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Abstract. This paper is concerned with a system of nonlinear wave equations in three

space dimensions

@2t u
i � c2i�u

i = F i(u; @u; @2u); i = 1; 2; � � � ; m;

where 0 < c1 < c2 < � � � < cm. We prove the global existence of classical solutions to the

system with small initial data, provided F i satisfy \Null conditon".

x1. Introduction.

This paper is a continuation of a previous paper [21] on global (in time) existence of

small amplitude solutions to a system of quasilinear wave equations with di�erent speeds

of propagation. Indeed, the second author studied in it the system stated in the above

abstract fot the case that F i depend only on the �rst and second derivatives @u; @2u of

u, i.e., that F i = F i(@u; @2u). The purpose of present paper is to extend the results of

[21] to the case where F i = F i(u; @u; @2u) depend explicitly on u as well as @u and @2u.

As a result, we will re�ne the proof of the main theorem in Klainerman [14] which deals

with the case of one speed of propagation, i.e., m = 1, in the sense that we do not need to

make use of the vector �elds Lj = xj@t + t@j , j = 1; 2; 3, where @t = @=@t and @j = @=@xj
.
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We consider the following Cauchy problem

�iu
i � @2t u

i � c2i�u
i = F i(u; @u; @2u)(1.1)

in (0;1)� R3, i = 1; 2; � � � ;m,

ui(0; x) = "f i(x); @tu
i(0; x) = "gi(x)(1.2)

for x 2 R3; i = 1; 2; � � � ;m,

where c1; c2; � � � ; cm are positive constants di�erent each other, say, 0 < c1 < c2 < � � � <

cm, f i and gi are �xed functions in C1
0 (R3) and " is a positive parameter which serves

to measure the amplitude of the initial values. Here ui = ui(t; x) = (ui
1
(t; x); ui

2
(t; x);

� � � ; uipi(t; x)) is a vector of pi real valued functions of (t; x) 2 [0;1) � R3, u = (u1; u2;

� � � ; um) a p-vector, where p = p1 + p2 + � � � + pm, @ = (@t; @x), @t = @0 = @=@t, @x =

(@1; @2; @3), @j = @=@xj
for j = 1; 2; 3, � =

P3

j=1 @
2
j and @2u stands for second derivatives

of u. For convenience we will often denote @u and @2u by u0 and u00, respectively. Moreover

F i(u; u0; u00) is a vector of pi real valued functions of (u; u0; u00), belonging to C1(R21p),

such that

(1:3:1) F i(0; 0; 0) = 0; i = 1; 2; � � � ; m

and

(1:3:2) (F i)0(0; 0; 0) = 0; i = 1; 2; � � � ; m:

Here and in what follows we denote by (F i)0(u; u0; u00) the �rst derivatives of F i with

respect to (u; u0; u00) and by @uF i(u; u0; u00) the �rst derivatives of F i(u; u0; u00) with respect

to u, and so on.

Remark. The hypothesis (1.3.1) implies that the Cauchy problem (1.1)-(1.2) has a

trivial solution u = 0, provided " = 0. Moreover the condition (1.3.2) means that the

linear part of (1.1) coincides with �i. For the smoothness of F i it is su�cient to assume

that F i(u; u0; u00) is of class C1 on a neighborhood of (u; u0; u00) = (0; 0; 0). However

such a function F i can be always extended to the whole space R21p by multiplying a

cuto� function. For the sake of simplicity of description we have therefore assumed that

F i 2 C1(R21p).

