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1. Introduction

In this talk, mainly, I am going to show how to de�ne arbitrary rank one H�3-
perturbations of self{adjoint operators restricting our consideration to the case of
semibounded (positive) operators [7]. Then I am going to make some comments
for [6, 8, 9].

Suppose that A is a certain self{adjoint operator acting in the Hilbert space
H. Then a �nite rank perturbation of it is formally de�ned by the formula

AV = A+ V;(1.1)

where V is a �nite dimensional operator. The domains of the perturbed and unper-
turbed operators coincide if the perturbation is a bounded operator in the Hilbert
space V 2 B(H): But it is possible to consider more general perturbations deter-
mined by operators V acting in the scale of Hilbert spaces associated with the
original operator A

V : H2(A)! H�2(A):(1.2)

In the latter case the perturbed operator can be de�ned using the form perturbation
technique and the extension theory for symmetric operators. Really the operators
A and AV restricted to the domain

Dom(A0) = f 2 Dom(A) :  2 Ker(V )g

coincide. The perturbed operator cannot be determined uniquely in this case only
a �nite parameter family corresponding to the formal expression (1.1) can be es-
tablished. We shall consider that V is of H�3-perturbation, i.e.,

V : H3(A)! H�3(A):(1.3)

Really consider the one dimensional perturbation formally determined by

A� = A+ �h'; �i';(1.4)

where ' 2 H�3(A) n H�2(A): The restriction of the operator A to the domain
Dom(A0) = f 2 H3(A) : h';  i = 0g is essentially self{adjoint. Every self{
adjoint extension of this symmetric operator coincides with the original operator
A: Therefore the operator corresponding to (1.4) cannot be de�ned in the original
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Hilbert space using standard methods of extension theory. The aim of the current
paper is to de�ne the operator A� as a self{adjoint operator in a certain extended
Hilbert space.

All self{adjoint extensions of this symmetric operator are rotationally invari-
ant. Therefore no non-spherically symmetric point interaction for the Laplace op-
erator in R3 can be constructed. Di�erent modi�cations of this approach have
been suggested. The �rst mathematically rigorous approach uses perturbations
in Pontryagin spaces, where the perturbed operator has been de�ned in a certain
extension of the original Hilbert space with non positive de�nite scalar product
[5, 11, 12, 13]. Recently I. Andronov suggested using extended Hilbert spaces to
model non-spherically symmetric scatterers in R2 [3]. This model is very similar
to the generalized point interactions introduced by B.Pavlov [2, 10]. We are go-
ing to use some of the ideas suggested by I. Andronov to construct rank one H�3

perturbations.

2. The Hilbert Space

Our aim is to de�ne the self{adjoint operator corresponding to (1.4), where A
is a certain positive self{adjoint operator acting in the Hilbert space H and ' is an
element from the space H�3 from the scale of Hilbert spaces associated with the
operator A: In what follows we are going to consider the case where

' 2 H�3 nH�2:(2.1)

It is natural to determine the operator A� using the restriction-extension
method. The operator A� coincides with one of the extensions of the operator
A0, which is the restriction of the operator A to the set of functions u from the
domain Dom(A) of the operator A satisfying the condition

h'; ui = 0:(2.2)

Suppose that the operator A is considered as an operator in the original Hilbert
space H: Then the domain of the operator coincides with the space H2, Dom(A) =
H2 and the operator A0 is essentially self{adjoint if ' satis�es (2.1). The operator
A0 is not essentially self{adjoint for such ' only if the domain of the unperturbed
operator A is a subset of H3: Therefore let us consider the operator A as a self{
adjoint operator acting in the Hilbert space H1 equipped with the scalar product

hu; vi1 = hu; (1 + bA)vi;(2.3)

where b is a positive real number. The norm determined by the latter scalar product
is equivalent to the standard norm in the space H1 and is given by

k u k21= hu; (1 + bA)ui:

Then the domain of the operator A coincides with the space H3 and the operator is
self{adjoint on this domain. The operator A0 being the restriction of the operator
A to the domain

