), left (L), front (F), and back (BA). In Fig. 1 (a), faces T
and BO are rigid (without creases), and the other four faces are folded in half if
we ignore self-crossings. To avoid self-crossings, faces R and L are folded in half,
but faces F and BA are folded with moving creases, which subjects a motion
of R and L, respectively. Here, we extend this result to any higher-dimensional
hypercubes.

2 Theorem

Let P be the four dimensional hypercube with 16 vertices (+1,41,+1,+1) in
4-space with z,y,z, and w axes. C;} and C, denote the cube (facet) in the
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R 0 B

(a) (b)

Fig. 1. Continuous flattening of the surface of a cube in two methods with moving
creases, which are showed in red for the right and front faces, by: (a) the kite property;
(b) the straight skeleton.

hyperspace {u = 1} and {u = —1}, respectively where u = x,y, z, or w. We fold
the surface OP of facets such that C;} and C, are rigid, C; and C, are folded
in half, Cf, C.7, CF, and C are folded with moving creases.

Theorem 1. The surface of a four dimensional hypercube can be continuously
folded onto any of its facet such that the total volume used for the moving creases
is less than half of the surface volume.

We believe that we can continuouly fold dP of any n-dimensional hypercube
P onto any of its facets such that at least four facets have no moving creases.
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Unfoldings of 4D-Hypercube Unfoldings that tile R 2

Trun V. Ramteke!

Abstract

We prove that every face-unfolding of the 4D
hypercube has an edge-unfolding that tiles the
plane. Hence the hypercube is a “complete
dimension-descending tiler”. We also illustrate the

algorithm used to manifest this result.
1 Introduction

It is a well-known fact that the cube has 11 distinct
(incongruent) edge-unfoldings each of which tiles
R2. So the cube has the delightful property that it
itself tiles R3, and all of its unfoldings tile R?2.
The cube is therefore a “complete dimension-
descending tiler” (see section 2).

We consider this property in a higher dimensional
cube: the 4D cube (which we also refer to as the
hypercube). The 4D cube tiles R4 and admits 261
distinct face-unfoldings to order-8 polycubes [1]. A
natural question would then be, do all of these
unfoldings tile 3D space.

In 2015, G. Diaz and J. O’ Rourke [2] explored this
very question; and 4 (of the 261) face-unfoldings of
the hypercube were shown to tile R3. Later in
2021, whuts.org [3], M. Firsching [4], and G.
Papoutsis [5] independently showed that in fact all
261 unfoldings tile R3.

Interestingly, G. Diaz and ]J. O’ Rourke [2] also
proved that one of the face-unfoldings had an
edge-unfolding that then tiled R?2. Likewise, S.
Langerman and A. Winslow [6] proved that
another face-unfolding, the dali-cross, also admits

an edge-unfolding that tiles R?2.

! Private International English School, Abu Dhabi
trunvishal.ramteke@gmail.com

As far as we are aware, only 2 face-unfoldings of
the
edge-unfolding that tiles the plane. Therefore, we

hypercube were known to have an

consider the following question posed by S.
Langerman [7]:

Question 1 Does every face-unfolding of the hypercube
have an edge-unfolding that tiles space?

We answer this positively in Section 3 and
illustrate the algorithm adopted in the brute-force
search to prove this. We, in a way, complete the
journey initiated in 2015.

2 Definitions

Dual Graph. The dual graph of a polycube has a
vertex for each square face and edges between
edge-adjacent squares.

Complete Dimension-descending Tiler (c-DDT).
A polytope that monohedrally tiles R¢ isa c-DDT
if all of its facet-unfoldings tile R4~ !, and every
R4=1 polytope has a facet-unfolding that tiles
R4=2, The R4~ 2 polytope must then have a
facet-unfolding that tiles R4~ 3 and so on till an
edge-unfolding that tiles R?2.

Linear Unfolding [8] Let T be a hamiltonian path
on the dual graph of the polycube. The unfolding
corresponding to T is linear if direction x is used
and direction -x is not.

3 Results

We the exhaustive search

algorithm used to prove Theorem 3.1 and then

briefly describe

demonstrate this in Example 3.2 on the Dali-cross
unfolding of the hypercube.
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Previous approaches that attempted unfolding the
face-unfoldings relied on finding spanning trees,
on their dual graphs, to generate edge-unfoldings
[2]. The
hamiltonian paths to enumerate unfoldings and
then filters
unfolding tiles the plane. Jelmer Firet [8] proved

algorithm we employ generates

linear edge-unfoldings. Any linear

that every linear unfolding will tile space (and
used a similar algorithm to show that linear
face-unfoldings of the hypercube tile 3D space).

Theorem 3.1 Every face-unfolding of the hypercube
has an edge-unfolding that tiles R>.

Example 3.2 Consider the Dali-cross face-unfolding of
the hypercube (see Figure 1 (a)). A hamiltonian path
(blue) on its dual graph (black) is shown in Figure 1
(b). The corresponding unfolding happens to be linear
and is therefore a monohedral tile. (see Figure 2).

Figure 1: (a) Dali-cross unfolding of the hypercube
(the numbers correspond to those in Figure 2). (b)
A hamiltonian path on the polycube’s dual tree
mapping to the unfolding in Figure 2.

|

Figure 2: Linear unfolding of the dali-cross tiling

space. Faces are numbered according to position
in the unfolding and correspond to Figure 1 (a).
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On Ky-Hamiltonian Graphs

JAN GOEDGEBEUR, JARNE RENDERS, GABOR WIENER,
AND CAROL T. ZAMFIRESCU

KU Leuven Kulak

Hamiltonian and hypohamiltonian graphs have been intensely studied since
the 1960s [1, 4]. In this abstract we only consider connected simple graphs. A
graph is hamiltonian if it contains a cycle which visits every vertex. Similarly,
a graph is hypohamiltonian if it is not hamiltonian, but every vertex-deleted
subgraph is. Motivated by a conjecture of Griinbaum [2| and a problem of Katona,
Kostochka, Pach and Stechkin [5], we investigate Ko-hamiltonian graphs based
on earlier work by Zamfirescu [6].

Griinbaum [2] defined I'(j, k) with & > j to be the family of graphs whose
order and circumference, i.e., the length of a longest cycle, differ by £ and in
which any j vertices are missed by some longest cycle. I'(1, 1) are then precisely
the hypohamiltonian graphs. In 1974, Griinbaum conjectured that I'(j, 7) must
be empty for j > 2. So far little is known about the truth of this conjecture. We
relax this problem further by investigating the following class of graphs.

A graph is called Ky-hamiltonian if the deletion of any two adjacent vertices
yields a hamiltonian graph. If this graph is also non-hamiltonian, we call it K-
hypohamiltonian. An example of such a graph is Petersen’s graph, which we
show to be the smallest Ko-hypohamiltonian graph (Fig. 1). We further study
this concept using a combination of theoretical and computational methods.

To this end, we have designed and implemented an algorithm that checks
whether a given input graph is Ks-(hypo)hamiltonian and which turns out to be
quite efficient in practice [3]. In particular, we use a backtracking algorithm with
some heuristics to restrict the search space.

Using this algorithm together with mathematical operations preserving Ko-
hypohamiltonicity, we were able to classify for which orders there exist Ko-
(hypo)hamiltonian graphs for all orders except two. In the class of cubic graphs,

Figure 1: Petersen’s graph: the smallest Ks-hypohamiltonian graph.
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i.e., graphs where every vertex has three incident edges, and snarks, i.e., cubic
graphs with a 4-edge coloring, we completely characterize all orders and we have
shown that for every order n > 177 there exists a Ks-hypohamiltonian planar
graph. We have also found the smallest planar Ks-hypohamiltonian graph of
girth 5, i.e., the length of a shortest cycle is 5, which has 48 vertices and the
smallest cubic planar Ks-hypohamiltonian graph, which has 68 vertices (Fig. 2).

Figure 2: Left: The smallest planar Ks-hypohamiltonian graph of girth 5. Right:
The smallest cubic planar Ks-hypohamiltonian graph.
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On new results on extremal and algebraic graphs and their applications.

Vasyl Ustimenko
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Abstract ,New explicit constructions of infinite families of finite small world graphs of large girth with well-defined
projective limits which is an infinite tree are described. The applications of these objects to constructions of LDPC
codes and cryptographic algorithms are shortly observed. We define families of homogeneous algebraic graphs of
large girth over the commutative ring K. For each commutative integrity ring K with |K| > 2, we introduce a family
of bipartite homogeneous algebraic graphs of large girth over K formed by graphs with sets of points and lines
isomorphic to K", n > 1, and cycle indicator > 2n + 2 such that their projective limit is well defined an
Keywords: family of graphs of large girth, small world graphs, cryptographic algorithms, LDPC codes.

The girth and diameter of a graph are the minimal length of its cycle and the maximal distance of the graph.
We can consider the girth indicator Cind(v) of a vertex v of the graph 7" as the minimal length of the cycle through v
and introduce a cycle indicator Cind(T) of the graph as the maximal value of Cind(v) for its vertices.

The constructions of finite or infinite graphs with prescribed girth and diameter is an important and difficult
task of the graph theory. Noteworthy that the incidence of the classical projective geometry over various fields is a
graph of girth 6 and diameter 3. J. Tits defined generalized m-gons as bipartite graphs of girth 2m and diameter m.
Feit and Higman proved that finite generalized m-gons with bi-degrees > 2 exist only in the cases of m = 3, 4, 6, 8,
and 12. Geometries of finite simple groups of rank 2 are natural examples of generalized m-gons for m =3, 4, 6, 8.
Classification of flag transitive generalised m-gons of the Moufang type were obtained by J. Tits and R. Weiss.

Infinite families of graphs of large girth of bounded degree are important objects of extremal graph theory
which were introduced by P. Erdés’. He proved the existence of such families via his well-known probabilistic
method. Nowadays,a few explicit constructions of such families are known. The concept of an infinite family of
small world graphs of bounded degree turns out to be very important for various applications of graph theory.
Noteworthy that only one family of small world graphs of large girth is known. This is the family X(p, q) of

Ramanujan graphs introduced by G. Margulis [1] and investigated via the computation of their girth, diameter, and
the second largest eigenvale by A. Lubotsky, R. Phillips, and P. Sarnak [2].

We have to admit that studies of families of graphs 77 with well-defined projective limit T', which is
isomorphic to an infinite tree, is well motivated.
We refer to such family as a tree approximation. There is only one tree approximation by finite graphs which is a
family of large girth. This is the family of CD(n, q) defined by F. Lazebnik, V. Ustimenko, and A. Woldar [3]. The
question whether or not CD(n, q) form a family of small world graphs has been still open since 1995.

In 2013, the tree approximation by finite graphs A(n, q) which is a family of small world graphs was
presented (see [4]). It was proven that the graph from the family has maximal possible cycle indicator [in fact,
Cind(A(n, q)) = 2n + 2].
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One of the main statements of this talk is A(n, g), where n =2, 3, ..., is a family of large girth.

We generalize these results in terms of the theory of algebraic graphs defined over an arbitrary field and
consider properties and applications of the above-mentioned graphs.
Case of fini te simple graphs. All graphs we consider are simple, i. e., undirected without loops and multiple
edges. Let V(I") and E(I") denote the set of vertices and the set of edges of I, respectively. The parameter |V(I)| is
called the order of I, and |[E(G)| is called the size of I'. A path in I"is called simple, if all its vertices are distinct.
When its convenient, we shall identify 7" with the corresponding antireflexive binary relation on V(I'), i. e., E() isa
subset of V(') x V(T'). The length of a path is a number of its edges. The girth of a graph T, denoted by g = g(T), is
the length of the shortest cycle in I". Let k>3 and g >3 be integers. The distance between vertices v and u of the
graph I' is a minimal length of the path between them. The diameter of the graph is maximal distance between its
vertices.

The graph is connected, if its diameter is finite. The graph is k-regular, if each vertex of the graph is
incident exactly to k other vertices. The tree is a connected graph which does not contain a cycles.

(1) An infinite family of simple regular graphs I'i of constant degree k and order v; such that
diam (73) < c logk-1(vi), where c is the constant independent of i and diam (I5) is the diameter of T, is called a family
of small world graphs.

2 Recall that the infinite families of simple regular graphs I'; of constant degree k and order v; such
that g(73) > c logk-1(vi), where ¢ is the constant independent of i and g(73) is a girth of I are called families of
graphs of large girth.

One of the main purposes of the paper is to present a special interpretations of g-regular tree (g-regular
simple graph without cycles) in terms of the algebraic geometry over a finite field F,.

Theorem 1. For each prime power g, g > 2 there is a family of g-regular graphs 77 satisfying the following
properties:

Q) I3 is a family of small world graphs;

(i) I is a family of large girth;

(iii) Projective limit of graphs 75 is well defined and coincides with the g-regulatr tree T;

(iv) Cind 75 = 2logq(vi/ 2) + 2.

Acknowlegements: This research is supported by British Academy Fellowship for Researchers under Risk 2022.
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Abstract

All the rings considered in this paper are finite, commutative with unity. The
Wiener index of a connected graph G is defined as W(G) = 2 3" dg(u, v) with
the summation running over all distinct pairs of vertices of G where dg(u,v) is
the length of a shortest (u,v)-path in G. The ideal-based zero-divisor graph of a
ring R with respect to an ideal I, denoted by I';(R), is a graph whose vertex set
V(I'1(R)) ={x € R\I : zy € I, for some y € R\I} and two distinct vertices x and
y are adjacent if and only if xy € I. This concept was introduced by Redmond
in [3]. If I = (0) is the zero ideal of R, then I';(R) = I'(R). Therefore, the
ideal-based zero-divisor graph is a natural generalisation of zero-divisor graph
of a ring. The Wiener index of zero-divisor graph of various rings have been
extensively studied in the past. This include [1],[2],[4]. In this paper, we obtain
the following results.

Theorem 1. If I is an ideal of R and H is the compressed zero-divisor graph of
the quotient ring % then

W (C;(R)) = T (lAaé-llf|> N 3 2(IAL(ZIIII)

1<i<k 1<i<k

a;€V(H) and a?€l a;€V(H) and a?¢1
HIP Y Azl A |da (i, aj).
1<i<j<k
a;,a; €V (H)

As a consequence, we deduce the following result in [4].
Corollary 1. (Theorem 1, [4]). For any ring R,

wee) = ¥ () S T iy uten o)

1<i<k 1<i<k 1<i<j<k
2__ 2
a;=0 a; #0

Let m and n be the positive integers such that m | n and Z, be the ring of
integers modulo n.
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Theorem 2. If [ is an ideal of Z,, generated by m, then

wine= ¥ (M) 25 (EM) cr( 5 o(2)e(2)

mfa, mia; o
m|a? mfa? mlaia;
m m m m
20 3 (M) s Y e(5)e(H) )
mta;a; @i a‘] mta;a; @i a‘j
ged(a;, aj);él ged(a;, aj) 1

As a consequence, we deduce the following result in [4].
Corollary 2 (Theorem 3, [4]). The Wiener index of I'(Z,,) is given by

v - 5 () 2o )« T (22

a2=0 a2#0 nlaia;
P2 3 o) X e(G)eG)
ged(ar a))#1 ged(ar a))=1
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1 Introduction

In 1900 the following puzzle was posed by the English mathematician Henry Dudeney:

Problem 1.1. What is the largest number of pawns that can be placed on an n X n
chessboard such that no three lie on a straight line?

