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Abstract

Interface regularity for stationary Maxwell, Stokes, and Navier-
Stokes systems is studied. We show that the localized interface reg-
ularity holds in the normal direction of the solution, under least as-
sumptions on the continuity of the solution.

1 Introduction

I would like to talk about interface regularity of three dimensional Maxwell
and Stokes systems. To our knowledge, not so much regards have been taken
in this topic, but actually the solenoidal condition provides the regularity
across interface to a specified component of the unknown function.

Let Ω ⊂ R3 and M ⊂ R3 be a bounded domain and a C2 hypersurface,
respectively, and suppose that M intersects with ∂Ω transversally, where ∂Ω
denotes the boundary of Ω. That is,

M∩ Ω 6= φ,

Ω = Ω+ ∪ (Ω ∩M) ∪ Ω− (disjointunion), (1)

with Ω± being open subsets of Ω. First, we take the Maxwell system in
magnetostatics,

∇×B = J
∇ ·B = 0

}
in Ω±, (2)
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where B = (B1(x), B2(x), B3(x)) and J = (J1(x), J 2(x), J 3(x)) stand for the
three dimensional vector fields, indicating magnetic field and total current
density, respectively. Here and henceforth, ∇ = T (∂1, ∂2, ∂3) denotes the
gradient operator and × and · are the outer and the inner products in R3, so
that ∇× and ∇· are the rotation and the divergence operations, respectively.
We put [A]+− = A+ − A− where

A+(ξ) = lim
x→ξ, x∈R3\D

A(x), A−(ξ) = lim
x→ξ, x∈D

A(x)

for ξ ∈ ∂D.
To state the result, we take preliminaries from Girault and Raviart [1].

Let D ⊂ R3 be a locally Lipschitz domain D ⊂ R3 with the boundary
Γ = ∂D and the unit normal vector n to Γ. The Sobolev space Hm(D) is
defined by

Hm(D) =
{
u ∈ L2(D) | ∂αu ∈ L2(D) for |α| ≤ m

}
,

if m is a positive integer, where ∂α = ∂α1
x1
∂α2

x2
∂α3

x3
for the multi-index α =

(α1, α2, α3). Given σ ∈ (0, 1), we say that u ∈ Hm+σ(D) if u ∈ Hm(D) and

∫
D

∫
D

|∂αu(x) − ∂αu(y)|2
|x− y|n+2σ dxdy < +∞

for any α in |α| = m and n = 3. The space Hs(Γ) for s ∈ [0, 1] is defined
similarly with n = 2 through the local chart of Γ, and we set H−s(Γ) =
Hs(Γ)′. Finally, we put

H(div,D) =
{
u ∈ L2(D)3 | ∇ · u ∈ L2(D)

}
and

H(rot,D) =
{
u ∈ L2(D)3 | ∇ × u ∈ L2(D)3

}
.

Then, we have n · v|Γ ∈ H−1/2(Γ) and the Green’s formula

((v,∇ϕ))D + (∇ · v, ϕ)D = 〈n · v, ϕ〉Γ
holds for v ∈ H(div,D) and ϕ ∈ H1(D), where (·, ·)D and ((·, ·)) denote
L2(D) and L2(D)3 inner products, respectively, and 〈·, ·〉Γ the duality pairing
between H−1/2(Γ) and H1/2(Γ). Similarly, we have n× v|Γ ∈ H−1/2(Γ)3 and
the Stokes formula

((∇× v,w))D − ((v,∇× w))D = 〈〈n × v,w〉〉Γ
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holds for v ∈ H1(D)3 and w ∈ H1(D)3, where 〈〈·, ·〉〉Γ denotes the duality
pairing between H−1/2(Γ)3 and H1/2(Γ)3.

Recalling the Maxwell system (2), now we discuss the interface regularity
of the solution B. Put

Γ± = ∂Ω± ∩M
with ∂Ω± being the boundary of Ω±. Thus, Γ+ and Γ− coincide as sets,
but they are regarded as parts of the boundaries of Ω+ and Ω−, respectively.
Henceforth, n denotes the outer unit normal vector to Γ−. Therefore, −n is
nothing but the outer unit normal vector to Γ+. Henceforth, a C 2 extension
to Ω of the vector field n on Γ ≡ M ∩ Ω is taken. Furthermore, given a
function A(x) on Ω±, we set

[A]+− = A+ − A− on Γ,

where A±(ξ) = limx→ξ, x∈Ω± A(x) for ξ ∈ Γ.
Suppose that B and J are in L2(Ω±)3 and satisfy (2). Then it holds that

B ∈ H(rot,Ω±) ∩H(div,Ω±). This implies

n×B|Γ± ∈ H−1/2(Γ±)3 and n · B|Γ± ∈ H−1/2(Γ±),

and hence B|Γ± ∈ H−1/2(Γ±)3. Furthermore, [n ×B]+− = 0 and [n ·B]+− = 0

on Γ if and only if ∇ × B ∈ L2(Ω)3 and ∇ · B ∈ L2(Ω) as distributions,
respectively. In particular, B ∈ H 1

loc(Ω)3 if and only if [B]+− = 0 on Γ by
Corollary I.2.10 of [1], that is, H(rot,Ω) ∩H(div,Ω) ⊂ H1

loc(Ω)3.
Under those preparations, our first result is stated as follows. Note again

that n ·B is extended to a function in Ω.

Theorem 1 If B ∈ H1(Ω)3 and J ∈ H(rot,Ω±) satisfy (2), then it holds
that n ·B ∈ H2

loc(Ω).

