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Global existence of classical solutions to systems of

nonlinear wave equations with different speeds of propagation
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Abstract. This paper is concerned with a system of nonlinear wave equations in three

space dimensions
' — EAv = F*(u,0u,0%), i=1,2,---,m,

where 0 < ¢; < ¢y < --- < ¢,n. We prove the global existence of classical solutions to the

system with small initial data, provided F* satisfy “Null conditon”.

81. Introduction.

This paper is a continuation of a previous paper [21] on global (in time) existence of
small amplitude solutions to a system of quasilinear wave equations with different speeds
of propagation. Indeed, the second author studied in it the system stated in the above
abstract fot the case that F* depend only on the first and second derivatives du,8%u of
u, i.e., that F* = F*(Ou,8%u). The purpose of present paper is to extend the results of
[21] to the case where F* = F*(u,0u,0%u) depend explicitly on u as well as Ou and H%u.
As a result, we will refine the proof of the main theorem in Klainerman [14] which deals

with the case of one speed of propagation, i.e., m = 1, in the sense that we do not need to

make use of the vector fields L; = z;0, +t0;, j = 1,2,3, where 9, = 9/0, and 0; = 0/0,,.



We consider the following Cauchy problem

(1.1) Oiu' = 0% — 2 Au' = F'(u,0u,0%u)
in (0,00) x R®, i=1,2,--- ,m,
(1.2) u'(0,z) = ef'(x), Ou'(0,2) = eg*(x)

forz e R® :=1,2,--- ,m,

where ¢;, ¢y, - , ¢, are positive constants different each other, say, 0 < ¢; < cy < -+ <
cm, f* and g are fixed functions in C°(R?) and ¢ is a positive parameter which serves
to measure the amplitude of the initial values. Here u' = u'(t,z) = (u(¢,z),us(¢t, ),

U u’ (t,z)) is a vector of p; real valued functions of (¢,z) € [0,00) x R%, u = (u!,u?,

- ,u™) a p-vector, where p = p; + ps + -+ + pm, 0 = (0:,0,), 8y = Oy = 0/04, 0, =
(01, 0:,0s), 0; = 0/0,, for j =1,2,3, A = EJ ; 8% and 9*u stands for second derivatives
of u. For convenience we will often denote Ou and &*u by u’ and u”, respectively. Moreover
Fi(u,u',u") is a vector of p; real valued functions of (u,u’,u"), belonging to C'*°(R2'?),
such that

(1.3.1) F(0,0,0) =0, i=1,2,---,m
and
(1.3.2) (F1)'(0,0,0) =0, i=1,2,---,m

Here and in what follows we denote by (F")'(u,u’,u") the first derivatives of F* with
respect to (u,u,u") and by 8, F(u,u’, u") the first derivatives of F*(u,u’,u") with respect

to u, and so on.

Remark. The hypothesis (1.3.1) implies that the Cauchy problem (1.1)-(1.2) has a
trivial solution u = 0, provided ¢ = 0. Moreover the condition (1.3.2) means that the
linear part of (1.1) coincides with [J;. For the smoothness of F" it is sufficient to assume
that F*(u,u’,u") is of class C* on a neighborhood of (u,u’,u") = (0,0,0). However
such a function F* can be always extended to the whole space R?? by multiplying a

cutoff function. For the sake of simplicity of description we have therefore assumed that

F' e C=(R?>).

We shall assume without loss of generality that the system (1.1) is quasilinear, i.e., that

F*(u,u',u") is linear in u”, hence one can write

(u, v, u" ZZAabuuaabu—l—B(uu)
(1.4.1) =1 ap=0

fort=1,2,--- ,m,



where A;’;’(u,u') is a p; X p; matrix function of (u,u') € R? x R* and u’/ are regarded as
column vectors. (See for instance Courant and Hilbert [4], chapter I, §7). We suppose
that

(1.4.2) Af;(u,u') = Af;’(u,u') for a,b6=10,1,2,3 and 3,7 = 1,2,--- ,m,

since only classical solutions are considered in this paper. Clearly, conditions (1.3) and
(1.4.1) imply that

ab ..
(1.4.3) Aij((),()) =0 for:,7=1,2,---,m, a,b=20,1,2,3
and
(1.4.4) B*(0,0) =0, (B")'(0,0) =0 fori=1,2,---,m.

In order to assure the existence of local (in time) solutions, we also require that the
system (1.1) can be reduced to a symmetric hyperbolic system of the first order. Namely,

we assume that the p x p matrices

(AZ (u,0); 455 = 1,2, ,m)
are (real) symmetric for a,b =0,1,2,3 where Af;’(u,u') are given by (1.4.1), i.e., that
(1.5) Af;’(u,u') =t Af;’(u,u') fori,7 =1,2,--- ,m, a,b=0,1,2,3,

where A stands for the transposed matrix of A.

Let F*?(u,u’,u") be the quadratic part of Taylor’s expansion for F'(u,u’,u") about
(u,u,u") = (0,0,0). Then by the assumptions (1.3) and (1.4.1) one can write
(16)  Fuwatu’) = F2 ) + O((ful + )l + o] + )

for (u,u,u") near (0,0,0).

We shall devide all terms of the homogeneous polynomial F*2(u,’,u") into two group as

follows.
(1.7) F"*(u, Bu, 8%u)

= Z {N,i(uk, ou*, 0%u*) + Ri(u,Ou, 62u)}
k=1

fort=1,2,---,m,

where N;(u*, 0u*, 8?u*) are homogeneous polynomials in (u*,5u*, 8?u*) of degree 2, and
R (u,8u,d%u) are homogeneous polynomials in (u,du,8%u) of degree 2 which are lin-

ear in (u®,Ou®, 5%u*). Then we assume that for each i,k = 1,2,--- ,m the polynomial
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Ni(u®, Ou®, 5?u*) satisfies the null condition in the sense of Christodoulou [3]. Besides, we
suppose that for each 7,k =1,2,--- ,m the polynomial R} (u,8u,d%u) does not explicitly

depend on u, i.e., that
(1.8) O R:(u,u',u") =0 forik=1,2,---,m.
Then we have the following.

Theorem 1. Suppose that (1.4), (1.5) and (1.8) hold. Assume that Ni(u®,du®,5?u*)
satisfies the null condition for each i,k = 1,2,--- ,m. Let k be a positive integer with k >
14 and let v be a positive number with v < 1/2. Then there are positive constants €9 and
C such that for any 0 < € < ¢y there ezists uniquely a solution u(t,z) € C*([0,00) x R?)

of (1.1)-(1.2) satisfying

(1.9) [ui(t,2)|(1+7 +6)(1+|r —cit]) + ) [8%(t2)|(1+7)

1< al<k
X (L+ |7 —ct)'™ < Ce  for (t,z) €[0,00) x R%, i =1,2,--- ,m

and

(1.10) L+ @)l + > [8%u(t)e < Ce fort >0,

1<]a|<k+6

ol = { [ it eyiae)]

Here the constants eg and C depend only on k,v, F*, f* and g'.

where 7 = |z| and
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