Despite its simple appearance, this problem remains unsolved in the general case. It
has been referred to as ‘one of the oldest and most extensively studied geometric questions
concerning lattice points’ [2]. A trivial upper bound is 2n, whilst the best known lower

bound 2* — o(n) is due to Hall [5].
This problem was generalised to the setting of graph theory independently by Ullas
Chandran & Parthasarathy [3] and Manuel & Klavzar [7].

Definition 1.2. A set S C V(G) of vertices of a graph G is in general position if no
shortest path in G contains > 3 vertices of S. The general position number gp(G) is the
number of vertices in a largest general position set of G.

An example of a general position set is displayed in Figure 1.

This problem has been generalised to different types of paths, for example induced
paths [9] and paths not exceeding a fixed length [6].

2 Lower position numbers

An interesting new direction in the general position problem was opened up by a puzzle of
Martin Gardner (the modern Dudeney), drawing on work by Adena, Holton & Kelly [1].

Figure 1: The Petersen graph with a maximum gp-set (red) and a lower gp-set (blue)
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Problem 2.1. What is the smallest number of vertices in a maximal set of vertices in
the n x n grid with the no-three-in-line property that cannot be extended to a larger such
set?

If a greedy algorithm is used to produce a set of vertices of the grid with the no-three-
in-line property, then the set asked for in Gardner’s problem can be thought of as the
worst-case output. We consider the analogous problem for graph theory.

Definition 2.2. The lower general position number gp~(G) of a graph G is the number
of vertices in a smallest maximal general position set in G.

For example, the blue vertices in Figure 1 form a lower gp-set. Another motivation for
this problem comes from the theory of graph domination, in which the upper domination
number of a graph is the largest size of a minimal dominating set. The case gp™ (G) = 2 is
also connected to the problem of the existence of a universal line in G [8], which originates
in a generalisation of the De Bruijn-Erdés Theorem to finite metric spaces [4].

In this talk we will determine the lower general position number for common classes of
graphs, discuss the relationship of this parameter with the hull number of a graph, prove
the largest size of a graph with order n and given lower general position number, provide
realisation results for the lower general position number vs. the general position number
and general position sets produced by games, discuss the behaviour of this parameter
under Cartesian products, and finally contrast the lower general position number with
similar parameters defined using different sets of paths (such as induced paths).
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Combinatorial Games and Genetic Programming
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Abstract

This study proposes a method for solving unsolved combinatorial games using genetic program-
ming. The authors customized a Python genetic programming package “gplearn”, and they discov-
ered new facts about combinatorial games using this package.

1 Genetic programming and combinatorial games

The use of mathematical formulas for the representation and description of data lends credence to such
data because each representative formula can be mathematically proven. Researchers commonly spend
much time discovering formulas by trial and error methods. However, this is not so with artificial
intelligence (AI) through which computer systems are able to rapidly simulate human intelligence.

The authors used “gplearn”, a Python genetic programming package. See [1], that searches a space
of mathematical expressions (or formulas) for the best representation (or description) for a given input
dataset. The fitness of a particular formula is determined by the least amount of residual (or error)
between the data and formula. The program determines how data is functionally related, and uses a tree
structure to represent the formula. See Fig. 1. The authors customized it by implementing new features,
such as flexible conditional branching, a new common error metric, and a few discrete functions selected
for the study. The research results show the capability of this method by presenting a counterexample
to a well-known conjecture on a mathematical game and new facts about combinatorial games.

Ouly two previous studies have reported the research result on combinatorial games using Al See [2]
and [3], where genetic programming was used to discover formulas for well-known problems. By contrast,
this study is the first to discover new facts.

The game chosen by the authors is a chocolate problem, which is a variant of Nim. The authors have
published their research on chocolate problems in [4] and [5].

The chocolate game comprises a chocolate bar and rectangular array of squares with a bitter square
at the bottom. Two players take turns at breaking the bar into two, either horizontally or vertically, and
eat the part without a bitter square. Finally, the player who manages to leave his/her opponent with a
single bitter block (black block) is the winner.

The chocolate bars in Fig. 2 is mathematically identical to the classical Nim with piles of 6, 3, and
7 stones. However, a chocolate with the coordinate system shown in Fig. 3 has a different mathematical
structure. Combinatorial games have two groups of positions.

/ \
GO & n

Figure 1: (X1® 1) ® (X0+1). Figure 2: Rectangle Figure 3: Chocolate {z,y, z}
chocolate {z,y, z} ={6,1,7}.
= {6,1,7}.

Definition 1.1. (a) A position is called a P-position if it is a winning position for the previous player
(the player who has just played) provided that he or she plays correctly.

(b) A position is called an N-position if it is a winning position for the next player provided that he or
she plays correctly.
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Definition 1.2. (i) For any position p, there exists a set of positions that can be reached by precisely
making one move from p, which we denote by move(p).

(74) The minimum excluded value (mex) of a set S of nonnegative integers is the smallest nonnegative
integer that is not in .S.

(#47) Each position p of an impartial game has the associated Grundy number, which is denoted by G(p).
The Grundy number is found recursively. G(p) = mex{G(h) : h € move(p)}.

Theorem 1.3. For any position g of G we have G(g) = 0 if and only if g is a P-position.

For detailed information on combinatorial game theory, see [6]. A major problem in combinatorial
games is determining the outcome of a pass move that may be used at most once in the game, and
not from a terminal position. A long-standing unsolved problem involves determining a mathematical
formula that describes the P-positions of the classical Nim or chocolate game, as shown in Fig. 2 with a
pass move. The authors aim to solve this problem through genetic programming.

First, the customized “gplearn” is applied to the chocolate game shown in Fig. 2, which is mathemat-
ically identical to the classical Nim. Then the game was analyzed under the condition that a pass-move
is allowed. However, the authors did not determine an appropriate formula. They think that they have
to revise their algorithm.

Second, the chocolate game, shown in Fig. 3 was analyzed. A pass move was also permitted. Conse-
quently, the authors discovered the following theorem and conjecture: The following theorem was derived
from calculation using “gplearn” and proved by the authors.

Theorem 1.4. Let x,y, z be the coordinates of the chocolate bar. (See Fig. 3 as an example.)

(i) When there is no pass move, {z,y,z} is a P-position if and only if x Dy ® z = 0.

(ii) When a pass move is available, {x,y, 2z} is a P-position if and only if x is even and (x—1)Sydz =0
orxis odd and (x+1)®y®z=0.

According to Theorem 1.4, a simple formula exists for P-positions, regardless of whether a pass-move
is permitted. This fact is a counterexample to the conjecture in [7] that combinatorial games with a
simple formula for P-positions become complicated games without a simple formula for P-positions when
a pass move is allowed. One of the authors presented another counterexample to the conjecture in [5],
but Theorem 1.4 is better in the simplicity of conditions. Then, the following conjecture was derived
from calculation using “gplearn”.

Conjecture 1.5. {{z,y,2}: G{z,y,2}) =3} ={{z,y,2} : 2 =0 (mod 4) and (z—3)dyH2H3 =0}
U{{z,y,2} rx=1 (mod4) and (1 —-—2z)® (-1 —-y)®z =0} U{{z,y,2} : 2 =2,3 (mod 4) and (z +
NBYy®zo3=0}

Conjecture 1.5 shows the power of genetic programming. When z =1 (mod 4), G({z,y,z}) = 3 if
and only if (1—2)®(—1—y)®z = 0. “Bitwise exclusive or” (“BitXor”) operations on negative numbers are
rare in combinatorial game theory, and this formula is beyond the imagination of many mathematicians.
In chess or the game of GO, they say that Al sometimes thinks up a move that is impossible for humans
to make. This conjecture shows the remarkable power of Al. This study demonstrated that genetic
programming can be used to discover discrete mathematical functions which have numerous applications
in mathematics, and this presents a promising field for the application of Al.
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Abstract

This paper presents a study of restricted Nim with a pass. Two players take turns and remove
stones from the piles. In each turn, each player is allowed to remove at least one stone and at most
[Z] stones from a pile of m stones. It is well-known that in classical Nim, the introduction of
the pass alters the underlying structure of the game, significantly increasing its complexity. In the
restricted Nim considered in this study, there is a simple relationship between the Grundy numbers
of restricted Nim and the Grundy numbers of restricted Nim with a pass.

1 Introduction

An interesting but difficult question in combinatorial game theory has been to determine what happens
when standard game rules are modified to allow a one-time pass, that is, a pass move that may be used
at most once in the game and not from a terminal position. Once a pass has been used by either player,
it is no longer available. The effect of a pass on classical Nim remains an important open question that
has defied traditional approaches.

In [1] (p. 370), Friedman and Landsberg conjectured that ”solvable combinatorial games are struc-
turally unstable to perturbations, while generic, complex games will be structurally stable.” One way
to introduce such a perturbation is to allow a pass. One of the authors of the present article reported
a counterexample to this conjecture in [2]. The game used in [2] is solvable because there is a simple
formula for the Grundy numbers, and even when we introduce a pass move to the game, there is a simple
formula for P-positions.

The restricted Nim considered in the present study is of the same type, but there is a simple rela-
tionship between the Grundy numbers of the game and the Grundy numbers of the game with a pass
move. This result is stated in Theorem 1.8 of the present article. Let Z>o and N be sets of non-negative
numbers and natural numbers, respectively. For completeness, we briefly review some of the necessary
concepts of combinatorial game theory. Details are presented in [3].

Definition 1.1. (a) A position is referred to as a P-position if it is a winning position for the previous
player (the player who has just moved), as long as he/she plays correctly at every stage.

(b) A position is referred to as an N-position if it is a winning position for the next player as long as
he/she plays correctly at every stage.

(¢) For any position p of game G, there is a set of positions that can be reached by precisely one move
in G, which we denote as move(p).

(d) The minimum excluded value (mez) of a set S of non-negative integers is the smallest non-negative
integer that is not in S.

(e) Let p be the position of an impartial game. The associated Grundy number is denoted as G(p) and
is recursively defined as follows: G(p) = mez({G(h) : h € move(p)}).

Theorem 1.2. For any position of G, G(g) = 0 if and only if g is the P position.

1.1 Maximum Nim

In this section, we study maximum Nim, which is a game of restricted Nim.

Definition 1.3. Suppose that there is a pile of n stones, and two players take turns removing stones
from the pile. In each turn, the player is allowed to remove at least one stone and at most [ | stones,
where m represents the number of stones. The player who removes the last stone is the winner.
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Lemma 1.4. Let G represent the Grundy number of the maximum Nim with the rule sequence f(x) =

[51. Then, we have the following properties:

(i) If t is even and t > 2, G(t) = G(152).
(i6) If t is odd, G(t) = L1,

Definition 1.5. The rule of the game is the same except that there are three piles of stones. The position
of the game is represented by three coordinates {s, ¢, u}, where s, ¢, and u represent the numbers of stones
in the first, second, and third piles, respectively. Let G(s,¢,u) be the Grundy number of the game.

Theorem 1.6. The Grundy number G(s,t,u) of the game of Definition 1.5 satisfies the following equa-
tion: G(s,t,u) =G(s)®G(t) ® G(u), where @ is the bitzor.

By Lemma 1.4 and Theorem 1.6 we determine Grundy numbers of Definition 1.3.

1.2 Maximum Nim with a Pass

We modify the standard rules of the games to allow for a one-time pass. The position of this game is
represented by {t,p}, where ¢ is the number of stones in the pile. p = 1 if the pass is still available;
otherwise, p = 0. By Definitions 1.1, we define the Grundy number G(t,p) of the position {¢, p}.

Theorem 1.7. For the Grundy number G(s,p) of position {s,p}, we obtain the following equations:
() G(0,0) =0 and G(0,1) = 0.

(13) Foruw e N, if G(u,0) =0, then G(u,1) = 1.

(i3) For uw € N, if G(u,0) = 2, then G(u,1) = 0.

(iv) For u,m € N such that m > 1, if G(u,0) = 2m, then G(u,1) =2m — 1.
(v) Foru,m € N, if G(u,0) = 2m — 1, then G(u, 1) = 2m.

Here, we study maximum Nim in Definition 1.5 with a pass. We denote the position of the game
with {s,t,u,p}, where s, t, and u represent the numbers of stones in the first, second, and third piles,
respectively. p = 1 if the pass is still available, and p = 0 otherwise.

Theorem 1.8. We suppose that s,t > 0, t,u > 0, or u,s > 0. Then, for the Grundy number G(s,t,u,p)
of the position {s,t,u,p}, the following statements hold:
(i) G(1,0,0,0) = G(0,1,0,0) = G(0,0,1,0) = 1 and G(1,0,0,1) = G(0,1,0,1) = G(0,0,1,1) = 2.
(i) G(1,1,0,0) = G(0,1,1,0) = G(1,0,1,0) = 0 and G(1,1,0,1) = G(0,1,1,1) = G(

(iii) G(1,1,1,0) = 1 and G(1,1,1,1) = 0.

(i) G(s,0,0,1) = G(0,5,0,1) = G(0,0,s,1) = G(s,1) for s € Z>.

(v) For any m € Z>g, if G(s,t,u,0) = 2m, then G(s,t,u,1) =2m + 1.

(vi) For any m € Z>o, if G(s,t,u,0) =2m + 1, then G(s,t,u,1) = 2m.

1.3 Traditional Nim with a pass

Although the traditional Nim with a pass is a very complicated game, it will become very simple if we
restrict the use of pass in a certain way.

Theorem 1.9. Let v be an odd number, and let {s,t,u,p} be the position of the three-pile nim with a
pass, where s, t, and u represent the numbers of stones in the piles, and p is the pass move. We suppose
that the pass move is not available when s < v, t <wv and u < v. Then we have the following:

() {s,t,u, 1} is P-position if and only if s®&t B u = 1.

This theorem is based on the result of [4].
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Abstract

The authors present a research on three-dimensional chocolate bar games, which are variants of
three-pile Nim. They study P-positions from which the next player who will play can force a win, as
long as he or she plays correctly at every stage, and present a sufficient condition for the case when
the chocolate is a P-position if and only if p ® ¢ ® r, where p+ 1,q + 1, and r + 1 are the chocolate
bar’s length, height, and width.

Keywords: Nim, chocolate game, Previous Player’s Position.
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1 Introduction

Chocolate bar games are variants of the game of Nim, and they were first presented in [1]. For the details
of combinatorial games, we refer to [4]. Let Z>o and N be sets of non-negative integers and natural
numbers, respectively.