We shall assume without loss of generality that the system (1.1) is quasilinear, i.e., that

F i(u; u0; u00) is linear in u00, hence one can write

(1:4:1)
F i(u; u0; u00) =

mX
j=1

3X
a;b=0

Aab
ij (u; u

0)@a@bu
j + Bi(u; u0)

for i = 1; 2; � � � ;m,
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where Aab
ij (u; u

0) is a pi � pj matrix function of (u; u0) 2 Rp � R4p and uj are regarded as

column vectors. (See for instance Courant and Hilbert [4], chapter I, x7). We suppose

that

(1:4:2) Aba
ij (u; u

0) = Aab
ij (u; u

0) for a; b = 0; 1; 2; 3 and i; j = 1; 2; � � � ; m,

since only classical solutions are considered in this paper. Clearly, conditions (1.3) and

(1.4.1) imply that

(1:4:3) Aab
ij (0; 0) = 0 for i; j = 1; 2; � � � ;m, a; b = 0; 1; 2; 3

and

(1:4:4) Bi(0; 0) = 0; (Bi)0(0; 0) = 0 for i = 1; 2; � � � ; m.

In order to assure the existence of local (in time) solutions, we also require that the

system (1.1) can be reduced to a symmetric hyperbolic system of the �rst order. Namely,

we assume that the p� p matrices

(Aab
ij (u; u

0); i; j = 1; 2; � � � ; m)

are (real) symmetric for a; b = 0; 1; 2; 3 where Aab
ij (u; u

0) are given by (1.4.1), i.e., that

Aab
ij (u; u

0) =t Aab
ij (u; u

0) for i; j = 1; 2; � � � ;m, a; b = 0; 1; 2; 3,(1.5)

where tA stands for the transposed matrix of A.

Let F i;2(u; u0; u00) be the quadratic part of Taylor's expansion for F i(u; u0; u00) about

(u; u0; u00) = (0; 0; 0). Then by the assumptions (1.3) and (1.4.1) one can write

F i(u; u0; u00) = F i;2(u; u0; u00) +O((juj+ ju0j)2(juj + ju0j+ ju00j))(1.6)

for (u; u0; u00) near (0; 0; 0).

We shall devide all terms of the homogeneous polynomial F i;2(u; u0; u00) into two group as

follows.

F i;2(u; @u; @2u)(1.7)

=

mX
k=1

�
N i

k(u
k; @uk; @2uk) +Ri

k(u; @u; @
2u)
	

for i = 1; 2; � � � ; m,

where N i
k(u

k; @uk; @2uk) are homogeneous polynomials in (uk; @uk; @2uk) of degree 2, and

Ri
k(u; @u; @

2u) are homogeneous polynomials in (u; @u; @2u) of degree 2 which are lin-

ear in (uk; @uk; @2uk). Then we assume that for each i; k = 1; 2; � � � ; m the polynomial
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N i
k(u

k; @uk; @2uk) satis�es the null condition in the sense of Christodoulou [3]. Besides, we

suppose that for each i; k = 1; 2; � � � ;m the polynomial Ri
k(u; @u; @

2u) does not explicitly

depend on u, i.e., that

@uR
i
k(u; u

0; u00) = 0 for i; k = 1; 2; � � � ; m.(1.8)

Then we have the following.

Theorem 1. Suppose that (1.4), (1.5) and (1.8) hold. Assume that N i
k(u

k; @uk; @2uk)

satis�es the null condition for each i; k = 1; 2; � � � ;m. Let k be a positive integer with k �

14 and let � be a positive number with � < 1=2. Then there are positive constants "0 and

C such that for any 0 < " � "0 there exists uniquely a solution u(t; x) 2 C1([0;1)�R3)

of (1.1)-(1.2) satisfying

jui(t; x)j(1 + � + t)(1 + j� � citj)
� +

X
1�j�j�k

j@�ui(t; x)j(1 + �)(1.9)

� (1 + j� � citj)
1+� � C" for (t; x) 2 [0;1)� R3, i = 1; 2; � � � ;m

and

(1 + t)�1ku(t)kL2 +
X

1�j�j�k+6

k@�u(t)kL2 � C" for t � 0,(1.10)

where � = jxj and

kv(t)kL2 =

�Z
R3

jv(t; x)j2dx

�1=2

:

Here the constants "0 and C depend only on k; �; F i; f i and gi.
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