Dom(A0) = fu 2 H3 : h'; ui = 0g(2.4)

is a densely de�ned symmetric operator, since ' satis�es (2.1). The domain of
the self{adjoint operator corresponding to the formal expression (1.4) necessarily
contains the element g1 =

1
A+a1

' 2 H�1: Therefore the extension of the operator
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A0 corresponding to formal expression (1.4) cannot be constructed in the Hilbert
space H1: Let us consider the one dimensional extension H of this space,

H = Dom(A0) _+C 3 U = (u; u1):(2.5)

Note that H � H3 _+C: We de�ne the following natural embedding � of the space
H into the space H�1:

� : H ! H�1

(u; u1) 7! u+ u1g1:
(2.6)

We de�ne a sesquilinear form on the domain Dom(A0) _+C as follows:

� U ;V �H = hu; vi + bhu;Avi+ d�u1v1 + (1� ba1) f�u1hg1; vi+ v1hu; g1ig :

(2.7)

This form de�nes a scalar product only if it is positive de�nite.
Let us denote by k U k2H=� U ;U �H the norm associated with the previously

introduced scalar product. The space H with this norm is not complete, and the
following lemma describes its completion with respect to this norm.

Lemma 2.1. Let the following inequality be satis�ed

d > j1� ba1j
2 k g1 k

2
�1 :(2.8)

Then the norm k � kH is equivalent to the standard norm in the Hilbert space H1�C

k U k2�k (u; u1) k
2= hu; (1 + bA)ui+ ju1j

2:

The completion of the space H = Dom(A0) _+C with respect to the norm k � kH
coincides with the space H1 _+C:

Note that the scalar product in the space H calculated on the vectors with the
component u1 equal to zero is equivalent to the scalar product in the space H1:

But the decomposition of the space H = H1 _+C is not orthogonal. Only if ba1 = 1
does the decomposition become orthogonal. We are going to use the same notation
H for the completed space.

3. The Operator

We de�ne the operator A on the set of regular elements Domr � H which
possess the representation

U = (u; u1) = (ur + u2g2; u1);

where ur 2 H3; u2 2 C: The vector

g2 =
1

A+ a2
g1 =

1

A+ a2

1

A + a1
' 2 H1

is de�ned using another one positive parameter, a2 > 0: The embedding operator
� maps every such element to a vector from H�1 as follows:

�(ur + u2g2; u1) = ur + u2g2 + u1g1:

Then the operator A in H is de�ned on Domr in such a way that the following
equality holds:

A�U � �AU(mod');(3.1)
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where this equality in H�3 holds if and only if the di�erence between the left and
right hand sides is proportional to ' 2 H�3: In other words, the operator A acts
as formal adjoint operator. There exists a unique operator A in H satisfying (3.1)

AU = A

�
ur + u2g2

u1

�
=

�
Aur � a2u2g2
u2 � a1u1

�
:(3.2)

The operator A is not self{adjoint. In fact it is not even symmetric. The boundary
form of the operator can be calculated explicitly. We present here the result of
these tedious but otherwise straightforward calculations

� AU ;V �H � � U ;AV �H=< ur; ' > (bv2 + (1 � ba1)v1)
� (b�u2 + (1� ba1)�u1) < '; vr > +af�u2v1 � �u1v2g ;

(3.3)

where we put a = d + (ba1 � 1) < g1; g2 > (a2 � a1): This formula de�nes the
following sesquilinear form in C3:

� U ;AV �H �� AU ;V �H=(3.4)

=

*0@ 0 �c b

c 0 �a
�b a 0

1
A
0
@ < '; ur >

u1
u2

1
A ;

0
@ < '; vr >

v1
v2

1
A+ ;

where c = ba1 � 1 2 R: The rank of the 3 � 3 matrix appeared in this formula is
equal to 2 if at least one of the parameters a; b; c is di�erent from zero, since the
characteristic polynomial for the matrix is given by ��(�2 + a2 + b2 + c2): Then
all symmetric restrictions of the operator A can be de�ned by certain boundary
conditions imposed on the functions from the domain of the operator. The problem
of de�ning a symmetric restriction of A is equivalent to the problem of �nding a
Lagrangian plane of the boundary form.

