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We consider the equation of the motion of compressible viscous uid in a 3D exterior
domain. The equation is given by the following system for the density �(t; x) and the
velocity v(t; x) = (v1(t; x); v2(t; x); v3(t; x)),

�t +r � (�v) = 0 in (0;1)� 
;
�(vt + (v � r)v) +rP (�) = ��v + (�+ �)r(r � v) in (0;1)� 
;

vj@
 = 0 on (0;1)� @
;
�(0; x) = �0(x); v(0; x) = v0(x) in 
;

(1)

where 
 is an exterior domain in R3 with the compact smooth boundary @
, P = P (�)
the pressure, � � 0; 2

3�+ � > 0 the viscosity coe�cients. The unique existence of smooth
solutions globally in time near constant state (��0; 0), where ��0 is a positive constant was
proved by the employing the same argument as in Matsumura and Nishida [11, 12] for
the Cauchy problem in R3 ; Matsumura and Nishida[13, 14, 15] for the exterior domain
in R3. Concerning the decay property of solutions (�(t; x); v(t; x)), if the initial data
(�0(x)� ��0; v0(x)) belongs to H

4 and L1, then as t!1

k(�(t; �)� ��0; v(t; �))kL1 = O(t�3=2);

k(�(t; �)� ��0; v(t; �))kL2 = O(t�3=4);

k(�(t; �)� ��0; v(t; �))kL2 = O(t1=2):

This fact was investigated by Ho� and Zumbrun [3, 4], Liu and Wang [9], Matsumura and
Nishida [11, 12], Ponce [16] and Weike [17] for the Cauchy problem case ; Kobayashi [7],
Kobayashi and Shibata [8] for the exterior domain case. On the other hand, if the initial
data belongs to H3 only, namely we do not assume that the initial data belongs to L1,
then, Deckelnick [1, 2] showed that as t!1

k(�t(t; �); vt(t; �))kL2(
) = O(t�1=2);

k@x(�(t; �); v(t; �))kL2(
) = O(t�1=4);

k(v(t; �))kC0(�
) = O(t�1=4);

k�(t; �) � ��0kC0(�
) = O(t�1=8);
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in the exterior domain case ; Matsumura [10] showed that as t!1

k(�t(t; �); vt(t; �))kL2(R3) = O(t�1=2);

k@x(�(t; �); v(t; �))kL2(R3) = O(t�1=2);

k@2x(�(t; �); v(t; �))kL2(R3) = O(t�1);

k(�(t; �)� ��0; v(t; �))kL1(R3) = O(t�3=4);

in the Cauchy problem case. In this lecture, we shall investigate the exterior problem of
the system (1) and give the better decay rate than the rate obtained by Deckelnick [1, 2]
in the case that the initial data belongs to H3 or H4 only. In particular, the L2-decay rate
of the �rst derivative with respect to the spacial variable x for the solutions corresponds
to the rate obtained by Matsumura [10].

Now, in order to explain our main results, we shall introduce the notations and as-
sumptions. Let Lp denotes the usual Lp space on 
 with norm k � kLp. Put

Wm
p = fu 2 Lp j kukWm

p
<1g; kukWm

p
=

X
j�j�m

k@�xukLp;

Hm = Wm
2 ; W 0

p = Lp; H0 = L2:

Set

W k;m
p = f(�; v) = (�; v1; v2; v3) j � 2 W k

p ; vj 2 Wm
p ; j = 1; 2; 3g;

k(�; v)kW k;m
p

= k�kWk
p
+ kvkWm

p
;

and
Hk;m = W k;m

2 ; kukHk;m = kuk
W

k;m

2

:

Let ��0 be a positive constant. We assume that

A1. P is a smooth function in a neighborhood of ��0 and
@P

@�
> 0.

A2. The initial data (�0; v0) satis�es the compatibility condition and regularity, namely
(�0 � ��0; v0) 2 H3; v0j@
 = 0 and (�1; v1) = (�t; vt)jt=0 satis�es

�1 = �r � (�0v0);

v1 = �(v0 � r)v0 +
�

�0
�v0 +

�

�0
r(r � v0)�

rP (�0)

�0
;

and
�1 2 H2; v1 2 H1; v1j@
 = 0:

Put

X(0;1) = fU = (�; v) j �� ��0 2
1\

j=0

Cj([0;1);H3�j);

@x� 2 L2((0;1);H2); �t; vt 2 L2((0;1);H2);

v 2
1\

j=0

Cj([0;1);H3�2j); @xv 2 L2((0;1);H3)g;
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and

N(0;1)2 = sup
0�t<1

�
kU(t)� �U0k

2
H3 + kUt(t)k

2
H2;1

�
+
Z 1

0

�
k@xU(s)k

2
H2;3 + kUs(s)k

2
H2

�
ds;

where �U0 = (��0; 0). Then, we have

Proposition 1 (Matsumura and Nishida [13, 14, 15]) Assume that the assumptions A.1
and A.2 hold. Then, there exists an �0 such that if k(�0� ��0; v0)kH3 � �0, then (1) admits
a unique solution (�; v) 2 X(0;1).

Moreover, there exists a constant C such that

N (0;1) � Ck(�0 � ��0; v0)kH3 :

Remark. If the initial data (�0� ��0; v0) 2 H4 and satis�es the second order compatibility
condition and regularity, namely (�2; v2) = (�tt; vtt)jt=0 is determined successively by the
initial data (�0; v0) through the system (1), then we have

~N (0;1)2 = sup
0�t<1

�
kU(t)� �U0k

2
H4 + kUt(t)k

2
H3;2

�

+
Z 1

0

�
k@xU(s)k

2
H3;4 + kUs(s)k

2
H3

�
ds;

� Ck(�0 � ��0; v0)k
2
H4:

Now, we shall state our main results.

Theorem 1 Assume that the assumptions A.1 and A.2 hold. Then, there exists an �1
such that if k(�0 � ��0; v0)k3;2 � �1, the solution (�; v) of the system (1) has the following
asymptotic behavior as t!1 :

k(�t(t; �); vt(t; �))kL2 = O(t�1=2);

k@xv(t; �)kH1 = O(t�1=2);

k@x�(t; �)kL2 = O(t�1=2);

k@2x�(t; �)kL2 = O(t�3=4log t);

k(�(t; �)� ��0; v(t; �))kL1 = O(t�3=4log t):

Corollary 1 The assumptions in Theorem 2.1 hold. Moreover, if the initial data (�0 �
��0; v0) 2 H4 satis�es the second order compatibility condition and regularity in Remark,
then we have

k(�(t; �)� ��0; v(t; �))kL1 = O(t�3=4) as t!1:
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