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We consider the equation of the motion of compressible viscous fluid in a 3D exterior
domain. The equation is given by the following system for the density p(¢,z) and the
VelOCity v(t,w) = (vl(taw)a”?(taw)7v3(t7w))7

pr+ V- (pv) =0 in (0,00) x 0,
p(’Ut + (’U ) V)’U) + VP(p) = I'I'Av + (:u + I/)V(v ) ’U) in (07 OO) X Qa (1)
vign =0 on (0,00) x 09,
o(0,2) = pofe), 0(0,2) = vofz) in 0,

where Q is an exterior domain in R?® with the compact smooth boundary 99, P = P(p)
the pressure, p > 0, %,u + v > 0 the viscosity coeflicients. The unique existence of smooth
solutions globally in time near constant state (pg,0), where pg is a positive constant was
proved by the employing the same argument as in Matsumura and Nishida [11, 12] for
the Cauchy problem in R® ; Matsumura and Nishida[13, 14, 15] for the exterior domain
in R®. Concerning the decay property of solutions (p(t,z),v(¢,z)), if the initial data
(po(z) — Po,vo(z)) belongs to H* and L;, then as t — co

(o (t,) = B0, v(t,)) |20 = O(72),

I(p(t,-) = o, v(t, )|z, = O(¢*%),

(e (t, ) = po, v(t,))llz. = O(/?).
This fact was investigated by Hoff and Zumbrun [3, 4], Liu and Wang [9], Matsumura and
Nishida [11, 12], Ponce [16] and Weike [17] for the Cauchy problem case ; Kobayashi [7],
Kobayashi and Shibata [8] for the exterior domain case. On the other hand, if the initial

data belongs to H® only, namely we do not assume that the initial data belongs to L1,
then, Deckelnick [1, 2] showed that as ¢ — oo

H(Pt(t, ')7vt(t7'

) (
Haﬂ«’(p(ta -),’U(t, ))HL2(Q) = O(t_1/4)7
| ) (



in the exterior domain case ; Matsumura [10] showed that as ¢ — oo

1(pe(t, ), 0e(t, )22 (re) = O(E™2),

102 (p(2,-), v(ts )llza(rs) = O,

162(p(ts ), v(t, N a(mey = O,

(o5 ) = Po, v(t, )l Le(me) = O(E73%),
in the Cauchy problem case. In this lecture, we shall investigate the exterior problem of
the system (1) and give the better decay rate than the rate obtained by Deckelnick [1, 2]
in the case that the initial data belongs to H® or H* only. In particular, the Ly-decay rate
of the first derivative with respect to the spacial variable x for the solutions corresponds

to the rate obtained by Matsumura [10].

Now, in order to explain our main results, we shall introduce the notations and as-
sumptions. Let L, denotes the usual L, space on { with norm || -|[z,. Put

Wy ={u € Ly | |lullwy < oo}, Nullwy = > 105ulL,,

laf<m

H™ =W, W0=1L, H®=1L,
Set
WE™ = {(5,0) = (pyo1,02,0) | 9 € WY, vy € WP, § = 1,2,3),
1(ps 0) |l = llpllwg + [lollwyp,

and
Hk,m = W2k’m, H’l,l,HHk,m - HUHW:,M-

Let po be a positive constant. We assume that

oP
Al. P is a smooth function in a neighborhood of py and a9 > 0.
p

A2. The initial data (po,vo) satisfies the compatibility condition and regularity, namely
(po — Po,vo) € H?, vglaq = 0 and (p1,v1) = (pt, ve)|t=0 satisfies
p1 ==V (povo),

VP
V1 = —(’UO . V)’UO —|— ﬁA’UO —|— iV(V . ’U()) — &,
Po Po Po

and
p1€H2, v1€H1, ’l)1|BQ:0.

Put

X(0,00) = {U=(p,v)|p—poe [)C([0,00); H),

j=0
amp € L2((0700)7H2)7 Pty V¢ € L2((0700)7H2)7

v € [ C9([0,00); H*), 8w € Ly((0,00); H)},

i=0



and

N(O,00) = sup (|U() = Dollgs + 100 Fea)  + [ (18:U(s) s + U(6)13e) ds

0<t<©
where Uy = (pg,0). Then, we have

Proposition 1 (Matsumura and Nishida [13, 14, 15]) Assume that the assumptions A.1
and A.2 hold. Then, there exists an €y such that if ||(po — po,vo)||ms < €o, then (1) admits
a unique solution (p,v) € X(0,00).

Moreover, there exists a constant C' such that

N(0,00) < Cll(po — po,vo)||ms-

Remark. If the initial data (po— po,vo) € H* and satisfies the second order compatibility

condition and regularity, namely (p2,vs (ptts Vit) [t=0 is determined successively by the

) =
initial data (pg,vg) through the system (1), then we have

N(000)" = sup

4 [ (18U($) s+ 1U4(5) ) s
< Oll(po — 7oy o) e

() — Tolls + 1U(t) 13552 )

Now, we shall state our main results.

Theorem 1 Assume that the assumptions A.1 and A.2 hold. Then, there exists an €
such that if ||(po — po,vo)|l32 < €1, the solution (p,v) of the system (1) has the following
asymptotic behavior as t — oo :

1(pe(t,-), 00t Nz, = O
10av(t, )l = O
Hamp(t, Mz, = O™,
16zp(t; )z, = O

| (

1(p(t,°) = Po,v(ts ) lLe = Ot_3/4logt).

Corollary 1 The assumptions in Theorem 2.1 hold. Moreover, if the initial data (po —
Po,vo) € H* satisfies the second order compatibility condition and regularity in Remark,
then we have

1(p(t,-) = posv(t, )lre = OF3*) as t— cc.
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