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1. Assumption and Result.
Let H be a separable Hilbert space with inner product h�; �iH and norm k � kH.

V (t) = e�itA is a contraction semi-group in H, where t = 0.

U0(t) = e�itA0 is a unitary group in H, where t 2 R.

In this talk we assume that

(A1) �(A0) = �ac(A0) = R or [0;1)
(A2) (A� i)�1� (A0� i)�1 de�ned as a form is extended to a compact operator

K in H.
(A3) There exist non-zero projection operators P+ and P� such that P++P� = Id

and

(A3.1) kKU0(t) (A0)P+k 2 L
1(R+);

(A3.2) kK�U0(t) (A0)P+k 2 L
1(R+);

(A3.3) kK�U0(�t) (A0)P�k 2 L
1(R+);

(A3.4) w� lim
t!+1

U0(�t) (A0)P�ft = 0

for each  2 C10 (Rn0) and fftgt2R satisfying supt2R kftkH <1, where k � k is the
operator norm of bounded operator from H to H.

Let Hb be the space generated by the eignvectors of A with real eigenvalues.

We use the following fact ( cf. Petkov[11]):

(F1) f(A� i)�2Af : f 2 D(A) \ H?b g is dense in H?b .
(F2) There exists a sequence ftng such that limn!1 tn =1 and for any f 2 H?b

w� lim
n!1

V (tn)f = 0:

Main result is

Theorem. For any f 2 H?b , the wave opeartor

Wf = lim
t!1

U0(�t)V (t)f

exists. Moreover W is not zero operator in H.
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Corollary. Assume that (A1) � (A3). Then there exist non-trivial initial datas
f 2 H?b and f+ 2 H such that

lim
t!1

kV (t)f � U0(t)f+kH = 0

and
lim
t!1

kV (t)fkH 6= 0

.

In order to prove Theorem, we refer to Enss [2], Simon [12], Perry [10], Isozaki-
Kitada [4] and Stefanov-Georgiev[13].

Related works (Scattering).

(1) Lax-Phillips [7](1973)
Wave equation with dissipative boundarly conditions in an exterior domain.

(2) Mochizuki [9](1976)
Wave equation with dissipative terms

(3) Simon [12](1979)
Sch�odinger equation with complex value potential

(4) Stefanov-Georgiev [13](1988)
Maxwell equation with a dissipative boundarly condition in an exterior do-
main.

Related works (Decay).

(1) Majda [8](1975)
Wave equation with dissipative term and boundarly conditions in an exterior
domain.(Non existence of Disappering solution (?))

(2) Georgiev [3](1986)
Maxwell equation with a dissipative boundarly condition in an exterior do-
main.(Existence and Non existence of Disappering solution)

2. Example (Elastic wave with dissipative boundary condition in a half
space of R3

+).

Let x = (x1; x2; x3) = (y; x3) 2 R2 �R+ and �0 > 0; �0 > 0; �0 2 R satistying
3�0 + 2�0 > 0.

We assume that B(y) belongs to L1(R3
+;M3�3) and satis�es

O3�3 5 B(y) 5 C'(jyj)I3�3;

where '(r) is a non-increasing function and belongs to L1(R+). M3�3 is the class
of 3� 3 matrix.

We set

"i;j(u) =
1

2
(
@ui
@xj

+
@uj
@xi

)

and
�0i;j(u(x)) = �0(r � u)�i;j + 2�0"i;j(u)
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where i; j = 1; 2; 3 and u(x) =t (u1(x); u2(x); u3(x)).

We de�ne an operator

( ~L0u)i = �
3X
j=1

1

�0

@�i;j(u(x))

@xj
(i = 1; 2; 3);

respectively. We consider two elastic wave equations as follows:

(2.1)

�
utt(x; t) + ~L0u(x; t) = 0; (x; t) 2 R3

+ � [0;1);
t(�13(u); �23(u); �33(u)) jx3=0= B(y)ut jx3=0

and

(2.2)

�
utt(x; t) + ~L0u(x; t) = 0; (x; t) 2 R3

+ �R;

�i3(u) jx3=0= 0(i = 1; 2; 3)

The following operator L0 in G0 = L2(R3
+;C

3; �0dx) :

L0u = ~L0u

and

D(L0) = fu 2 H1(R3
+;C

3);L0u 2 G0; �i3(u) jx3=0= 0(i = 1; 2; 3)g:

is a positive self-adjoint operator. Let H be Hilbert space with inner product :

hf; giH =

Z
R3
+

(
3X

i;j;k;h=1

a0ijkh"k;h(f1)"i;j(g1) + f2g2�0)dx;

respectively, where a0ijkh = �0�ij�kh + �0(�ik�jh + �ih�jk) and f =t (f1; f2); g =t

(g1; g2). By Korn's inequality (cf. Ito [5]) we note thatH is equivalent to _H1(R3
+)�

L2(R3
+) as Banach space.