Definition 1.1. A three-dimensional chocolate bar is a three-dimensional array of cubes in which a
bitter cubic box printed in black is present in some part of the bar. Figures 1 and 2 displays examples
of three-dimensional chocolate bars. Each player in turn cuts the chocolate horizontally or vertically
along the grooves. The player who manages to leave the opponent with the single bitter cubic box is the
winner. Examples of how to cut chocolate bars are depicted in Fig. 3, Fig. 4, and Fig. 5.

=

Cubic choco 3D choco A vertical cut. A vertical cut.

A

horizontal cut.
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5.

The following are important concepts in combinatorial game theory.

Definition 1.2. (a) N-positions, from which the next player can force a win, as long as he plays correctly
at every stage.

(b) P-positions, from which the previous player (the player who will play after the next player) can force
a win, as long as he plays correctly at every stage.

(¢) For any position p, there is a set of positions that can be reached by precisely one move , which we
denote as move(p).

(d) The minimum excluded value (mez) of a set S of non-negative integers is the least non-negative
integer that is not in S.

(e) Each position p of an impartial game has an associated Grundy number, and we denote it as G(p).
The Grundy number is found recursively: G(p) = mez({G(h) : h € move(p)}).

Theorem 1.3. For any position p of the game, G(p) = 0 if and only if p is a P-position.
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It can be easily determined that the 5 x 5 x 5 cubic chocolate in Fig.1 is mathematically the same as
Nim with heaps of 4, 4, and 4 stones, and the Grundy number of this is 4 & 4 & 4. Hence, it is natural
to ask the following question.

Question 1. What is the necessary and sufficient condition whereby a three dimensional chocolate bar
may have a Grundy number p ® q ®r, where p+ 1,q+ 1, and z + 1 are the length, height, and width of
the bar?

The answer to this question is presented by one of the authors in [2], but the result of this research
is omitted here.

When the Grundy number of a chocolate bar with p+ 1,¢+ 1, and r + 1 as the length, height, and
width, is p @ q¢ ® r, by Theorem 1.3 this chocolate bar is a P-position if and only if p® ¢ ® r = 0.

Therefore, it is natural to ask the following question.

Question 2.  Under what condition a three dimensional chocolate bar with the length p+ 1, the height
q+ 1, and the width v + 1 is P-position if and only if p®qgdr =07

Definition 1.4. Let k € N and f(z,y) = |2E2]|. The three-dimensional chocolate bar comprises of a
set of 1 x 1 x 1 sized boxes. For w,w € Z>¢ such that u < z and w < z, the height of the column of
position (u,w) is min(f(u,w),y) + 1. There is a bitter box in position (0,0). We denote this chocolate
bar as CB(f, z,y,z). Note that  + 1,y 4+ 1, and z 4+ 1 are the length, height, and width of the bar.

The authors presented the following sufficient conditions for Question 2 in [3].

Theorem 1.5. Let f(x,2) = |%f2] for k = 4m+3. Then, the chocolate bar CB(f,x,y, z) is a P-position
if and only if
zPydz=0. (1.1)
After the authors proved Theorem 1.5, they conjectured that Theorem 1.5 is not valid for an even
number k, but they discovered the following theorem.

Theorem 1.6. Let f(x,z) = [Zf2] for k = 2972m + 291 where a,m € Z>o.

(i) For x, 2 < (22072 — 20ty 4 920t
(1.2)
chocolate bar CB(f,x,y, z) is a P-position if and only if
r@ydz=0. (1.3)

(1) When (1.2) is not satisfied, there exist some P-positions that do not satisfy (1.3).

Remark 1.7. Note that the set {20%2m + 291 : q,m € Z>¢} is the set of even numbers.

The following conjecture is based on computer calculation.

Conjecture 1.8. Let f(x,2) = |£] + |%]. Chocolate bar CB(f,x,y,z) for x,y < s is a P-position if
and only if

Dy ®z=0. (1.4)
when one of the following conditions is satisfied.
(i) k is an odd number and s =k
(17) k =4m + 2, where m € Z>o and s = 4m + 3.
(iii) k = 2™, wherem € N, m > 2 and s = 2™~ 1.
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Unfolding Skeletons

Hugo A. Akitaya*

Unfolding polyhedra has been an active area of
mathematical research since the 70s [5]. Generally,
an unfolding is a development of the surface of a
given polyhedron to a polygon in the plane. Such
polygon must be weakly simple (the image of the
interior of faces of the polyhedron do not overlap).
The edge unfolding further requires that the edges
of the polygon correspond to the edges of the origi-
nal polyhedron. The polygon resulted from an edge
unfolding together with the image of the polyhedron
edges (crease lines) is called a net. It is a long stand-
ing open problem whether every convex polyhedron
admits an edge unfolding [5].

The notion of unfolding has typically been gen-
eralized for higher-dimensional polytopes as follows.
We view a n-polytope as a polyhedral complex, com-
posed by “faces” of dimension < n. An (n — 1)-face
of the polytope is called a facet and a (n — 2)-face
is called a ridge. A ridge unfolding of a given n-
polytope is then a continuous isometric injective map
from its (n — 1)-dimensional surface (minus a sub-
set of its ridges) into a connected polytope in R™~1.
The subset left out of the domain of the map can be
seen as the ridges at which we must cut in order to
lay out the (n — 1)-dimensional surface in R™"~1.

For small polyhedra such as the cube, we can enu-
merate all nets. It is folklore that the number of such
combinatorially different nets is 11 (up to symme-
try). Turney showed in 1984 [6] that there are 261
different ways (up to symmetry) to cut the tesser-
act in order to get a ridge unfolding, and Desplinter
et al. [3] showed that all such ways lead to a net,
i.e., they can be unfolded in R? without overlap (not
only for the tesseract but for an arbitrary n-cube).
When trying to reduce the dimension from 4 to 2,
Diaz and O’Rourke [4] propose the edge unfolding of
the polyhedra obtained by the ridge unfolding of the
tesseract. Such “unfoldings of unfoldings” do not in-
clude 2-faces that are not cut in the ridge unfolding
and include twice each 2-face that is cut.

Inspired by a discussion during the 32nd Canadian
Conference on Computational Geometry (CCCG
2020), we introduce a new notion of unfolding
between two arbitrary dimensions: Given an n-
polytope P, its k-skeleton is the minimal sub-
complex containing all k-faces of P. We define the
(k — 1)-face unfolding of P as an unfolding of P’s
k-skeleton in R*. We give a precise definition in Sec-
tion 1. The purpose of the —1 is so that the 2-face
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unfolding and the (n — 1)-face unfolding correspond
respectively to the edge and ridge unfoldings. With
this generalization, every k-face of P appears in the
net exactly once. We also show that we can easily
identify whether a polytope admits a 0-face unfold-
ing. In Sections 2 and 3 we describe the enumeration
of a family of 2-face unfoldings of the tesseract.

1 Definitions

We can describe the edge unfolding of a polyhedron
using the set of edges that are cut [1]. It is known
that, for convex polyhedra, such edges form a span-
ning tree of the vertices. Let this tree be the cut tree.
Alternatively, we can define the unfolding using a
spanning tree of the dual graph (adjacency graph of
the faces of the polyhedron). Intuitively, an edge in
such spanning tree correspond to edges that are not
cut and, thus, its incident faces are also adjacent in
the unfolding. Let this tree be the uncut tree. When
generalized to ridge unfoldings of an n-polytope P,
the cut tree is defined by the cut ridges and the uncut
tree is a spanning tree of the 1-skeleton of the dual
polytope [2]. Since the (n—1)-dimensional surface of
P is a manifold, we can still describe the unfolding
as a continuous isometric injective map from the sur-
face minus the cut tree to R"~!. The closure of the
image must be a connected weakly simple polytope.

However, the same is not true when generalizing to
(k—1)-face unfoldings since the k-skeleton Py of P is
not a manifold for £ € {1,...,n—1}. Since the target
is a manifold, it is clear that every (k — 1)-face of P
must be cut in some way. Indeed, there are multiple
ways in which one could cut at the (k — 1)-face. See
Figure 1 (left) for an example. We first must perform
a “topological surgery” on Py by splitting its (k—1)-
faces into copies, each of which incident to at most
two k-faces that were originally incident to the (k —
1)-face. The result must be a connected manifold

Figure 1: (Left) The four ways we can split a ver-
tex of the cube to get locally a 1-manifold. (Right)
Naming convention for the vertices of the tesseract.
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P¥. The (k — 1)-face unfolding is then a continuous
isometric injective map from P} to R"~1.

Just as before, we can also define the unfolding
by an uncut tree. As a consequence of the above
definition, the uncut tree of P is a spanning tree T,
of the adjacency graph of the k-faces of Pj such that
no two k-faces f; and fo adjacent to a face f3 in T,
share the same (k — 1)-face with f5. The following
observation derives directly from the definition.

Observation 1 An n-polytope P admits a 1-face
unfolding if and only if its 1-skeleton admits an Fu-
lerian trail.

As a corollary, we get that the n-cube admits a
1-face unfolding if and only if n is even.

2 Enumerating the 2-face (edge) unfoldings of
the tesseract

Here, we explore edge unfoldings of the tesseract 7.
The tesseract has 24 2-faces, 32 1-faces, and 16 0-
faces (here called faces, edges, and vertices respec-
tively). Enumerating every possible uncut tree of
the tesseract may be computationally infeasible. A
crude upper bound can be obtained as follows. Each
of the 32 edges can be split in 4 different ways so
that the result is locally a manifold (pairing two of
the incident faces or splitting all 3 incident faces).
Then there are 432 possible spanning forests of 73
(the 1-skeleton of 7). Furthermore, even if we get
a single component T,,, its developing in the plane
might cause two faces to overlap.

Here, we prune the search of 2D nets of 7 by grad-
ually growing T, while checking for overlaps. The
idea is to fix a face of T}, and try all possible neigh-
borhoods. To further prune our search, we root T,
at a leaf ¢ that realizes its diameter. This allow us
to chose from a limited number of neighborhoods of
the root breaking down the search into three cases as
follows. We branch based on the degree of the only
child f of £. We use the naming convention of ver-
tices shown in Figure 1. Due to symmetry, we can fix
{ = CcbB and f = CBFG without loss of general-
ity. Case 1 occurs when deg(f) = 1. There are two
subcases depending on whether f is a turn or not
(see Figure 2). Case 2 occurs when deg(f) = 2. On
this case, one of the children of f must be a leaf ¢’ or
else this would contradict the choice of ¢. There are
again two subcases based on the relative position of
£ and ¢'. Furthermore, because each edge is incident
to 3 faces, there are two possible choices of ¢ for

(2] [€]
f f

4

(L7l

Figure 2: Pinning different neighborhoods of the
root £ of T,,. From the left Cases 1, 2, and 3.
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each of these cases. Case 2 occurs when deg(f) = 3.
For the same reason as above, two children of f must
be leaves. In each case we proceed exploring T, re-
cursively similar to a DFS but trying all available
possibilities for children of the current face. At each
explored face, we check for overlaps.

Once we explore all faces, the obtained T, corre-
sponds to a 2D net of 7. We store all nets found
and test if we have already found a congruent net.
To do so we store each net T,, now rooted at its cen-
ter. This is because, unlike a leaf that realizes the
diameter, the center of a tree is a unique node or
edge. This allows for faster checks of congruency.

3 Results and Conclusion

We have implemented our search in https://
github.com/vasisth/Skeleton-Unfolding. We
could enumerate all 2D nets in Cases 2 and 3 (avail-
able at the same link). The numbers of unique nets
found are 136,472,616 and 25,338,744 respectively.
However our search did not terminate for Case 1,
indicating that the majority of nets are of this cate-
gory. We conjecture that further pruning can make
the enumeration of all 2D nets of 7 possible.
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A transformation from map folding to Boolean matrix

Yiyang Jia*

1 Introduction

Map folding and related problems have been studied
in terms of computational origami. We introduce a
new approach by modeling map folding with Boolean
matrices and an associated algebraic structure.

First, we represent each flat-folded state (includ-
ing partially-folded flat states) of a 1 x n map is by a
state Boolean matriz. Then, all state matrices form
a matrix space, which later serves as the background
of our algebraic discussion.

We make associations between flat states by first
decomposing them into permutations of layers and
foldings that make new face-to-face adjacencies. These
are then translated into a sequence of Boolean matrix
operations. We employ two different types of opera-
tors in our matrix description: permutation operators
and addition operators, which, respectively, use nat-
ural addition and multiplication of the two-element
Boolean algebra. Permutation operators form an op-
erator group, while addition operators form an oper-
ator monoid. These operators allow us to construct
a groupoid structure and a Grothendieck topology
on the space of state matrices. This study also in-
troduces several solutions to computational origami
problems. Proofs of our results will be provided in a
forthcoming paper.

2 State Matrix of Map Folding
2.1 Definition of state matrix

For any flat state of a 1 xn map fold, including partly
and fully flat-folded states, a certain state matrix can
be defined. The definition is as follows.

In a flat state S of the map, for a pair (i,j) of
two squares, we determine the (i, j)-entry of the cor-
responding state matrix by the adjacency between
faces ¢ and j. Specifically, if S is a fully folded state
of the map and square 7 lies immediately below square
7 in S, or if S is some partly folded state and square
i is adjacent to (directly touching) square j and must
lie below square j in any corresponding fully folded
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Figure 1: (a) A fully folded flat state of a 1 x 5 map
and its state matrix. (b) A partly folded flat state of
a 1 x 7 map and its state matrix.

state, then we assign 1 to the (¢, j)-entry of the state
matrix. Otherwise, we assign 0 to the (i, j)-entry.
Figure 1 shows an example.

2.2 Uses in computational origami

Some related computational problems can be easily
solved by matrix computation. We list two below.
(1) Recover the MV assignment from the state
matrix: We can recover the mountain-valley assign-
ment of the map from the state matrix of a fully
folded state. Since the power sum @ of the state
matrix corresponds to the transitive closure of the
adjacency between layers, the “up-down” relation of
all squares is recorded in ) . That is, the fold between
i and i+1 is a valley if the (4, i+1)-entry of @ is 1
and ¢ faces its front side up, or if the (4, i+1)-entry
of @ is 0 and 17 faces its front side down. Otherwise,
the crease between ¢ and ¢+1 is a mountain.

(2) Check for self-intersections: Self-intersections
can be detected by the number of 1s in the 2 x 2
sub-matrix of the power sum @ of the state matrix.
Namely, a self-intersection exists in the corresponding
state if and only if there exists at least one 2 x 2 sub-
matrix in @ with an odd number of 1s (or 0s).

3 Matrix Operators

Two types of matrix operators, permutation opera-
tors and addition operators, are defined here. Their
combination suffices to represent a folding operation
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Figure 2: (a) Decomposition of the permutation between two possible states of a 1 x 5 map, S and S, into
three transpositions in order. (b) The corresponding state matrices and matrix operators.

connecting two different flat states.

3.1 Permutation operators

We use permutation operators to represent transi-
tions between flat states that have the same layers
but different layers’ orderings. The definition is as
follows.

