
Periodic solutions of the Korteweg-de vries equation

driven by white noise

The stochastic Korteweg-de Vries equation arises when modelling the prop-
agation of weakly nonlinear waves in a noisy plasma. It is also of interest in
any circumstances where the Korteweg-de Vries equation is used, the stochas-
tic forcing may represent terms that have been neglected in the derivation of
this ideal model. Lastly, many works are devoted to the derivation of a forced
Korteweg-de Vries equation, and in that case, it can sometimes be reasonable
to assume that the forcing contains a stochastic part.

When written in a convenient set of coordinates, the stochastic Korteweg-de
Vries equation has the form
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where u(t, x) is a random process, Φ is a linear operator and B is a two param-
eter brownian motion, that is a zero mean gaussian process whose correlation
function is given by

E(B(t, x)B(s, y)) = (t ∧ s)(x ∧ y).

The talk will explain a result obtained in a joint work with A. Debussche and
Y. Tsutsumi, concerning the existence and uniqueness of strong (pathwise)
solutions for equation (1), in the case where x ∈ T = [0, 2π] with periodic
boundary conditions.

If the covariance operator Φ is described by a kernel K(x, y), the correlation
function of the noise is then given by
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for t, s ≥ 0, x, y ∈ T. Here δ is the Dirac function and

c(x, y) =

∫
T

K(x, z)K(y, z)dz.
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The case where Φ is the identity operator on L2(T) corresponds to the space
time white noise : c(x, y) = δx−y. We wish to consider a noise which is as
close as possible to this case.

We may write equation (1) in Itô form

du + (∂3
xu + u∂xu)dt = ΦdW,(2)

where W (t) = ∂B/∂x is a cylindrical Wiener process on L2(T). Note that W
may also be written as W (t, x) =

∑∞
k=0 βk(t)ek(x) where (ek)k∈N is a complete

orthonormal system in L2(T) and (βk)k∈N is a sequence of mutually indepen-
dant real brownian motions in a fixed probability space.

Equation (2) is supplemented with the initial condition

u(0, x) = u0(x).(3)

The equation may then be written by using the Duhamel formula

u(t) = U(t)u0 +

∫ t

0

U(t − s) (u∂xu) (s)ds +

∫ t

0

U(t − s)ΦdW (s).

Here, U(t) = e−t∂3
x is the Airy group. Using the unitarity of U(t) in any

Sobolev space Hs(T), it is not difficult to see that the Ito stochastic integral

w(t) =

∫ t

0

U(t − s)ΦdW (s)

lies almost surely in H s(T) only if Φ is a Hilbert-Schmidt operator from L2(T)
into Hs(T). For Φ = Id, this holds true if and only if s < −1/2. Hence
we need to work with spatially less regular solutions as possible. For that
purpose, we use Bourgain’s method. The difficulty in applying the method
lies in the lack of regularity in time of the brownian motion, which imposes
the use of Besov’s spaces.

We define
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The following theorem is obtained.



Theorem. Assume that Φ is a Hilbert-Schmidt operator from L2(T) into
Hs(T) for some s > −1/2, and assume that u0(ω, x) is such that u0 ∈ Bσ

2,1(T)
almost surely, for some σ with −1/2 ≤ σ < s. Then for a.e. ω, there is
a Tω > 0, and a unique solution u(t) of the initial-boundary value problem
(2)-(3) on [0, Tω], which satisfies u ∈ C([0, Tω];Bσ

2,1(T)) (the uniqueness holds
in some space X ⊂ C([0, Tω];Bσ

2,1(T)).