We set f = (u(x; t); ut(x; t)), where u(x; t) is the solution to (2.1) (resp. (2.2))
with a initial data (u(x; 0); ut(x; 0)) = (f1; f2) 2 H. Then (2.1) (resp. (2.2)) can
be written as

@tf = �iAf (resp. @tf = �iA0f );

where

A = i

�
0 I3�3

� ~L0 0

�
; A0 = i

�
0 I3�3

� ~L0 0

�
;

D(A) = ff 2 H; ~L0f1 2 L
2(R3

+;C
3); f2 2 H

1(R3
+;C

3);
t(�13(f1); �23(f1); �33(f1)) jx3=0= B(y)f2 jx3=0g
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and

D(A0) = ff 2 H0; ~L0f1 2 L
2(R3

+;C
3); f2 2 H

1(R3
+;C

3);

�i3(f1) jx3=0= 0(i = 1; 2; 3)g

A (resp. A0) generates a contraction semi-group fV (t)gt=0 (resp. a unitary

group fU0(t)gt2R) in H. Using fV (t)gt=0 (resp. fU0(t)gt2R) we solve @tf = �iAf

(resp. @tf = �iA0f) as follows :

f = V (t)f0 (resp.f = U0(t)f0);

where f0 = (f1; f2) 2 H.

Making a check on Assumption (A1),(A2) and (A3).
We state a result which follows from Dermenjian - Guillot[1].
Let k = (p; p3) 2 R2 � R+ = R3

+ be the deal variable of x. By the polar
coordiates we write k and p as

k = jkj! = jkj(!;!3) = jkj(!1; !2; !3)

and
p = jpj� = jpj(�1; �2):

There exist partially isometric operators FP ; FS; FSH and FR, from G0 ontoL
2(R3

+;C
3)

and L2(R2;C3), respectively. We de�ne the operator F as follows :

Fu = (FPu; FSu; FSHu; FRu) for u 2 G0:

Then we have by Theorem 3.6 of [1]

Lemma D-G. F is unitary operator from G0 to

Ĥ =
3M
j=1

L2(R3
+;C

3)
M

L2(R2;C3)

and for every u 2 D(L0)

FL0u = (c2P jkj
2FPu; c

2
S jkj

2FSu; c
2
Sjkj

2FSHu; c
2
Rjpj

2FRu);

where

c2P =
�0 + 2�0

�0
; c2S =

�0
�0

and c2R is the unique solution in (0; �0�0 ) of the following implicit equation :

(1�
�2�0
2�0

)
1
2 � (1�

�2�0
�0

)
1
2 (

�2�0
�0 + 2�0

)
1
2 = 0:
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Lemma D-G implies �(A0) = �ac(A0) = R (see [1]). Therefore we have (A1).

Next we show (A2). Note that

h((A� i)�1 � (A0 � i)�1)f; giH

=h(A� i)�1f;A0(A0 + i)�1giH � hA(A� i)�1f; (A0 + i)�1giH

for f; g 2 H. By easy caluculation we have

h((A� i)�1 � (A0 � i)�1)f; giH

=i

Z
R2

�0((A� i)�1f )2B(y)�0((A0 � i)�1g)2dy;

where �0 is a tarce operator which is de�ned by

(�0u)(y) = u(y; 0):

For s > 1=2, since �0((A0 + i)�1g)2 2 H
2�s(R2),

B(y)�0�2(A0 + i)�1

is a compact operator from H to L2(R2;C3). Moreover, noting the domain of A,
we have that

�0((A� i)�1f)2 2 L
2(R2;C3):

Therefore the form (A� i)�1 � (A0 � i)�1 can be extended to a compact operator
in H.

Finally we show (A3). Using Fj(j = P; S; SH;R), we construst P� as follows :
for f 2 H,

P�f = T�1f
X

j=P;S;SH

F �j

 
P
(3)
� I3�3 O3�3

O3�3 P
(3)
� I3�3

!
Fj(2.3)

+ F �R

 
P
(2)
� I3�3 O3�3

O3�3 P
(2)
� I3�3

!
FRgT

where

T =

 
L

1
2

0 iI3�3

L
1
2

0 �iI3�3

!

and P
(3)
� and P

(2)
� are negative(positive) projection of

D(3) =
1

2i
(k � rk +rk � k) and D(2) =

1

2i
(p � rp +rp � p); respectively:

Proposition 2.1. P� as in (2.3) satisfy (A3).

To show Proposition 2.1 we prepare
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Lemma 2.2. Let  (�) be same as in (A3) and 0 < � < cR. Then for any positive
integer N and t 2 R�, there exists a positive constant CN; which is independent
of t such that

k�0(e
�itA0 (A0)P�f)2k

jyj5�jtj
L2(R2;C3)

5 CN; (1 + jtj)�NkfkH0

for any f 2 H:

This lemma is the key lemma to show (A3). Using the representation of the
generalized eigenfunction of L0 and the Mellin transformation we show Lemma 2.2
(cf. Perry[10] and Kadowaki[6]). The Mellin transformations for D(3);D(2) are
given as

(M (3)u)(�; !) = (2�)�1=2
Z +1

0

r1=2�i�u(r!)dr

and

(M (2)u)(�; �) = (2�)�1=2
Z +1

0

r�i�u(r�)dr

Then M (3) (resp. M (2)) is a unitary operator from L2(R3
+) (resp. L2(R2)) to

L2(R� S2
+)(resp. L

2(R� S1).
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