Definition 3.1 An nxn matriz A is called an trans-
position operator if (1) there exists a pair of (i, j) (1
< i, j < n) such that the 2 X 2 sub-matriz formed
by the elements A(i, 1), A(3,7), A(j4, 1), A(J,7) is an
anti-identity matriz, and (2) the (n —2) X (n — 2)
matriz formed by the other rows and columns except
the ith and jth ones from (1) is an identity matriz.
The pair (i, j) is called a transposition pair. A per-
mutation operator is the matriz product of a series
of transposition operators.

Our result is that, if the transition between two
flat states S; and Sy is achieved only by rearrang-
ing the layers, then there exists a unique permu-
tation operator P such that M, = P~'M;P and
M, = PMyP~ ', where M; and M, denote the state
matrices of S and S, respectively. Figure 2 shows
an example.

Since any permutation operator is a product of
some transposition operators, the entire set of per-
mutation operators of 1 x n maps forms a group.
Furthermore, it is isomorphic to the symmetric group
Sym(n) (i.e., Sn).

It is natural to view the permutation operation as
a kind of equivalence relation between the fold states.
Based on this equivalence relation, the entire set of
flat states of any map, which corresponds to the space
of state matrices, forms a groupoid. Furthermore,
taking the discrete topology of the set of flat states,
the aforementioned groupoid becomes a fundamental

groupoid [2]. This structure indicates the possibil-
ity of considering the space of flat states in terms of
category theory and homotopy theory.

3.2 Addition operators

We further introduce addition operators to describe
the creation of new face adjacencies made by folding
partially-folded states. The definition is given below.

Definition 3.2 Any n x n matriz B where only one
non-diagonal matriz element is 1 and the others are 0
is called a basic addition operator. Let B stand for
the set of all possible basic addition operators. Any
n x n matriz C is called an addition operator if
there exists a sequence of basic addition operators By,
By, -, By € BwithC=B1+By+---+ By, where
+ s specified as element-wise Boolean addition.

Then transitions between arbitrary flat states can
be represented by a combination of permutation op-
erators and addition operators.

As for the algebraic structure, the fact that any
addition operator is the sum of some basic addition
operators makes the entire set of addition operators a
monoid. Furthermore, in the space of state matrices,
a partial order can be defined by the addition oper-
ations. Then, a Grothendieck topology can be built
on this poset [1]. This structure shows the possibility
of using homological algebra theory to consider the
space of flat states.
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Folding every point on a polygon boundary to a point
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Abstract
Given a convex polygon P with n vertices and a point f inside P, we consider a folding problem
where every point on the boundary of P is folded to f. This problem, motivated by recent work by
Akitaya, Ballinger, Demaine, Hull, and Schmidt [CCCG’21] who considered the problem of folding
each corner of P to f, has applications in industrial design. If the vertices of P is given in a circular
order, we give a linear-time algorithm for computing the description of the crease lines from the
folding. Our algorithm is simple and follows the structure of Graham’s convex hull algorithm.

1 Introduction

Paper folding offers a rich computational geometry problems with many real world applications. The
topic, typically referred to as computational origami or mathematics of paper folding [DO08, Hul20],
studies both feasibility problems and also structural problems [ABD'21] with the aim to illuminate the
connections between physical structures/problems and mathematical geometric objects. As geometric
construction using straightedge and compass offers elegant connections between algebra and geometry,
paper folding, which can be seen as geometric construction with additional operations, may provide
beautiful structural properties worth studying.

This work considers a folding problem where a piece of convex polygonal paper P is given together
with a point f inside P. We then fold and unfold every point on P’s boundary onto f. We would like
to find the inner region with no creases of P containing f. This problem has applications in industrial
folding when the target piece has some folding constraint (represented as f in this formulation). See
Figure 1 as example.

S

Figure 1: Left, example creases from some points on an edge of the polygon. Right, the region after
folding multiple creases close to infinity.

When the points on the boundary considered are only polygon corners, Akitaya, Ballinger, Demaine,
Hull, and Schmidt [ABD"21] showed that the crease lines resemble a Voronoi cell where the corners and
the marked point acted as seeds and gave a linear-time algorithm for computing it, provided that the
polygon corners are given in a circular order. Figure 2 compares the settings of Akitaya et al. and ours.

*nattawut.p@ku.th
Tjittat@gmail.com
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Figure 2: (A) Corner folding in [ABD*21] (B) Boundary folding in our paper

2 Our results

We give a characterization of the resulting region from the crease lines as a region whose boundary is a
union of segments from parabolas whose focus is f with P’s boundary segments as directrixes. We prove
the following theorem.

Theorem 2.1. Given a polygon P with n vertices provided in a circular order and a point f, there exists
a linear-time algorithm that finds the crease-line-free region containing f.

The algorithm follows the structure of the Graham’s scan algorithm [Gra72] for finding convex hulls
from a set of points. It iteratively considers each vertex u of P and determines (in constant time) if the
parabola segment induced by the focus f and the new polygon segment adjacent to w as directrix should
be included in the solution.
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Chihiro H. Nakajima

Faculty of Engineering, Tohoku Bunka Gakuen University, 980-8551, Sendai, Japan
Email: chihiro.nakajima@ait.tbgu.ac.jp

Origami is a traditional game of folding a sheet of paper to create animals, plants, object, or some
geometric patterns. In order to obtain some shape with origami, we have to program the locations of
facets and creases on a paper. The design of these locations on an unfolded paper is called an origami
diagram here. The problem to determine a given diagram is actually foldable into a plane is called the
flat-foldability problem, which is proved to be NP-hard [1].

Flat-foldability problem of an origami is represented with Ising spin model in statistical mechanics [2].
The approaches from statistical mechanics have often considered the problem of assigning mountains and
valleys to creases. However, here we see that it is possible to find an intuitive perspective or a more direct
discrimination of unfoldability by considering the order for all pairs of facets, instead of focusing only on
creases.

If the sum of angles alternation is 0 for all vertices in the origami diagram, then there is a combinatorial
problem with layer-ordering of facets. We map this combinatorial problem onto the ground state search
problem of spin glass model on random graphs. If the origami diagram is locally flat-foldable around
each vertex, a pre-folded diagram, showing the planar-positional relationship of the facet, can be obtained.
The Ising-spin variable is assigned for the layer-ordering of each pair of facets which have an overlap in
the pre-folded diagram. In addition, the energy function which consists of interactions of spins, namely
products of 2- or 4-spin variables, is implemented to prohibit the intrusion of each facet into the other
component of the same origami diagram. The 2-spin interactions prohibit the intrusion of a facet into a
junction of pair of two adjacent facets. The 4-spin interactions are prepared to attach other certain type of
prohibitions. When two edges, which are junctions of pairs of facets, are partially identical as shown in
Fig.1(b), no explicit intrusion occurs. However in these cases the layer-orderings are subject to certain
constraints so that the stackings shown in Fig. 2(c) are not realizable while those shown in Fig. 2(a) and
(b) are accepted. When the facets angle has a continuous random value, for example, when it is generated
from a probability distribution, it is rare that the two edges become partially identical. Hence the 4-spin
interaction may seem to play no major role. However, in the cases that there is a finite minimum angle
and all other angles are given as a multiple of it, as is often seen in some traditional origami, they are
thought to become important.

We consider cycles formed by chains of the terms of 2- or 4-spin product. If the “frustrated” ones [3] are

included in them, they become sources of unfoldability. In the presentation, we will see the frustration
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from the interactions. It is considered that this cycle-based discrimination in this model is a refinement

description of Justin's ideas [4], which is referred in Hull's literature [5].

~
—

Fig 1. (a)Origami diagram for the case Fig 2. Cross sectional figure of the partially
which is flat-foldable. (b)Pre-folded coincident junctions such as shown in Fig.
diagram corresponding to the diagram (a). 1(b). Ordering of facets like (c) is prohibited
(c)Origami diagram for the case which is while that like (a) or (b) is accepted.

not flat-foldable. (d)Pre-folded diagram

corresponding to (c).
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Abstract

Let G and G4(F) denote the collection of all connected graphs having at least three vertices and the
collection of 4-connected F-free graphs, respectively, where F C G. A graph G is said to be F-free if for
every F' € F, G does not contain F' as an induced subgraph. The members of F are called forbidden
subgraphs and the set F with order three is called a forbidden triple. In this paper, we determine
forbidden triples F for which G4(F) is finite. Specifically, this paper proves that if G4({ K3, K1 m,T}) is
finite, where m > 5, then T is either a path of order at least four, or a caterpillar having maximum degree
at most four such that no degree four vertex is adjacent to a vertex of degree three or higher, and no three
vertices of degree three are contiguously adjacent. Moreover, this paper proves that G4({ K, K1 m,T}) is
finite, where n > 4 and m > 5 if and only if 7" is a path. Also, it will be shown that if G4 ({ K, K1,m,T})
is finite, where 3 < m < 4 and n > 4, then T is a cactus such that all cycles of T" are triangles and whose
block-cutvertex graph is a path.

Keywords: Forbidden triples, 4-connected family of graphs

In this paper, we will determine forbidden triples of the form F = {K,,, K1 ,, T} for which G4(F) is

finite by describing T as a member of the following sets.

1. 7o is the set of trees in G — { K7 2, K1 3, K14} having maximum degree at most 4.

2. 71 is the set of caterpillars belonging to Ty in which no degree four vertex is adjacent to a vertex

of degree three or higher, and no three vertices of degree three are contiguously adjacent.
3. To=A{P,Yn, Y :1>4,m>3n>2}
4. Ty is the set of those cacti T'in G — { K7 2, K3} such that all cycles of T" are triangles.

5. T;* is the set of those members of 7;* whose block-cutvertex graph is a path.
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Figure 1: Graphs Y3 and Y5

Qs ‘ Qs

Figure 2: Graphs (3 and Q)5

6. 75 ={P,Qm,Q3, : 1 >4, m>2 n>1}

The graphs Y3 and Y5 are shown in Figure 1 while ()3 and Q% are shown in Figure 2.

1 Results

The following are the results proved in this paper.

Theorem 1.1. Let T' € G — {K1 9, K13, K14}. If F = {K3, Ky ,,, T} with m > 5 and G4(F) is finite,
then T € 75.

Theorem 1.2. Let T € G — {K12, K13, K14} and F = {K,,, K1, T} with n > 4,m > 5. G4(F) is
finite if and only if T is a path.

Theorem 1.3. Let F = {K,,, Ky ,,,T} where T' € G — {K1 2, K1 3, K3}, n >4 and 3 <m < 4. If G4(F)
is finite, then T' € T{* if n =4, and T € 75 if n > 5.
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STABLE HOMOLOGY-BASED CENTRALITY MEASURES FOR WEIGHTED GRAPHS

JOHN RICK D. MANZANARES AND PAUL SAMUEL P. IGNACIO AND PAUL SAMUEL P. IGNACIO

1. INTRODUCTION

Giscard and Wilson [1] introduced loop-centrality mea-
sure that uses the paths intersecting a loop to measure
its importance. This centrality measure has the ability
to detect essential proteins in protein-protein interaction
networks. For the same purpose, Estrada and Ross [2] ex-
plored an extension of loop centrality to finite-dimensional
substructures where higher-order connectivity networks
are represented by triangles and tetrahedra. A widely
accepted notion of importance for cycles in a simplicial
complex regards long-lived cycles as essential features of
data, while short-lived cycles that appear are likely to be
due to noise. However, Bubenik et al. [3] demonstrated
that short-lived cycles hold important information that
can be used to estimate the curvature of surfaces.

In this study, we propose novel centrality measures
that leverage the persistence of homology classes and
their merge history along the filtration. Integral to this is
the development of an algorithm that captures the merge
history of homology classes. Accordingly, we establish
some properties including stability of these measures un-
der a distance analogous to norms in Lebesgue spaces
and persistence landscapes.

2. METHODOLOGY

Throughout this paper, we shall use [4] and [5] as stan-
dard references for discussions involving simplicial and
persistent homology.

Let G = (V, E) be a graph with vertex set V' and edge
set E. Our main objects are (abstract) simplicial com-
plexes which are collections & of subsets of a finite set V'
such that 7 C ¢ € ¥ implies 7 € €. An element 0 € ¥
is called an (abstract) simplex with dimension |o| — 1.

We can build a simplicial complex € from G by declar-
ing that o € ¥ provided that ¢ is a complete subgraph
of GG. This construction produces a combinatorial model
of G where complete subgraphs represent higher-order
interactions between vertices.

The chain space Cj is the free group generated by
k-simplices with coefficients coming from Z /27, and the
boundary operator Oy, : Cy, — Cl_1 is the linear extension
of the map on generators given by

k

Lag]) =) [T0,. .

=0

8k([x0,...,xj,.. ,fi,...,xk]
where Z; indicates that x; is omitted. Coefficients in the
chain space encode the presence or absence of edges.
The cycle space Z;, and boundary space By of C} are
defined by Zy = ker 0y, and By = Im 0g11. We refer to
elements of 7 as k-cycles and that of By as k-boundaries.

The kth homology group Hy(%) of € is the quotient

Date: August 22, 2022.

Zy./ By Two cycles in Zi (%) lying in the same homology
class in this space are said to be homologous.

Now, we endow a graph G = (V| F) with a weight
function w : £ — R>q to induce a nested sequence of
graphs. This filters a graph at a given weight by remov-
ing edges in excess of such weight. Hence, we also refer
to weights as thresholds. The nested sequence of graphs
{G, } generates a sequence of simplicial complexes {%,, },
which induces a sequence of homology groups { Hi(%,,)}-
In addition, by functoriality, these homology groups are
successively related by a sequence of maps induced by
the monotonic sequence of weights.

By appealing to persistent homology, we track the gen-
erators of each homology class (and their persistence) at
a given threshold that survive as it is sent by the induced
map to a homology group at a larger threshold. This also
induces a natural ordering of representative generators
for homology classes that merge by choosing the gener-
ator formed at the smaller threshold. This is known as
the elder rule. This situation demonstrates the notion of
transferring persistence, and is a key observation why we
examine the merge dynamics among homology classes.

A standard way to compute persistent homology is via
matrix reduction due to Zomorodian and Carlsson [6].
From this method, we can determine the merge instances
using the following results. First, we let ¢(o) be the
column associated with the simplex ¢ in the boundary
matrix and (o) be the representative of ¢(o) due to the
reduction algorithm. Formally, we say that two homology
classes [o] and [v] merge at time ¢ = min{d(0),d(v)}
if they are homologous at €', where d(o) is the death
threshold of .

Lemma 2.1. Let v =} v}, be a cycle where v, gives
birth to v for some p. Suppose that [o] and [v] be distinct
kth homology classes in a filtered simplicial complex satis-
fying b(v) < b(o), where b(v) denotes the birth threshold
of v. If o and v are adjacent with intersection §, and
vp € 0, then the cycle representative of [o] produced by
the reduction algorithm is given by o + v.

