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1. Introduction

It is well known that the non-trivial component bF� of the space bF = bF� [ bF� [ bF+

of bounded selfadjoint Fredholm operators (on a complex or a real Hilbert space) is a
classifying space for the K-group, K�1 in the complex case and that of KO�7 in the real
case ([AS]). Also we know, by Bott periodicity theorem, that the fundamental group of
these spaces is isomorphic to Z. This isomorphism is given by the quantity \Spectral
ow", Sf : �1( bF�)! Z, although it is not stated explicitly in this paper [AS].
Since the Spectral ow was treated in the paper [APS], it appears in the various theory

where it plays important roles, for example, in the study of spectral analysis of Dirac
operators or in the theory of Floer homology for the study of low dimensional manifolds,
and so on.
We have an intuitive understanding of the spectral ow by saying that it is the di�erence

of the net numbers of the eigenvalues of the selfadjoint Fredholm operators in the family
which change signs from minus to plus and from plus to minus, when the parameter of
the family goes from 0 to 1. However in the paper [Ph] for the �rst time it was given a

rigorous de�nition of the spectral ow for not only continuous loops in the space bF� but
also for arbitrary continuous paths in bF� and was proved that the quantity is a homotopy
invariant of continuous paths in the space bF� with the �xed end points and it satis�es the
additivity under catenation of the continuous paths. Thus the spectral ow is not only a
spectral invariant but also a homotopy invariant, in so far as we treat it in the framework
of the space bF�.
Nowadays there are many types of formulas including various Spectral ows correspond-

ing to families of Fredholm operators which are mostly not bounded operators, because
simply they are families of di�erential operators. However in some cases the continuous
family of such unbounded Fredholm operators can be interpreted as a continuous path
in the space bF� as treated in the papers [FO1], [BF1] and [CP]. Also the theorems in

[Fl], [Yo] and [Ni] can be interpreted in the framework of the space bF�. See also [Ta],
[Ge], [CLM2], [OF] and [DK] and others. It is not clear for me whether any \continuous"
families of Fredholm operators, especially a family of unbounded selfadjoint Fredholm
operators with varying domains of de�nition, can be interpreted in the framework of the
space bF�.

The main purpose of my talk is to explain a General Splitting Formula for a
Spectral Flow of a family fA+Ctgt2[0; 1] (Ct is of zeroth order) of �rst order selfadjoint

elliptic di�erential operators on a closed manifold in the framework of the space bF�.
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When we decompose the closed manifold M into two parts M� by a hypersurface �,
M =M� [M+; M� \M+ = @M� = �, then we also have a family of symmetric elliptic
operators on each partM� simply by the restriction, and at this level it is nothing more to
have two families of symmetric operators de�ned on manifolds with boundary. This means
there are no natural choices of boundary conditions among elliptic boundary conditions
under which the family becomes a family of selfadjoint Fredholm operators. Under this
circumstances it will not be apparent whether the spectral ow of the family fA+Ctg on
the whole manifold is expressed as a sum of two spectral ows obtained by even imposing
a suitable selfadjoint elliptic boundary condition on each part and adding a correction
term which solely depends on the boundary manifold �, since partly by the reason that
we have no local representations of the spectral ow.
To formulate our splitting formula in this situation, we shall take a following way, that is,

�rstly we construct a two-parameter family fAs;tgs;t2[0; 1] of selfadjoint Fredholm operators
on M with At;t = A + Ct. Then by noting the homotopy invariance and the additivity
under catenation of the spectral ow, the sum of two spectral ows of fAs;0gs2[0;1] and
fA1;tgt2[0; 1] coincides with the spectral ow of the original family. From the de�nition, it
is not true, but it looks like that the families fAs;0gs2[0; 1] and fA1;tgt2[0; 1] are de�ned on
the each component respectively. In general it is not clear that each of these two spectral
ows coincides with a spectral ow of a family obtained by imposing a suitable selfadjoint
elliptic boundary condition on the restriction of fA + Ctg to each part. Then secondly
we explain that if the operators in the family are a product form near the separating
hypersurface, then there is a selfadjoint elliptic boundary condition on each part by which
the restrictions of the operators to each part become a family of selfadjoint Fredholm
operators and their spectral ows coincide with each of fAs;0gs2[0; 1] and fA1;tgt2[0; 1].
Moreover it turned out that these boundary conditions reect the inuence from one
side to other side of M� in a natural way. We verify these completely in the framework

of the space bF�. Our General Spectral Flow Formula([BF1]) and a Reduction
Theorem([BFO]) of the Maslov index in the in�nite dimension play a role as a bridge
connecting these two spectral ows for the family of operators of a product form near the
separating hypersurface �.
There are several similar formulas already treated in the papers [Ta], [DK], [CLM2] and

others. Here I would like to emphasize that we can admit the non-invertible end points in
the family fA + Ctg because we base on the rigorous de�nition as a homotopy invariant
of the spectral ow given in [Ph] together with that of the Malsov index which is valid
without any assumptions at the end points and our method will explain in some extent
what kinds of conditions to the operators in the family we need to prove such a splitting
formula. Moreover, since for a family of the operators with product form structure near
the separating hypersurface, the space of our boundary values � = Dmax=Dmin is identical
for any length of the \neck", we expect this property also will give us a reduction of our
splitting formula under taking adiabatic limit in within our framework.
Finally I remark that although there is a deep theory of pseudo-di�erential operators

with transmition property including the theory of Calder�on projector ([Ho2]), here I
avoid the use of Calder�on projector in the L2-framework to treat with the Cauchy data
space. Because it will make things confusing to use the Calder�on projector in the L2-
framework from the beginning, and we miss the role of the product form assumption on
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the operators in our formula. However I must employ two facts without proofs from the
pseudo-di�erential operator theory:

(a) the space of boundary values � = Dmax=Dmin of sections in the maximum domain
in L2-space of a �rst order selfadjoint elliptic di�erential operator on a manifold
with boundary � is included in the Sobolev space of order �1

2
on the boundary

manifold ([Ho1]).
(b) if a �rst order symmetric elliptic di�erential operator is a product form near the

boundary manifold (= separating hypersurface in our setting), then the closed
extension de�ned by the Atiyah-Patodi-Singer boundary condition is self-
adjoint and satisfy coercive estimate, which we need to determine the space
�.

2. Notations and Main Theorem

2.1. Fredholm-Lagrangian-Grassmannian. Let (H; h�; �i ; !) be a symplectic (real and
separable) Hilbert space with the inner product h�; �i and the symplectic form !. In the
theory below we do not replace the symplectic form ! after once it was introduced in the
real Hilbert space H, but we may always assume that there exists a bounded operator
J : H ! H such that !(x; y) = hJx; yi for any x; y 2 H and J2 = � Id by replacing the
inner product by another one which de�nes an equivalent norm on H. So we can assume
from the beginning the following \compatible" conditions among !, the inner product
and the almost complex structure J :

hJx; Jyi = hx; yi

!(Jx; Jy) = !(x; y) for all x; y 2 H:

Let �(H) denotes the set of all Lagrangian subspaces of H. Each Lagrangian subspace
is closed, and the topology of �(H) is given by embedding it into the space B(H) of
bounded linear operators on H as the orthogonal projection operator onto the Lagrangian
subspace.

De�nition 2.1. Let � 2 �(H), then the Fredholm-Lagrangian-Grassmannian of H with
respect to � is de�ned as

F��(H) := f� 2 � j (�; �) is a Fredholm pairg:

The Maslov index in the in�nite dimensional case, Mas(fc(t)g; �) 2 Z, for arbi-
trary continuous curves in F��(H) with respect to the Maslov cycle M�(H) = f� 2
F��(H) j �\ � 6= f0gg is de�ned by the similar arguments in [Ph](see [BF1] and [FO2]).

2.2. Symmetric Operators and Boundary Value Space. Let H be a real separable
Hilbert space and A a densely de�ned closed symmetric operator with the domain Dm.
We denote the domain of the adjoint operator A� by DM .
Let � be the factor space of DM by Dm, � = DM=Dm, and let  : DM ! � ((x) = [x])

be the projection map. The space � becomes a symplectic Hilbert space with the inner
product induced by the graph norm

hx; yiG := hx; yi+ hA�x;A�yi
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on DM and the symplectic form given by \Green's form"

!([x]; [y]) := hA�x; yi � hx;A�yi for x; y 2 �.

For Dm � D � DM , we denote
AD := A�jD;

then
AD is closed symmetric , (D) is closed isotropic

AD is self-adjoint , (D) is Lagrangian

De�nition 2.2. We call (KerA�) the Cauchy data space.

Now we make two Assumptions (A) and (B).

Assumption (A). We assume that A admits at least one self-adjoint Fredholm extension
AD with the domain of de�nition D � DM and AD has the compact resolvent.

Then (Ker(A�)) is a Lagrangian subspace of � and ((KerA�); (D)) is a Fredholm
pair.

Assumption (B). We assume that there exists a continuous curve fCtgt2[0;1] in the space
of bounded self-adjoint operators on H and that the operators A� + Ct � s for small s
satisfy the condition that for any t

Ker(A� + Ct � s) \Dm = f0g forjsj � 1:

Then the family of Lagrangian subspaces f(Ker(A� + Ct))g is a continuous curve in
F�(D)(�).