Suppose that the boundary conditions are written in the form

� < '; ur > +�u1 + u2 = 0;(3.5)

where �;�;  2 C are certain complex parameters, not all equal to zero simultane-
ously. And suppose that the boundary form is equal to zero if U ;V satisfy (3.5).
Then we can verify that the complex parameters �; � and  have equal phase.
Hence, without loss of generality, we can restrict our consideration to the case of
real parameters, since the boundary condition (3.5) is linear. The condition can be
written as

�a+ �b+ c = 0, (�; �; ) ? (a; b; c):(3.6)

The symmetric restrictions of A have been described by three real parameters
(�; �; ) 2 R3 satisfying (3.6). Since the length of the vector (�; �; ) does not play
any role, all of the Lagrangian planes can be parameterized by one real parameter
� 2 [0; 2�) as follows:

(�; �; ) = (b sin �;�a sin � � c cos �; b cos �);(3.7)

where we have taken into account that b is not equal to zero. We are going to use
the following de�nition in what follows

Definition 3.1. The operator A�, � 2 [0; 2�); is the restriction of the operator
A de�ned by (3.2) to the domain of functions U = (u; u1) 2 H possessing the
representation

(u; u1) = (ur + u2g2; u1); ur 2 H3; u1;2 2 C
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and satisfying the boundary condition

b sin �h'; uri � (a sin � + c cos �)u1 + b cos �u2 = 0:(3.8)

Theorem 3.2. The operator A� is a self{adjoint operator in H with the scalar

product � �; � �H :

We can prove that the operator A� is not only self{adjoint, but semibounded
from below. Moreover the resolvent of the operator can be calculated. The solution
U of (A� � �)U = V is given by

h'; uri =
(a sin �+(c�b(a1+�)) cos �)h'; 1

A��
vi+(a2+�)h'; 1

A��
g2i(a sin �+c cos �)v1

cos �(c�b(a1+�))+sin �(a�b(a1+�)(a2+�)h'; 1

A��
g2i)

;

u1 =
b sin �h'; 1

A��
vi+b(cos �+(a2+�)h'; 1

A��
g2i sin �)v1

cos �(c�b(a1+�))+sin �(a�b(a1+�)(a2+�)h'; 1

A��
g2i)

;

u2 =
b sin �(a1+�)h';

1

A��
vi+(a sin �+c cos �)v1

cos �(c�b(a1+�))+sin �(a�b(a1+�)(a2+�)h'; 1

A��
g2i)

:

Then the resolvent can be calculated as

1

A� � �
(v; v1) =

�
1

A � �
v +

�
1

A� �
g1

�
u2; u1

�
:(3.9)

The resolvent restricted to the subspace H1 � H of functions V = (v; v1) 2 H
with zero component v1 = 0 is given by

� 1
A���

jH1
v = 1

A��v +(3.10)

+ b sin �
cos �(c�b(a1+�))+sin �(a�b(a1+�)(a2+�)h'; 1

A��
g2i)

�
1

A��'
�D

'; 1
A��v

E
:

Consider the special case � = 0: In this case the resolvent and the restricted
resolvent are given by

1

A0 � �
V =

�
1

A� �
v +

�
1

A� �
g1

�
1

c
b � a1 � �

v1;
1

c
b � a1 � �

v1

�
(3.11)

and

1

A� �
jH1

=
1

A0 � �
jH1

;(3.12)

respectively. The range of the restricted resolvent in this case is a subset of H1

again. Moreover the restricted resolvent coincides with the resolvent of the original
operator A, and this property is characteristic of the operator A0: In other words,
the domain of the operator A0 contains the domain of the original operator A; and
the action of the operators A0 and A restricted to this domain coincide,

A0jDom(A) = A:

Therefore the operator A0 should be considered as an unperturbed operator,
since this is the unique operator possessing the properties described above. All of
the other operators A� corresponding to � 6= 0 are perturbations of A0:
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