Theorem 2.2. Let [0] and [V] be distinct persistent ho-
mology classes where d(o) # d(v). Then [o] and [v] merge
at e = min{d(c),d(v)} if and only if o and v are adjacent.

Consider the induced homomorphism Hj(%,,) —
Hy(%w,) and let [o] € Hp(%y,). We define the first
order merge cluster M [0, w;] of [o] at w; as the set of
homology classes merging with [o] at threshold w;. Induc-
tively, for every integer n > 2, the nth order merge cluster
of [o] at w; contains all homology classes in the first order
merge cluster of every homology class in M,,_1[o, w;].

We also employ Corollary 2.3 to cut down on the ad-
jacency pairings that need to be checked between cycles

126



2 JOHN RICK D. MANZANARES AND PAUL SAMUEL P. IGNACIO AND PAUL SAMUEL P. IGNACIO

across homology classes to determine whether or not they
merge.

Corollary 2.3. Suppose that the homology classes [o]
and [v] merge. If v is adjacent to a cycle 6 & [o], [v] where
d(v) < d(0) < d(o) then either [6] merges with [o] or there
exists a homology class that merges with [o] whose nth
order merge cluster contains [0] for some integer n > 1.

3. HOMOLOGY-BASED CYCLE CENTRALITY

Given a homology class representative o, we begin
by taking the simple aggregate of the persistence of all
cycle representatives that directly merge to a single class.
Hence, if P (o) is the persistence of o at ¢, then

J1(0.¢) 0 for e < b(o)
1\0,€) = .
Pe(0) + X (gem [o,q Pe(s)  for € > b(o)

As each P.(c0) is monotonic and stabilizes when € >
d(c), this function is piece-wise linear and monotonic. A
caveat, however, of the function above is that it treats
all merging instances equally. Hence, we also consider
a second function that scales each aggregate term by a
factor of the merging time between homology classes. We
have

Jo(o,€) = Pe(o)+ D fols)Pels) for e > b(o)

[s]eMioe]

where f,(s) depends on the merge time of [¢] to [¢]. Note
that we can define the scaling function f to put more
value either to merging late by defining f,(¢) = d(s)/d(o)
or early by defining f,(s) =1 — d(s)/d(o).

We can also generalize the cascading effect of merging
by accounting for higher-order merge clusters yielding

J3(o,€) = P(o) + Z Z fo(S)Pe(s) for € > b(o).

T [s]eMr[o,€]

In general, our centrality measures are of the form
Jn : A X W — Ry where A is the collection of all non-
trivial persistent homology classes from a filtration of
a weighted graph G induced by the set of edge weights
W. Hence, each persistence diagram produces a family
of centrality functions.

Now, we will show that the centrality functions defined
above are stable with respect to an appropriate metric.
For simplicity, we denote .J,,(0,€) by Jy, »(€).

We let J, = {Jns|[0] € A} denote the collection of
centrality functions generated by the set of persistent
homology classes A, and endow it with the p-centrality
norm given by

* 1/p
ol = U (o) de)
S PARCTE)

where d* is the minimum between d(o) or the diameter
in the largest cycle in [o].

To prove stability, we must define a distance between
two collections of centrality functions. Consider the col-
lection {||Jn,o [} : Jn,o € T} from the p-centrality norms
in J,. As no natural order exists between the centrality
functions, we appeal to a bottleneck-like distance that
considers optimal matchings to capture the cost of trans-
forming one collection to another. For computational

ifl<p<oo
if p=oc

efficiency, we match the condition in the bottleneck dis-
tance implementation in [7]. Let Q@ = {0} x {[|Jn 0|} :
Jno € Tau} and Q' = {0} x {[|[Jno|lh ¢ Jno € Ti}
be given and define &, = [|Jns|; for z, € Q. Given
A := {(z,z) : = € R} with infinite multiplicity, for a
bijection ¢ : QUA — Q' UA,

%max{éwd s 5¢(Ia)} if gb(.l‘g) €A

otherwise

|25 — &(70)]loo =
|00 — 0g(a)]

For 1 < p < oo, the p-centrality distance is given
by Cp (Tn,J,) = infgsup,cx ||z — ¢(x)]|s where the
infimum is taken over all bijections from 2 U A to
Q' U A. For the case where p = oo, we propose a
distance akin to p-landscape distance [8, p. 94]. We
can order J, ,(d(o)) for all J,, € J, and obtain an
increasing sequence {Jy, ,,}m. In this case, we define

Cp (jn,ka 7;7k) = Zm HJn,m - J;lvaoo )

Now, we determine a bound for the centrality distance
to characterize stability.

Theorem 3.1. Let D and D’ be persistence dia-
grams corresponding to the collections A and A of
persistent homology class representative cycles, and
let R'(p) = V2K(1 + ¢') when 1 < p < oo and
R'(p) = 2¢'(1+¢) when p = oo, where ¢ :=
max{)  |M.[o,d(0)]|: 0 € AUA" and P.(c) # 0} and
K =max{P.(v): [v] € AUA'}. Then

, R'(p){/dp(D,D') ifl1<p<oo
Co (Fnld), I () < {R/(p)dB(D,D/) ifp=occ

Theorem 3.2 (Stability). Let w,w’ : € — R be mono-
tone real-valued functions that filter the simplicial complex
€ built over a graph G = (V, E), and let A and A’ denote
the respective collections of persistent homology class rep-

resentative cycles induced by each filtration. If p = oo, or
q > (1/{'/5]() — 1 when 1 < p < oo, then

Cp (Tn(A), Tn (M) < R (p)llw — v’ co-

4. CONCLUSION

We proposed centrality measures based on persistence
and merge dynamics of homology classes that captures at-
tributes in the topology of points clouds missed by existing
topological summaries. The computation of persistence
is driven by the reduction of the standard boundary ma-
trix. On the other hand, the algorithm for computing
the merge dynamics of homology classes is governed by
the equivalence of merging and adjacency between two
classes. Similar to barcodes, we proved stability by defin-
ing a pseudo-metric akin to the bottleneck and landscape
distances.
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Abstract

We propose bounds for two types of generalized domination numbers of glued graphs - namely
double domination numbers and game domination numbers. The obtained bounds are related to
the double domination numbers and game domination numbers of the original graphs. The double
domination numbers of fan graphs F'n,, and firecrackers F'c, 3, as well as the glued graphs with path
clones and the original graphs being in these two families were established. As a result, we can
construct glued graphs to verify that our bounds for the double domination numbers are tight.

Keywords: double domination number, game domination number, glued graph, bound.

1 Introduction

We consider a binary operation called glue operator, introduced by Uiyyasathian [1]. Consider connected
graphs G; and G2 where V(G1) NV (G2) = @. Let Hy and Hs be connected subgraphs of G; and G,
respectively, and H; is isomorphic to Hs under an isomorphism ¢. The identification of H; and Hy
using the isomorphism ¢ gives the glued graph of G1 and G5 at Hy and Ho with respect to ¢, denoted
by G1 <> Gs. Precisely, G = G; <> G> is the graph with vertex set

Hy2, Hy Hy2 4 Hy

V(G) = (V(IGO\V(H1)) U (V(G2)\V (H2)) U {(v, ¢(v)) : v € V(H1)},

and edge set

E(G) = E(G1\H1) U E(G2\H>)
U{u(v, ¢(v)) : uv € E(G1)} U{(v,¢(v))w : ¢p(v)w € E(G2)}
U{(u, ¢(u)) (v, ¢(v)) : uwv € E(G1) or ¢p(u)g(v) € E(G2)}.

Graphs GG1 and G5 are called the original graphs, and subgraphs H; and Hs, together with subgraph

H C G}{ <1>HG2 isomorphic to Hy and Hs, are said to be the clones.
124 Ho

The domination numbers of glued graphs has been considered by various mathematicians. Ruangnai
and Panma [2] worked on the domination numbers of glued graphs whose original graphs are the paths
P,, and P,. The domination numbers of the graphs obtained from gluing the cycles C,, and C,, were
investigated by Boonmee et al. [3]. Recently, a work on bounds of the domination numbers of glued
graph was studied by Sripratak and Panma [4]. As far as we know, there are no publications on the
generalized domination number of glued graph.

2 Result

The first type of generalized domination number we consider in this work is the double domination
numbers [5]. Let G be a graph. For vertices u and v in V(G), we say that vertex v dominates vertex
wifu € Nv] ={u e V(G) : u=voruv € E(G)}. A subset D? of V(G) is a double dominating set if
for any vertex u € V(G), vertex u is dominated by at least two vertices in D2. The double domination
number dd(G) is the minimum cardinality of a double dominating set of graph G.

We obtain a lower bound 2 and an upper bound

dd(G) < min{dd(G1) + dd(Gs), dd(G1) + dd(Go\ Ha), dd(Gs) + dd(G1\H1)}

for the double domination number of a glued graph G with arbitrary original graphs G; and Gs.

The gluing of fan graphs Fns,,_4 and Fng,,_5 with a clone path Ps,, 4 is an example of a glued
graph whose double domination numbers of the original graphs are m > 2 and that of the glued graph
is equal to 2.
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As for the upper bound, our example is the glued graph G with path clone P,,, whose original graphs
are the glued graphs G and G with firecrackers F'cy, 3 as original graphs and paths P, as clones. The
double domination number of the original graphs G; and G5 are equal to 4m, while the double domination
number of the glued graph G is equal to 8m = min{dd(G1) + dd(G2),dd(G1) + dd(G2\Hz2), dd(G2) +
dd(G1\H1)}.

In conclusion, these examples show that both lower bound and upper bound that we offer in this
work are tight.

The other type of generalized domination number presented here is the game domination numbers [6].
Let G be a graph. The domination game on G is composed of two players: Dominator and Staller. In
each turn, the players alternately choose a vertex that dominates a vertex that has not been dominated in
the previous turns. The game ends when the set of chosen vertices becomes a dominating set. Dominator
wants a minimum dominating set, while Staller wants a maximum one. The size of the dominating set
when both players play the game optimally is the game domination number.

The domination games started by the Dominator and by the Staller result in different game domi-
nation numbers. When the Dominator is the first player, the game domination number is denoted by
9d4(G), and when the Staller is the first player, it is denoted by gds(G). In case that the Staller is allowed
to pass for one turn, we use the notation gd/,(G) for the game domination number if the Dominator is
the first player, and use the notation gs/;(G) for the game domination number if the Staller is the first
player.

Let G be the glued graph of G; and G5 at clones H; and Hy with respect to isomorphism ¢. Then
we obtain these upper bounds:

9da(G) < min{gda(G1) + gdi(G2), 9d4(G1) + gds(G2), gda(G2) + 9di(G1), 9d4(G2) + gds(G1)}

and
9ds(G) < min{gdy(G1) + gd;,(G2), gd,(G1) + gds(G2)}.
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Abstract

Let G(V, E) be a finite simple graph. Denote by |V'| and |E| the cardinality

of the set V and F, respectively. Graceful labeling is an injective function
f from vertex set V into the set {0,1,2,...,|E|} which induces a bijective
function f’ from edge set E onto the set {1,2,...,|E|} such that for every
edge wv € E(G) we have f'(uv) = |f(u) — f(v)|, with u,v € V(G). A graph
that has graceful labeling is called graceful. A chain graph is a graph with
blocks By, B, ..., By, such that for every i, B; and B, have a common vertex,
in such a way that the block-cut-vertex graph is a path. A chain graph
having n blocks By, By, ..., B, is denoted by [Bj, Ba, ..., B,]. Let ¢; be the
common vertex of B; and Bji1, in [B1,Be,...By], 1 < i < n—1. Ifa
vertex of By, ¢y # c1, and a vertex of B, ¢, # ¢,—1, are identified, then the
chain graph [Bj, Bs, ..., By] is called closed. On a closed chain graph, any
cut vertex of related open chain graph is no longer cut vertex. If B = B; for
every ¢ € 1,2,...,n, we denote the open and closed chain graph as [B(")] and
[B(M)],.
The join graph of graphs G and H, denoted by G + H, is the graph obtained
by joining each vertex of G with every vertex of H. Let K, be the complement
of the complete graph on r vertices, K,, r > 1. The join graph K, + K5 may
be considered as a group of 4-vertices cycles, C4, where two non adjacent
vertices of all Cy’s are identified. On this notion, we consider this join graph
K, + K5 as a Cy-realted graph, and is written as rCj.

In this talk we discuss two Cy-related chain graphs and their graceful la-
beling: [rC’in)] and [[Cﬁ’“)]?)].

Keyword: graceful labeling, graceful graph, chain graph, four vertices cy-
cle
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Abstract

We analyze Solo Chess puzzles, where the input is an n x n board containing some standard
Chess pieces of the same color, and the goal is to make a sequence of capture moves to reduce down
to a single piece. Prior work analyzes this puzzle for a single piece type when each piece is limited to
make at most two capture moves (as in the Solo Chess puzzles on chess.com). By contrast, we study
when each piece can make an unlimited number of capture moves. We show that (among standard
Chess piece types), any single piece type can be solved in polynomial time, while any two piece types
are NP-complete. We also analyze the restriction (as on chess.com) that there is only one king and
it must be the last surviving piece, showing that in this case some pairs of piece types remain hard.

1 Introduction

The classic two-player game of Chess is PSPACE-complete [6] or EXPTIME-complete [4] depending on
whether the number of moves is limited to be a polynomial. Recent work analyzes Chess-based puzzles,
including Helpmate Chess and Retrograde Chess which are PSPACE-complete [2] and Solo Chess which
is NP-complete [1]. In this paper, we extend the analysis of Solo Chess to unbounded moves per piece.

First we review standard Solo Chess as implemented on chess.com [3]. All pieces are of the same
color and may capture any piece except a king. Every move must be a capture. The objective is to find
a sequence of moves (captures) that results in only one piece remaining on the board. Further, each
piece can make a maximum of k = 2 moves. Past work [1] generalizes Solo Chess to an arbitrary limit
k on the number of moves per piece (and arbitrary board size), denoting this game by (GENERALIZED)
SoLO-CHESS(S, k) where S is the set of allowed piece types. They proved that SOLO-CHESS({ & },2)
and SOLO-CHESS(S, 1) can be solved in linear time, while SOLO-CHESS({ £ },2), SoLOo-CHESS({ K }, 2),
and SOLO-CHESS({W}, 2) are NP-complete.

This paper analyzes the complexity of Solo Chess puzzles without the restriction on the number of
moves per piece, or equivalently when the move limit per piece is larger than the number of pieces. We
denote this game by SoLO-CHESS(S), which is equivalent to SOLO-CHESS(S, 00). We also consider the
game both with and without the restriction of a single uncapturable king, using ¢! to denote the game
with this restriction and ¢ to denote the more general case that permits multiple kings.

We prove that any single standard Chess piece type (|S| = 1) can be solved in polynomial time, while
for any two distinct standard Chess piece types (|S| = 2, excluding «!), the puzzle is NP-complete.
For the single uncapturable king <!, we prove that the pairs {«e!, &}, {<e! &} and {<' &} are
NP-complete.