Theorem 2.3 (General Spectral Flow Formula). Let fAD + Ctg be a family of
selfadjoint operators satisfying Assumption (A) and (B) above. Then we have

Sf(fAD + Ctg) =Mas(f(St)g; (D)):

2.3. A Reduction Theorem for the Maslov Index. Let � and L be two symplectic
Hilbert spaces with the symplectic form !� and !L. We assume that each space � and L
is decomposed into a direct sum of two Lagrangian subspaces in the following way:

� = �� � �+

and
L = L� � L+:

We also assume that there are injective maps with dense images

i� : �� ! L�

i+ : L+ ! �+

such that !L(i�(x); y) = !�(x; i+(y)) for x 2 �� and y 2 L+.
Then

Theorem 2.4 (Reduction Theorem). There is a natural continuous map

` : F���(�)! F�L�(H)

preserving the Maslov index:

Mas(f�tg; ��) =Mas(f`(�+)g; L�):
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2.4. Decomposition of manifolds and �rst order di�erential operators. Let A be
an elliptic and selfadjoint �rst order di�erential operator acting on a real vector bundle
E on a closed manifold M . The selfadjointness of the operator A will be meant by
�xing an L2-inner product on the space of smooth sections C1(M; E ). Let fCtg be a
continuous family of selfadjoint bundle maps of E , and we regard them with the same
notation as a continuous family of zeroth order operators on L2(M; E ). Let � be a
hypersurface, which separates the manifold M into two parts M� with the commom
boundary � = @M� = @M+. We assume that the operators A+Ct + s (jsj << 1) satisfy
Assumption (B) above and we assume that these operators A+Cs are all of the \product
form" near the hypersurface �, that is, the operator A + Cs has the following form on a
cylindrical neighborhood U(�) �= (�1; 1)� � of �:

A + Cs = �

�
@

@�
+Bs

�
where � 2 (�1; 1), � is a bundle map of E j� , Bs is a selfadjoint elliptic operator on
E j� , �

�(E j�) �= E jU(�) , and � : U(�) ! � is de�ned through a �xed identi�cation
(�1; 1)� � �= U(�). � and Bs do not depend on the normal variable � .
Let Dmin be a subspace in H1(M; E ) (the �rst order Sobolev space with values in E )

consisting of sections which vanish on �. Then the operator A de�ned on Dmin, we
denote it by A0, is a closed symmetric operator. We will denote the domain of the adjoint
operator (A0)

� by Dmax. Here we are assuming that the hypersurface � separates the
manifold M into two parts M� with common boundary � = @M�, so Dmin and Dmax

also decompose into two components D�

min and D
�
max corresponding to submanifoldsM�:

Dm = D� �D+;

Dmax = D�

max �D+
max

A0 = A�

0 �A+
0 ;

and D�
max is the domain of the each adjoint operator of A�

0 .
Although graph inner products on Dmax by operator A + Ct is not identical, but the

norms are all equivalent and the symplectic forms !� on �� = D�
max=D

�

min does not
depend on the parameter.

Remark 2.5. If � is only orientable and does not separateM , that is,Mn� is connected,
then Dmin(and also Dmax) does not decompose in the above way, but � = Dmax=Dmin is
a sum of two spaces �� of boundary values taken from each side. However in this case
the Cauchy data space (Ker(A0)

�) is not a sum of two Lagrangian subspaces in ��.

Proposition 2.6 ([Ho1]). �� is a subspace in H�1=2(�; E j�), the Sobolev space on � of
order �1=2. Also we have �� \ �+ = H1=2(�; E j�).

Let � be the map from D�
max to �

�. The families f��t g = f�(Ker((A
�

0 +Ct)
�))g are

continuous curves in �(��).

Theorem 2.7. ��t � �+
t 2 F�Æ(�), and SffA+ Ctg =Mas(f��t � �+

t g; Æ) where

Æ = f('; ') 2 ����+ j 9f 2 H1(M; E ); �(f jM�) = 'g �= diagonal ofH1=2(�)�H1=2(�):
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Next let us consider the family of operators fT�s g on M� with the domain D0,

(2.1) D0 = ff 2 H1(M�; E jM� ) j
9' 2 �+

0 ; �(f) = 'g

and
T �

s (f) = (A+ Cs)(f) on M�:

From the \product form" assumption and the Reduction Theorem 2.4, we know that
�(D0) is a Lagrangian subspace in ��. Hence we have

Proposition 2.8. Each operator T �
s on D0 is a selfadjoint operator. So this implies that

kuk1 � c0(
T �

s u

0
+ kuk) for u 2 D0

with a uniform constant c0 > 0.

Now we have the well-de�ned spectral ow for the continuous family fT �
s Æ
p
1 + (T �

s )2
�1
g:

Proposition 2.9.

Sf(fT �

s g) � Sf(fT �

s Æ
p
1 + (T �

s )2
�1
g) =Mas(f��s g; �(D0))

=Mas(f��s \ L2(�)g;�
+
0 \ L2(��)):

Similarly when we de�ne the family of operators fT +
t g on M+ with the domain D1

given by
D1 = fv 2 H1(M+; E jM+ ) j

9' 2 ��1 ; +(v) = 'g

T +
t (v) = (A+ Ct)v on M+:

then

Proposition 2.10.

Sf(fT +
t g) =Mas(f�+

t g; +(D1))

=Mas(f�+
t \ L2(�)g;�

�

1 \ L2(��)):

Summing up these results we can now state our main Theorem.

Theorem 2.11 (Splitting Formula for a Spectral Flow).

SffA+ Ctg = SffT �

t g+ SffT +
t g:

Of course this is not a unique way. For example, if we change the de�nition of the
domains D0 and D1 by an obvious way, then we have a similar splitting formula.
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