2 One Piece Type is Easy

Theorem 2.1. SOLO-CHESS(S) can be solved in polynomial time when S consists of only one standard
Chess piece type.

3 Two Piece Types are NP-Complete

In this section and the next, we prove that SOLO-CHESS(S) is NP-complete for any set S of two distinct
standard Chess pieces. Theorem 3.1 covers two out of three cases when both Chess pieces have constant
range; Theorem 3.2 covers when at least one Chess piece has long range; and Theorem 4.1 covers the last
constant-range case of king and pawn. All of these reductions are from Hamiltonian path in maximum-
degree-3 grid graphs with a specified start vertex and possibly a specified end vertex, or generalizations
thereof (e.g., sometimes we do not need the grid-graph property). This problem is NP-hard by a slight
modification to [5].
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Figure 1: Placing pawns or kings and one knight
to form Hamiltonian path in a grid graph with a
specified start vertex.

7, v 0\ 87,
//////////
WWMW

) n ] W

/ M%Wmmm

/////%/// el
// / / / // / / Figure 3: Placing pawns and one king to represent

Hamiltonian path in a maximum-degree-3 grid
Figure 2: Placing pawns and one rook to form graph with a specified start vertex. Blue pawns

Hamiltonian path in a maximum-degree-3 graph are at grid-graph vertices, while green pawns have
with specified start and end vertices. no capture move.

Theorem 3.1. SOLO-CHESS({4A, & }) and SOLO-CHESS({ 4, ¢ }) are NP-hard.

Theorem 3.2. SOLO-CHESS(S) is NP-hard for any S consisting of two distinct pieces from { &, de &
A, W W} atleast one of which isin { & W W},

See Figures 1 and 2 for proof sketches.

4 One-King Restriction

Next we study the one-king restriction, where only one king is allowed on the board and it must remain
on the board (cannot be captured). We denote this restricted king piece by se'. We prove three negative
results, but a full characterization remains open.

Theorem 4.1. SOLO-CHESS({¢e!, & }), SOLO-CHESS({¢e!, 8 }), and SOLO-CHESS({<e!, & }) are NP-
hard (under the one-king restriction,).

See Figure 3 for a proof sketch of the first case. The other two cases are reductions from 3SAT.
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Abstract
We analyze the puzzle video game This Game Is Not Going To Load Itself, where the player
routes data of three different colors from given sources to given sinks of the correct color. We prove
that the game is NP-hard for three colors given data sources, sinks, and some previously placed arrow
tiles. On the other hand, given three data sinks not too close to the boundary of an otherwise empty
grid, we show how to place arrow tiles to route flow from arbitrary unknown sources, effectively
solving the game as it is normally played.

1 Introduction

This Game Is Not Going To Load Itself (TGINGTLI) is a game created in 2015 by Roger “atiaxi”
Ostrander for the Loading Screen Jam, a game jam hosted on itch.io, where it finished 7th overall
out of 46 entries [Ost15]. This game jam was a celebration of the expiration of US Patent 5,718,632
[Hay98], which covered the act of including mini-games during video game loading screens. In this spirit,
TGINGTLI is a real-time puzzle game themed around the player helping a game load three different
resources of itself — save data, gameplay, and music, colored red, green, and blue — by placing arrows
on the grid cells to route data entering the grid to a corresponding sink cell.

We formalize TGINGTLI as follows. You are given an m X n grid where each unit-square cell is
either empty, contains a data sink, or contains an arrow pointing in one of the four cardinal directions.
Each data sink and arrow has a color (resource), and there is exactly one data sink of each color in the
grid. In the online version (as implemented), sources appear throughout the game; in the offline version
considered here, all sources are present at the start (or are otherwise known a priori). Note that an outer
edge of the grid may have multiple sources of different colors. Finally, there is an loading bar that starts
at an integer kg and has a goal integer k*.

During the game, each source produces data packets of its color/resource, which travel at a constant
speed into the grid. If a packet enters the cell of an arrow of the same color/resource, then the packet
will turn in that direction. (Arrows of other colors are ignored.) If a packet reaches the sink of its
color/resource, then the loading bar increases by one unit of data. If a packet reaches a sink of the
wrong color, or exits the grid entirely, then the loading bar decreases by one unit of data and the packet
disappears. The player may at any time permanently replace an empty cell with an arrow, which may
be of any color/resource and pointing in any of the four directions. If the loading bar hits the target
amount k*, then the player wins, but if the loading bar goes below zero, then the player loses.

In Section 2, we prove NP-hardness of the TGINGTLI decision problem: given a description of the
initial grid configuration (including sources, sinks, and preplaced arrows), can the player place arrows
to win? Conversely, in Section 3, we show that TGINGTLI has a winning strategy from a given initial
grid that has sinks but no preplaced arrows (which is how each level starts in the implemented game).
Notably, this solution works independent of the sources, so also works in the online setting.

2 NP-Hardness

We prove that TGINGTLI is NP-hard by reducing from a new problem called 3-Dimensional SAT
(83DSAT), defined by analogy to 3-Dimensional Matching (3DM). 3DSAT is a variation of 3SAT where,
in addition to a 3CNF formula, the input specifies one of three colors (red, green, or blue) to each
variable of the CNF formula, and the CNF formula is constrained to have trichromatic clauses, i.e., to
have exactly one variable (possibly negated) of each color.

Lemma 2.1. 8DSAT is NP-complete.
Theorem 2.2. TGINGTLI is NP-hard.
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Figure 3: Crossover

Figure 2: Variable Gadget between two
Figure 1: Clause Gadget. At most two streams of  Gadget lets the user literal paths of same
data, representing false literals, can pass through the route data from a or different colors.
gadget (by placing upwards arrows in the “7?” cells) source to one of two (The center cell is
without getting lost. A left arrow instead will put the literal paths. colored different from
stream into a cycle, and a down or right arrow will both paths.)

cause damage.
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Figure 4: End Gadget loads data at a unit rate per Figure 5: Damage Gadget forces damage at a
literal path that has not been lost. unit rate after a desired start delay.

3 Guaranteed Victory Layouts

We show the existence of winning strategies when starting
with a grid with no arrows, thus as a function of the location
of the data sinks. Our layout where all sinks are at least three
grid cells away from the boundary and no two data sinks are
in the same row or column has two key components. First,
we have a set of arrows of the appropriate color connected
to the sink via a connected path of arrows of the same color == g T N TR
and all pointed into the sink. We call these the sink-adjacent & ma ! na .dn
arrows. Then, we have a set of arrows on the boundaries dddd.d...ﬂdﬂ*
which are pointed counterclockwise and routes packets of the dddﬂ.ﬁ.‘.ddﬂg
same color along the boundary until they hit an arrow in the [ =2 L - > .-./ dﬂ
same row or column as a sink-adjacent arrow. These arrows

are directed in the same direction as the sink-adjacent arrow Figure 6: Example Guaranteed Victory
in the same row/column and redirects the packet into a sink- Layout for Theorem 3.1. Any data packet
adjacent arrow. Fig. 6 shows an example layout. that enters this rectangular region will be

routed to its matching sink.

Theorem 3.1. If all three data sinks in the grid are at least
three grid cells away from the boundary, and no two data sinks share a row or column, then there is a
layout of arrows guaranteeing every data packet from any data source will reach its packet’s data sink.

Theorem 3.2. If a data sink is on the boundary or one cell away from the boundary of the grid, then
there is not always a guaranteed victory layout.
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In [7] an interesting study of permutation arrays under the Chebyshev metric was presented.
This complemented many studies of permutation arrays under other metrics, such as the Hamming
metric [1] [2] [4], Kendall 7 metric [6] [3], and several others [5]. The use of the Chebyshev metric
was motivated by applications of error correcting codes and recharging in flash memories [6].

Let o and 7 be two permutations (or strings) over an alphabet ¥ C [1...n] = {1,2,...,n}. The
Chebyshev distance between o and m, denoted by d(o,7), is max{ |o(i) — 7 (i)| | ¢ € ¥ }. For an
array (set) A of permutations (strings), the pairwise Chebyshev distance of A, denoted by d(A),
is min{ d(o,7) | o,m € A }. An array A of permutations on [1...n] with d(A) = d will be called
an (n,d) PA. Note that this includes the case when A is a set of integers, i.e. a set of strings of
length one, where d(A) corresponds to the minimum difference between integers in the set. Let
P(n,d) denote the maximum cardinality of any (n,d) PA A. More generally, let P;(X) denote the
maximum cardinality of any array of permutations over the alphabet ¥ C [1...n] with Chebyshev
distance d. For example, P>({1,3,5,7}) = 4! = 24, whereas P(4,2) = 6.

Let A be a subset of [1...(n+1)] such that d(A) > d, then, for all i € A, Py([1..(n+1)] —{i}) >
P(n,d). Observe that the set {1,d+1,2d+1,...,[5]d+ 1} is a subset of [1...(n +1)] with [5] 41
elements with Chebyshev distance d and was used in [7].

Theorem 1. Let A be a subset of [1...(n+1)] such that d(A) > d. Ifn > d > 1, then P(n+1,d) >
2iea Pa([l.(n+ 1)] = {i}).

Theorem 1 by choosing A = {3,6,9}, gives the lower bound P(11,3) > 53,549, as P3([1..11] —
(3}) = P3([1..11] — {9} > 17,573 and Ps([1..11] — {6}) > 18, 403.

Theorem 2. P(n,d) > max{P(ny,d1) * P(ne,ds) | di + da = d and ny + no = n and, for some
constant a, ny = ady; +1r1 and ng = ady + 19, with 0 < 11 < dy and with 0 < ro < da}, where the
mazimum s taken over all possible values of ni,ns,dy,do.

Theorem 2 gives the lower bound P(16,9) > P(9,5)*P(7,4) > 3,399, where a = 1, 9 = 1544,
7 =14+ 3, and the best lower bounds known for P(9,5) and P(7,4) are 103 and 33, respectively.
We improve another result in [7] and give an exact equation for P(n,2).

Theorem 3. P(n,2) = ztgﬁ

We also give a generalization of Theorem 1 using strings of more than one symbol. Let A be a
set of length m strings with no repeated symbols (permutations) over [1..(n 4+ m)]| with d(A) > d.

*Department of Computer Science, University of Texas at Dallas, Box 830688, Richardson, TX 75083 USA.
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By an abuse of notation, for each o € A, let ¢© denote the complement in [1..(n + m)] of the set
of symbols used in o. We show that P(n +m,d) > >, Pi(c“). Let Q((n +m),m,d) denote
the collection of all sets A of permutations on a m symbol subset of [1..(n 4+ m)] with d(A) > d.
Maximizing the sum over all such sets A yields the following.

Theorem 4. For anyn >d > 1, P(n+m,d) > maXscq((n+m)md) 2 Py(c%).

o€eA

Klgve et al.[7] gave the following Gilbert-Varshamov type upper bound, when d is even and
2d>n>d> 2,

(n+1)!
V(n+1,d/2)’
where V(n+1,d/2) is the number of permutations on {1,2,...,(n+ 1)} within distance d/2 of the
identity permutation.

In Theorem 5 we give a better upper bound. Using Theorem 5 we show, for example, P(11,6) <
462.

Theorem 5. For1 <k <d<n,

P(n,d) <

P(n,d) < P(n— k,d) - (Z)
Theorem 6. Suppose that P(ng,ng — k) < m such that
2k(m+1) < (ng+ 1)(1 4+ |no/(2k — 1) ]). (1)
Then P(n,n — k) <m, for all n > ny.

In addition, we give tables to show our improved lower bounds and upper bounds for P(n,d).
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In [9], [6], [3], [8] permutation arrays under the Kendall -7 metric were studied. This comple-
mented many studies of permutation arrays under other metrics, such as the Hamming metric [1]
[2] [4], Chebyshev metric [7] and several others [5]. The use of the Kendall-7 metric was motivated
by applications of error correcting codes and rank modulation in flash memories [6].

Let o0 and 7 be two permutations (or strings) over an alphabet ¥ C [l..n] = {1,2,...,n}.
The Kendall-t distance between o and 7, denoted by d(c, ), is the minimum number of adjacent
transpositions (bubble sort operations) required to transform o into 7. For an array (set) A of
permutation (strings), the pairwise Kendall-7 distance of A, denoted by d(A), is min{ d(o, ) | o, 7 €
A }. An array A of permutations on [1...n] with d(A) = d will be called an (n,d) PA. Let P(n,d)
denote the maximum cardinality of any (n,d) PA A.

Theorem 1. [9] Let m = ((n-2)!"1-1)/(n-3), where n-2 is a prime power. Then

n!
Pn2t+1)> ———.
(241D 2 o Tym
For example, by choosing t=1 and n=11, one obtains, by Theorem 1, P(11,3) > 1,330, 560.
Theorem 1 applies only when n is two greater than a power of a prime.

Theorem 2. [6] For all n,d > 1 we have P(n+ 1,d) > ["1]P(n, d).

For example, to compute a lower bound for P(17, 3) one can use, iteratively, Theorem 2 to obtain
P(17,3) > [387 - L] - P(15,3) = 36 - P(15,3). We give a generalization and an improvement. Let
A be a set of permutations on [1..n] with the restriction that the first n —m symbols are in sorted
order, for a given m < n. Such a set with Kendall-7 distance d is called an (n,m,d) PA. Let
P(n,m,d) denote the maximum cardinality of any (n,m,d) PA A.

Theorem 3. For any m <n and d, P(n,d) > P(n,m,d) - P(n —m,d).

In [6] Theorem 2 was proved using the set {1,d+1,2d+1,...,["1]d 4 1}, which corresponds
toa (n+1,1,d) PA. In general, a (n, m, d) PA can be much larger than one obtained by the iterative
use of Theorem 2. For example, for all n, we give (n, 3,3) PAs with % permutations, when n—1
is not divisible by 3. This means that, for n = 24 we give a (24,2,3) PA with 100 permutations,
whereas the two fold iterative use of Theorem 2 gives a (24,2, 3) PA with 64 permutations. Thus,
using Theorem 3 we obtain P(24,3) > 100 - P(22,3), an improved lower bound.

It should be noted that one can improve on Theorem 3. For each permutation, say 7 in a
(n,m,d) set A, one can generally find a larger set of permutations than in the best (n —m,d) PA.
Let P-(n,d) denote the maximum cardinality of any (n,d) PA with the highest m symbols in the
same positions as in 7, but where the other n-m symbols can be in any order.

*Department of Computer Science, University of Texas at Dallas, Box 830688, Richardson, TX 75083 USA.
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Theorem 4. For any n,d, P(n,d) > max,ma—pa A2 rea Pr(n,d).

Let us, temporarily, describe strings (permutations) in P(n,2,3) and P(n,3,3), by replacing
the symbols [1..n — 2] ([1..n — 3], respectively), which are in order, by blank symbols, i.e. ”.”.
Then consider m(a,b,¢) = ..,n—1,..,n,.. and ma(a,b,c) = ..,n,..,n—1,.., where a, b, c denotes the
number of symbols in the 3 gaps represented by the ”..”. Specifically, we use:
m1(a,b,c) for a =0,2,4,.. and b= 0, 3,6, .., and m3(a,b,c) for a =1,3,5,.. and b =0, 3,6, ...

For example, 1, forn=7and a=b=0,is”76 7- - - - - ” and mo, forn=T7and a=1,b=0, is -
76----". Using m and ms:

Theorem 5. P(n,2,3) > %, orn # 1 mod 3 and P(n,2,3) > % forn =1 mod 3.

Similarly, for Kendall-7 distance 4 and for n = 2k 4+ 1, use m(a,b,c) for a = 0,2,4,.. and
b=0,4,8,..; m(a,b,c) fora =0,2,4,.. and b =3,7,11, ...

Theorem 6. P(4k +1,2,4) > 2k> + k for k > 1 and P(4k + 3,2,4) > 2k + 3k + 1 for k > 0.

In addition, we give tables to show computed bounds for P(n,m,d). We also give improved
lower and upper bounds obtained for sporadic values of P(n,d), which were obtained by the use
of automorphisms (as in [3]), maximum cliques, the use of greedy programs with randomness, and
Theorem 4.
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Two Strong Avoider-Avoider Games

Milos Stojakovié® Jelena StratijevT

Abstract

Given an increasing graph property F, the strong Avoider-Avoider F game is played on the
edge set of a complete graph. Two players, Red and Blue, take turns in claiming previously
unclaimed edges with Red going first, and the player whose graph possesses F first loses the
game. If the property F is “containing a fixed graph H”, we refer to the game as the H game.

We prove that Blue has a winning strategy in two strong Avoider-Avoider games, P, game
and CC,3 game, where CC,3 is the property of having at least one connected component on
more than three vertices.

We also study a variant, the strong CAvoider-CAvoider games, with additional requirement
that the graph of each of the players must stay connected throughout the game. We prove
that Blue has a winning strategy in the strong CAvoider-CAvoider games K ;3 and Py, as well
as in the Cycle game, where the players aim at avoiding all cycles.

1 Introduction

A positional game is a pair (X, F), where X is a finite set called a board, and F is the family of
target sets. The game is played by two players who alternately claim previously unclaimed elements
of X until all the elements of the board are claimed. Our interest lies with games whose board is
the edge set of the complete graph K,,.

When it comes to the rules for determining the game winner in a positional game, there are
several variants. In a Maker-Breaker positional game two players are called Maker and Breaker.
Maker wins the game if by the end of the game he claims all elements of a winning set, otherwise
Breaker wins the game. Avoider-Enforcer games are the misére version of Maker-Breaker games,
with two players Avoider and Enforcer. Enforcer wins the game if, by the end of the game, Avoider
claimed all elements of a losing set, otherwise Avoider wins.

In contrast to the weak positional games where the first player is given a goal while the second
one just tries to prevent the first player from achieving his goal, in the strong games the two players
compete for achieving the same goal. In the strong Maker-Maker game (X, F), two players called
Red and Blue take turns in claiming previously unclaimed elements of X, with Red going first.
The player who first fully occupies some F' € F is the winner. If neither of the players wins and all
the elements of the board are claimed, the game is declared a draw.

The Strong Avoider-Avoider game (X, F) is again played by Red and Blue, but now the player
who first fully occupies some F' € F loses the game. One such game, widely known as Sim, is
played on the edge set of K¢, and a player who first claims a triangle loses. Even though it is
immediate that draw is impossible, and the board is reasonably small, analyzing it is challenging,
and the proof that Blue wins is performed with the help of a computer.

It may seem that in strong Avoider-Avoider games, in contrast to the strong Maker-Maker
games, Blue always has an upper edge, and Red as the first player cannot expect to win under

*Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Serbia, e-mail:
milosst@dmi.uns.ac.rs. Partly supported by Ministry of Education, Science and Technological Development of the
Republic of Serbia (Grant No. 451-03-68/2022-14/200125). Partly supported by Provincial Secretariat for Higher
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TDepartment of Fundamental Sciences, Faculty of Technical Sciences, University of Novi Sad, Serbia, e-mail:
jelenaknezevic@uns.ac.rs. Partly supported by Ministry of Education, Science and Technological Development of
the Republic of Serbia (Grant No. 451-03-68/2022-14/200156).
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optimal play? This, however, turns out not to be true! For example, in d-dimensional Tic-Tac-Toe
game n , where n is odd, Red has an explicit drawing strategy, and 3% Tic-Tac-Toe is Red’s win.
In the last few years several variants of positional games have emerged, like the PrimMaker-
Breaker game introduced in [3] where the subgraph induced by Maker’s edges must be connected
throughout the game. We study Strong CAvoider-CAvoider games in which the graph of each
player must stay connected throughout the game. The board is still the edge set of K,,, and the
players should not claim a copy of the forbidden graph. This is a natural extension of the strong
Avoider-Avoider games, with a connectedness constraint analogue to the one mentioned above.

2 Our results

We are interested in Strong Avoider-Avoider games played on the edges of the complete graph K,,.
These games are known to be notoriously hard to analyze, not much is known, while there are
many open problems. In [2] it was shown that Blue has a winning strategy in the P; game, where
the forbidden graph is the path with just two edges. Recently, Beker [1] generalized this result to
all stars, proving that for each fixed k the Strong Avoider-Avoider star K j,; game is a win for
the second player for all sufficiently large n. Finally, Malekshahian [4] studied the possibility of
Blue’s win in the triangle game with assumption that the game starts on several special mid-game
positions, without any definite implications on the outcome of the triangle game itself. Hence, the
only non-trivial Strong Avoider-Avoider game played on E(K,,) for which the outcome is previously
known is the star game.

The abbreviation CCs3 stands for the collection of inclusion-minimal connected graphs on more
than three vertices, P4 represents a path on four vertices and K 3 a star with three leaves.

Theorem 2.1. Blue has a winning strategy in the Strong Avoider-Avoider P, game, played on
K,,, where n = 8.

Theorem 2.2. Blue has a winning strategy in the Strong Avoider-Avoider CCss game, played on
K,,, where n = 5.

We prove that Blue can win in three different strong CAvoider-CAvoider games.

Theorem 2.3. Blue has a winning strategy in the Strong CAvoider-CAvoider K, 3 game, played
on K,,, wheren = 7.

Theorem 2.4. Blue has a winning strategy in the Strong CAvoider-CAvoider Py game, played on
K,,, where n = 5.

Theorem 2.5. Blue has a winning strategy in the Strong CAvoider-CAvoider Cycle game, played
on K,,, where n = 6.

More details and all of the proofs can be found in the full version of our paper [5].
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MULTISTAGE POSITIONAL GAMES

JURI BARKEY, DENNIS CLEMENS, FABIAN HAMANN, MIRJANA MIKALACKI, AND AMEDEO SGUEGLIA

ABSTRACT. We initiate the study of a new variant of the Maker-Breaker positional game, which we call multistage
game. Given a hypergraph H = (X, F) and a bias b > 1, the (1 : b) multistage Maker-Breaker game on H is played
in several stages as follows. Each stage is played as a usual (1 : b) Maker-Breaker game, until all the elements
of the board get claimed by one of the players, with the first stage being played on H. In every subsequent
stage, the game is played on the board reduced to the elements that Maker claimed in the previous stage, and
with the winning sets reduced to those fully contained in the new board. The game proceeds until no winning
sets remain, and the goal of Maker is to prolong the duration of the game for as many stages as possible. Here
we estimate the maximum duration of the (1 : b) multistage Maker-Breaker game, for biases b subpolynomial
in n, for some standard graph games played on the edge set of K,: the connectivity game, the Hamilton cycle
game, the non-k-colorability game, the pancyclicity game and the H-game. While the first three games exhibit a
probabilistic intuition, it turns out that the last two games fail to do so.

1. INTRODUCTION

Maker-Breaker games are combinatorial games of perfect information and no chance moves, played by two
players who alternately claim previously unclaimed elements of the given board. Formally stated, given any
positive integer b and any hypergraph H = (X, F), in a biased (1 : b) Maker-Breaker game on H Maker and
Breaker alternate in moves, usually with Maker being the first player and in each move, Maker is allowed to
claim one previously unclaimed element from the board X', and Breaker is allowed to claim up to b such elements.
If, throughout the game, Maker manages to occupy all the elements of a winning set F' € F, she is declared the
winner of the game. Otherwise, Breaker wins. Note that these rules imply monotonicity in Breaker’s bias [2].
In particular, there must be a threshold bias by such that Breaker wins if and only if b > by. The size of such
threshold biases has been investigated for many standard graph games in recent years, and complete studies can
be found in [1, 3.

We look at the Maker-Breaker games played on F(K,), i.e. the edge set of the complete graph on n vertices,
precisely at the games defined by the hypergraphs C,, HAM,,, Hun, PAN, and COL, ; on the vertex set
X = E(K,), with the hyperedges being the edge sets of all spanning trees of K, all Hamilton cycles of K, all
copies of a fixed graph H in K, all pancyclic spanning subgraphs of K,, and all subgraphs of K,, with chromatic
number larger than k, respectively.

There is a strong connection between these games and the so-called random graph intuition, as observed by
Chvatal and Erd6s [2], which roughly says that the more likely winner in the game between two random players
is the same as the winner between two perfect players when played on E(K,). If this is true, then the threshold
bias by should asymptotically be the inverse of the threshold probability ps for the property that G(n,p), where
p= ﬁll, contains an element of H.

Given a hypergraph H = (X, F) and a bias b > 1, we define the multistage (1 : b) Maker-Breaker game on H as
follows. The game proceeds in several stages, with each stage being played as a usual (1 : b) Maker-Breaker game.
For convenience we define Xy := X, Fy := F and Hg := H. Then, for ¢ > 1, in the stage i, Maker and Breaker
play on the board X;_1, consider the hypergraph H; 1 = (X;_1,F;_1), and alternate in turns in which Maker
occupies exactly one unclaimed element of X;_1, and afterwards Breaker occupies up to b unclaimed elements of
X;_1, with Maker moving first. Once all the elements of X;_; have been distributed among both players, we let
X; < X;_1 be the set of all elements claimed by Maker in stage i, and we let F; = {F € F;,_1: F < X;} be the
set of all remaining winnings sets (from F) that Maker managed to fully occupy in stage i. Observe that this
defines a new hypergraph #H; := (&X;, F;). We stop the game the first time that there are no winning sets left
anymore, and our main question is how long Maker can delay the stop of a given game. For that, we define the
threshold parameter 7(?,b) as the largest number s such that, in the (1 : b) multistage Maker-Breaker game on
hypergraph H, Maker has a strategy to ensure F; # & and thus to play at least s stages.
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2. RESULTS

A random graph intuition in this setting corresponds to the assumption that a random game is likely to last as
long as a perfectly played game. Therefore, if true, the random graph intuition would suggest that Maker can
maintain a spanning subgraph, a Hamilton cycle, or a non-k-colorable graph for roughly log; , ; (n) —log, . (In(n))
stages. We show this is indeed asymptotically the best that Maker can do.

Note that in our results, we use ms(H) = max ccu LG =1 15 denote the mazimum 2-density of H and m(H) =

w(agy=3 v(G)—2
max cen 2E) to denote the mazimum density of H.
v(G)=1 v(G)

Theorem 2.1 (Multistage Hamilton cycle game). If b is subpolynomial in n, then

T(HAM;, b) = (1 + 0(1)) logy 1 (n) -
Corollary 2.2 (Multistage connectivity game). If b is subpolynomial in n, then

7(Cn,0) = (1 4 0(1)) logy 1 (n) .

Theorem 2.3 (Multistage non-k-colorability game). If b and k are subpolynomial in n, and k = 2, then

T(COL, 1, b) = (1 +0(1))logy, 1 (n).
However the random graph intuition fails for both the multistage H-game and the multistage pancyclicity
game, as, if played randomly, they would typically last (ﬁ + 0(1)) log,,1(n) and (1 + o(1))log,,,(n) stages,
respectively, while we can show the following.

Theorem 2.4 (Multistage H-game). If b is subpolynomial in n, then

T(HHn,b) = (7”21[{) + 0(1)> log,,1(n) .

Theorem 2.5 (Multistage pancyclicity game). If b is subpolynomial in n, then

T(PAN . b) = <; + 0(1)) logy . 1(n) .

Observe that in all our results, it happens that the threshold 7(#,b) is asymptotically the same as log; . (by),
where by denotes the threshold bias discussed earlier. We believe that this is not a coincidence.

Using Lehman’s Theorem [4], we can even provide a precise result for the (1 : 1) multistage connectivity game,
showing that Maker can do slightly better than what the above random graph argument suggests.

Theorem 2.6 (Unbiased connectivity game).
7(Cn, 1) = [logy(n) —1].
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An m-fold weaving on a polyhedron is a wrapping of set of rings in-
terlaced with each other such that every point on the polyhedron either
belongs to (the interior of) exactly m rings or lies on the boundaries of
rings. In a weaving on a polyhedron, a ring is a closed strip of constant
width which can be thought of as a rectangular strip of paper having
zero thickness connected end to end to form a cylinder. At each point
Q (on the polyhedron) which does not lie on the boundaries of the rings,
the rings containing @ have stated ranking and this ranking is the same
for each point @) contained in the rings. The ranking indicates that one
ring is higher (passes over) or lower (passes under) than other rings at a
particular section of the ring.

A plain weaving on a polyhedron is a two-fold weaving where each
ring passes alternately over and under at crossings or overlaps. In this
presentation, we discuss a necessary condition for the existence of a plain
weaving on a polyhedron. Given a regular or semi-regular polyhedron, a
systematic method to arrive at a polyhedron admissible to plain weavings
will also be presented.

An example of a plain weaving on polyhedron A4 is shown in Figure
1(a). Polyhedron Aga is obtained from regular octahedron Psa by replac-
ing each face of P31 with a baseless pyramid having right isosceles triangle
faces. We say that Ass+ is admissible to plain weaving with 5 rings in each
direction where rings in the same direction are given the same color. This
plain weaving is represented by its plane diagram in Figure 1(b). This
diagram is obtained from the net diagram of P;a where vertices with the
same labels correspond to a single vertex of P;4 and where the sides of
an appended pyramid are projected to a face of Psa. In this diagram, the
rankings of the rings at each crossing can be determined. For instance, in
polygon ajvsasva, at yellow squares the yellow rings passes over red rings,
and at red squares the yellow rings passes under red rings.

Keywords: weaving, plain weaving, polyhedra
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Figure 1: (a) A plain weaving on polyhedron A3« and (b) its plane diagram.
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Abstract

Finite automata are used to encode geometric figures, functions and can be used for image
compression and processing. The most common approach is to represent each point of a figure in R"
as a convolution of its coordinates written in some base b > 2. Then a figure is said to be encoded
as a finite automaton if the collection of all such convolutions is a regular w—language. Similarly, a
function is said to be encoded as a finite automaton if its graph can be encoded as a finite automaton.
Jiirgensen, Staiger and Yamasaki [1] showed that the only continuously differentiable functions which
can be encoded as a finite automaton are linear. In this work we propose an alternative approach
to encode functions using tools from computational geometry which enables us to extend a family
of functions that can be encoded as finite automata. These tools are B—splines and hierarchical
tensor product B-splines which are used in computer—aided design and computer graphics. With
our approach we show that not only linear function can be encoded as finite automata but a large
family of piecewise polynomial functions of an arbitrary degree of smoothness. Furthermore, we
demonstrate that our encoding fits well in the framework of hierarchical tensor product B—splines by
providing algorithms for basic problems arising in this framework. Our approach works not only with
standard repesentations in base b > 2, but with other (nonstandard) representations of numbers.

1 Introduction

The idea to encode subsets of R™ as finite automata is not new. It was originally proposed by Biichi
in the 1960s as an approach to prove decidability results in arithmetic. This idea later emerged in the
1990s—-2000s but as a tool for image compression and processing see, e.g., [2,3] and for handling linear
arithmetic over integers and reals [4]. To encode figures of zero size such as points, lines or planes the

following approach is used [3,4]. A point T = (z1,...,x,) € R™ is represented as a convolution of infinite
strings written in a base b > 2. For example, a point (471', %) € R? can be represented by the convolution

of two infinite strings 12.5663706144 . .. and 0.5235987756 . .. representing 47 and %, respectively, in the
1 2 .5 6 6 3 7 0 6 1 4 4
O 0 . 5 2 3 5 9 8 7 7 5 6

A figure U C R™ is given by its set of points T € U which defines an w-language L (a set of infinite
strings) of all possible convolutions representing T € U in some base b > 2. The figure U is said to be
encoded as a finite automaton™ if L is recognized by a finite automaton A = (X, S, sg,d) with an input
alphabet ¥, a set of states S, the initial state sg and the transition function § : S x ¥ — S U {L}.
If 6(s,0) = L, it means that d(s,o) is undefined. An automaton A accepts’ an infinite string w if
0(s0,u) # L for all prefixes u of w, where §(sg, u) is defined in a usual way; in other words the automaton
does not get stuck while reading the string w. An w-language is said to be recognized by A if it consists
of all infinite strings accepted by A.

Let f : R¥ — R be a continuously differentiable function. It is said to be encoded as a finite automaton
if the graph T'(f) = {(7, f(v)) | v € R¥} C R**! is encoded as a finite automaton. Jiirgensen, Staiger and
Yamasaki showed that a continuously differentiable function of one variable with non—constant derivative
is not encodable as a finite automaton [1]. Therefore, if f is encoded as a finite automaton, it can only
be linear. An alternative representation which enables encoding of continuously differentiable functions
as finite automata other than linear ones comes from a branch of computational geometry — geometric
modeling. In this representation f is written as a sum f = 2665 AeBe, where A¢ € R, B¢ are tensor

decimal representation (b = 10):

*In their original paper Jiirgensen, Staiger and Yamasaki [1] define figures encoded as a finite automaton only for subsets
of the unit cube [0, 1]™. However their definition can be straightforwardly applied to subsets in R™. Also, in their definition
they use a more general notion — regular w—languages which extend w—languages recognized by finite automata by applying
operations of union, intersection, set—theoretical difference, projections and their inverse mappings.

TThe reader can notice that A is equivalent to a certain deterministic Biichi automaton. For practical reasons some
researchers prefer to use more powerful nondeterministic Biichi automata to define figures encoded as finite automata, see,
e.g. [3]. However, all examples which appear in the literature can be obtained as sets of solutions to systems of linear
inequalities with rational coefficients and their infinite copies, see, e.g., [4].
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product B—splines and Z is a countable set. Tensor product B—splines are products of univariate B—
splines Nz, ..., Zm+1](z) defined by knots xg < -+ < #y,41 which are concrete piecewise polynomials
of degree m having support in the interval [zq, p+1]; if 2o < -+ < Zpy41, then they are of differentiability
class C™~ 1. Thus, instead of representing every single point of I'(f) as a convolution of strings, we can
represent each pair (A¢, Be) as a convolution of strings presenting A¢ and the knots defining B¢. The
numbers A¢ and the knots defining B¢ can be chosen from some countable subset dense in R and can
be presented by finite strings instead of infinite ones. Since Z is countable, all this enables us to use
classical finite automata instead of their Biichi counterparts to encode functions.

In geometric modeling knots defining B¢ are not chosen arbitrarily but in a systematic way to
guarantee linear independence of B¢, ¢ € E and their completenesst. In this work we use a mainstream
approach which guarantees both (linear independence and completeness) — hierarchical tensor product
B-splines. In brief, for a d-dimensional mesh defined by a nested sequence of domains R O Q! D
- D ON=1 5 QN = & hierarchical tensor product B-splines are obtained through the process which
is referred to as Kraft’s selection mechanism [5]. They are linearly independent. Moreover, they form a
complete basis if a certain geometric condition on the shapes of the domains Q', ..., QN1 is satisfied [6].
In this work we show in particular that the proposed encoding of functions as finite automata fits well
in the classical framework of hierarchical tensor product B-splines. Moreover, it enables to have a finite
representation for infinite meshes and functions with unbounded domains which is suitable for computing.

2 Main Results

We carefully introduce our construction for encoding C™~! piecewise polynomial functions of degree m
over a hierarchical mesh as finite automata. Then we show that for our encoding linear functions along
with the traditional approach can also be encoded as finite automata for each m. After that, using
our encoding, we describe algorithms for specific problems which occur in the framework of hierarchical
B—splines. In brief, these problems and algorithms are as follows.

Let us first be given a finite automaton encoding a hierarchical mesh. This mesh is defined by a
nested sequence of domains R D Q! O ... D QN-1 5 OV = &. We describe a verification procedure
for this nestedness condition. Kraft’s selection mechanism [5] generates a complete basis consisting of
tensor product B-splines if a certain geometric condition on the shapes of the domains Q' ..., QY1 is
satisfied [6]. We describe a verification procedure for this geometric condition. Furthermore, we describe
an algorithm for constructing a finite automaton which encodes a collection of the basis generated by
Kraft’s selection mechanism. Now let us be given a finite automaton encoding a function f. We describe
an algorithm for computing the value of this function f at any given point. Moreover, suppose that the
mesh is refined by selecting a nonempty subdomain Q@ C QV~!. Then the automaton encoding f must
be updated for the refined mesh. We describe an algorithm for constructing a finite automaton encoding
f with respect to the refined mesh.

Finally we discuss how our encoding can be adapted to the use of other (nonstandard) representation
of numbers, see, e.g., [7].
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147



MULTIPARTITE RAMSEY NUMBERS OF DOUBLE STARS
I Wayan Palton Anuwiksa, Rinovia Simanjuntak, and Edy Tri Baskoro

paltonanuwiksa@students.itb.ac.id, rino@math.itb.ac.id,
ebaskoro@math.itb.ac.id

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural
Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung, Indonesia

Abstract

Let s be a positive integer with k& > 2 and G, G2 be simple graphs. The set
multipartite Ramsey number, M (G1,G2), is the smallest positive integer ¢ such
that any 2-coloring of the edges of K.«s contains a monochromatic copy of G;
in color ¢ for some ¢ € {1,2}. Let ¢t be a positive integer with ¢ > 2. The size
multipartite Ramsey number, m;(G1,G2), is the smallest positive integer ¢ such
that any 2-coloring of the edges of K contains a monochromatic copy of G; in
color ¢ for some i € {1,2}. For a > b > 0, the double star S(a, b) is the graph on the
vertex-set {vo,v1,...,Vq, Wo, W1, ..., wp} with edge-set {vowo, vovi, wow;|l < i <
a,1 < j < b}. In this talk, we utilize (—1, 1)-matrices and strongly regular graphs
to establish lower bounds, upper bounds, and some exact values of multipartite
Ramsey numbers of double stars. Our main result is the following.

Theorem 1. Let m,n,ty,ts be integers where m > 4 and n > 6. If m is even and
n is not a prime number, then we have the following.

o Ifm > 2max{ty,ta}+1, then M,,(S(m(n—1)/2,t1),S(m(n—1)/2,t2)) = n+1.
o Ifn > 2max{ty,t2}+2, then m,(S(m(n—1)/2,t1),S(m(n—1)/2,t2)) = m+1.
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Abstract

For a simple graph G(V, E) and positive integer k, a vertex irregular total k-
labeling of G is a mapping ¢ : VU E — {1,2,...,k} such that wt(z) # wt(y)
for any two distinct vertices x,y € V, where wt(z) = o(x) + > .cp¢(xz). The
minimum k for which G has a vertex irregular total labeling is called the total
vertex irregularity strength of G and is denoted by tvs(G). Finding the total vertex
irregularity strength for general trees is a difficult and a challenging problem. Nurdin
et al. [1] conjectured that for every tree T', then tvs(T) = max{[(ni +1)/2], [(n1 +
ng + 1)/31, [(n1 + na + ng + 1)/4]}, where n; (i = 1,2,3) denote the number of
vertices of degree i in T. The truth of the conjecture has been verified for any tree
with maximum degree four or five [2, 3]. However, for trees with maximum degree at
least six, the conjecture is still open. Let T be a tree. A leaf is a vertex of degree 1. A
vertex is called an exterior vertex if it is adjacent to a leaf. In this talk, we consider
trees with large number of exterior vertices. In particular, we prove that any tree
T containing n§ exterior exterior of degree 2 and at least [(n; + 1)/2] — 2n§ — 1
exterior vertices of degree d > 2 such that 3ng —n; — 1 < ng < (n; +1)/2 or
n2 < min{3ns —n; —2,n; —ng+1} then tvs(T') = [(n1+1)/2]. This result further
supports the above-mentioned conjecture of Nurdin et al. [1].
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Abstract

We use the definition of graph based on [1] where E C [V]?. Also, the graph that we talk here is
a nontrivial and connected graph. Suppose that G and H two graphs where H is a subgraph of G.
We define G admits H-covering if for every e € E(G), there exist H' as subgraph of G isomorphic
to H such that e € E(H'). Let us see the figure below. We can see that for every edge e in graph

Figure 1: Example of C3-covering

G, there exist graph C3 such that e € E(C3). But, it’s a different case for graph H. For example, let
us take vivy € E(H). We see that there is no subgraph isomorphic to C3 in H (let’s say H/) such
that vivr € E(H/). So, we say that G admits Cs-covering but graph H is not admit Cs-covering.
Suppose that graph G admits H-covering. Such a graph G is called H-magic labeling if there is a
bijective function f : V(G) U E(G) — {1,2,...,|E(G)| + |V(G)|} such that for every subgraph H'
of G isomorphic to H, the sum of every vertex and edge label is equal to k, where k is the magic
number. Furthermore, it is called H-supermagic labeling if f(V(G)) ={1,2,...,|V(G)|} [2]. Here is
an example of Cs-supermagic labeling of Fan graph F3. We see from figure 2 that the sum of every
vertex and edge label of any C3 is equal to 27. That number is called the magic number.

Figure 2: Cs-supermagic labeling of fan graph Fj3

We then give the edge comb product definition which introduced by [3]. Suppose G and H be two
graphs and e is an edge of graph H. Edge comb product of graph between G and H, denoted by
G >, H, is a graph obtained by taking a copy of G and |E(G)| copies of graph H, then identifying
i-th copy of H at the edge e to the i-th edge of G. By the example at figure 3 and the definition,
we conclude that edge comb product of a graph is not unique operation. Furthermore, it is also not
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Figure 3: Cy >, C5 graph

commute. Actually, the definition is quite similar to the paper introduced by [4] where the calendula
graph is an example of edge comb product between two cycles. Now, we enter the main topic of
this paper. In this paper, we proof the existence of H-supermagic labeling of graph C,, >. H and
P, >. H for any nontrivial graph H where |E(H)| > 2 using the balanced multi-set method.

Keywords: Edge-comb product, path, cycle, balanced multi-set method
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An old problem of Erdés
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1 Abstract

Let f(n) be the maximum number of edges in a graph on n vertices in which no two cycles have the
same length. In 1975, P. Erdés raised the problem of determining f(n) (see [1], p.247, Problem 11).
Let f*(n) be the maximum number of edges in a simple graph on n vertices in which any two cycles
are of different lengths. Let M, be the set of simple graphs on n vertices and f*(n) edges in which
any two cycles are of different lengths. Let mc(n) be the maximum cycle length for all G € M,,. A
natural question is what is the numbers of me(n). Shi[12] proved that

f(n)>n+[(v8n—23+1)/2]

for n >3 and f(n) = f*(n — 1) + 3 for n > 3. Lai[5] proved that for n > e*™(2m + 3)/4,

f(n) <n—24 /nin(4n/(2m + 3)) + 2n + logz(n + 6).

Chen, Lehel, Jacobson and Shreve[3] gave a quick proof of this result.
Lai[7] proved that

mint 1" 5 [y 40
and Lai[6] conjectured that
fln) —n

lim inf ——F—=— < V3.
minf U = V8

Boros, Caro, Fiiredi and Yuster[2] proved that
f(n) <n+1.98/n(1+ o(1)).

Let fa(n) be the maximum number of edges in a 2-connected graph on n vertices in which no
two cycles have the same length.
In 1988, Shi[12] proved that
For every integer n > 3, fo(n) < n+ [5(v/8n — 15 — 3)].
In 1998, G. Chen, J. Lehel, M. S. Jacobson, and W. E. Shreve [3] proved that
fa(n) Zn+/n/2 —o(y/n)
In 2001, E. Boros, Y. Caro, Z. Fiiredi and R. Yuster [2] improved this lower bound significantly:
fo(n) = n+y/n—O(n%).
and conjectured that
lim 200 — g,
J. Ma, T. Yang [11] proved that
Any n-vertex 2-connected graph with no two cycles of the same length contains at most n +

Vn + o(y/n) edges.

*Project supported by the NSF of Fujian (2015J01018; 2020J01795; 2021J02048), Fujian Provincial Training
Foundation for ”Bai-Quan-Wan Talents Engineering”.
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H. Lin, M. Zhai,Y. Zhao [10] proved that
Let G be a graph of order n > 26. If p(G) > p(Kfn_l), then G contains two cycles of the same

length unless G = Kffn_l.

and asked the following problem.
What is the maximum spectral radius among all 2-connected n-vertex graphs without two cycles

of the same length?

C. Lai [4] proved that

me(n) <n—1 fornEEZili—Sx 18.
Lai[8] proved that

For n sufficiently large,

15
me(n) < 6™
and conjectured that
me(n)

n—»00 n

Survey papers on this problem can be found in Tian[13], Zhang[14], Lai and Liu[9].
We present the problems, conjectures related to this problem and we summarize the know results.
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