In the above theorem, B solves (2) in Ω because it is in H 1
loc(Ω)3. On

the other hand, J ∈ H(rot,Ω±) belongs to J ∈ H(rot,Ω) if and only if
[n × J ]+− = 0 holds. If this condition is satisfied, then it holds that

−∆B = ∇× J ∈ L2(Ω)3

as a distribution by ∇ · B = 0 in Ω. This implies B ∈ H 2
loc(Ω)3 from the

elliptic regularity. Thus, Theorem 1 says that even when n × J has an
interface on Γ = M∩ Ω, n ·B gains the regularity in one rank.
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Theorem 1 can be applied to the stationary Stokes system;

−∆v + ∇p = f
∇ · v = 0

}
in Ω± (3)

and the stationary Navier-Stokes system;

−∆v + (v · ∇) v + ∇p = f
∇ · v = 0

}
in Ω±, (4)

where v = (v1(x), v2(x), v3(x)) denotes the velocity of fluid, p = p(x) the
pressure, and f(x) = (f1(x), f 2(x), f 3(x)) the external force. Any compo-
nents of those vector or scalar fields are supposed to be in L1

loc(Ω). We have
the following theorem, where ω = ∇× v indicates the vorticity of fluid.

Theorem 2 If v ∈ H2(Ω±)3, ∇p ∈ L2(Ω±)3, and f ∈ H(rot,Ω±) satisfy (3)
or (4) and ω = ∇× v is in H1(Ω)3, then it holds that n · ω ∈ H2

loc(Ω).

In the above theorem, systems of equations are supposed to hold piece-
wisely in Ω, and np and n× f may have interfaces. Neverthless, the normal
component of the vorticity ω gains the regularity in one rank if [ω]+− = 0
holds on Γ = Ω∩M. On the other hand, the following theorem corresponds
to Theorem 1, and there, the equations in system (3) or (4) hold in Ω.

Theorem 3 If M ⊂ R3 is C3 and v ∈ H2(Ω)3, ∇p ∈ H1(Ω±)3, and f ∈
H1(Ω±)3 satisfy (3) with ∂f

∂xj
∈ H(rot,Ω±)3 for j = 1, 2, 3, then it holds that

n·v ∈ H3
loc(Ω). The same conclusion follows for (4) if ω = ∇×v ∈ (H2(Ω±))3

is imposed besides other conditions.

2 Key Lemma and Proof of Theorem 1

In this section, we consider the Maxwell system (2) and discuss the interface
regularity of the solution B. First, we show the following.

Lemma 2.1 If B ∈ L2(Ω±)3 and J ∈ H(rot,Ω±) satisfy (2), then it follows
that

〈〈∇(n ·B), C〉〉+− − 〈〈(∇ · n)B,C〉〉+−
= 〈〈B, (n · ∇)C〉〉+− − 〈〈n ×B,∇× C〉〉+− − 〈n ·B,∇ · C〉+− (5)

for any C ∈ C∞
0 (Ω)3, where 〈〈 , 〉〉+− = 〈〈 , 〉〉Γ+

− 〈〈 , 〉〉Γ−.
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Proof of Theorem 1: Since [B]+− = 0 on Γ, we have

〈〈∇(n ·B), C〉〉+− = 0

for any C ∈ {C∞
0 (Ω)}3. This implies

[∇(n ·B)]+− = 0 on Γ. (6)

We have B ∈ H1
loc(Ω)3 and −∆B = ∇× J ∈ L2(Ω±). Hence ∆(n ·B) ∈

L2(Ω±) follows. Because ∇(n ·B)|Γ± ∈ H−1/2(Γ±)3 satisfies (6), the Green’s
formula now gives

∫
Ω

∆(n ·B)ψdx =
∫
Ω
(n ·B)∆ψdx

for any ψ ∈ C∞
0 (Ω). This means that if f ∈ L2(Ω) is defined by

f =

{
∆(n ·B)|Ω+

in Ω+

∆(n ·B)|Ω− in Ω−,

then it follows that ∆(n · B) = f ∈ L2(Ω) as a distribution in Ω. In use of
n · B ∈ H1(Ω) and the elliptic regularity, we obtain n · B ∈ H 2

loc(Ω). The
proof is complete.

In the rest of this section, we take the case that M is flat. If B ∈
H1(Ω±)3, then B|Γ± ∈ H1/2(Γ±)3 and hence (n×∇)B|Γ± ∈ H−1/2(Γ±)3 is
well-defined. If ∇ ·B = 0 in Ω± furthermore, then

(n · ∇) (n ·B)|Γ± ∈ H−1/2(Γ±)

follows from those relations as we shall see. In this case, Theorem 1 has
component-wise version.

Theorem 4 Suppose that the interface M is flat, and that B ∈ H1(Ω±)3

and J ∈ H(rot,Ω±) satisfy (2). Then, if [n ·B]+− = 0 on Γ it holds that

[(n ×∇)(n ·B)]
+
− = 0 on Γ. Similarly, if [n×B]

+
− = 0 on Γ we have

[(n · ∇)(n ·B)]+− = 0 on Γ.
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3 Stokes and Navier-Stokes system

Theorem 5 Assume that system (3) holds with v ∈ H2(Ω±)3, ∇p ∈ L2(Ω±)3,
f ∈ H1(Ω±) ∩ H(rot,Ω±) and (n · ∇)f ∈ H(rot,Ω±). If the conditions
[n × v]+− = 0 and [(n · ∇)(n · v)]+− = [n · (∇× v)]+− = 0 are satisfied on Γ,

then it holds that n× v|Γ ∈ H
5/2
loc (Γ)3.

Theorem 6 Under the assumptions of Theorem 5, if the conditions
[(n · ∇)(n× v)]

+
− = [n× (n · ∇)v]

+
− = [n× (∇× v)]

+
− = 0 are satisfied on Γ,

then it holds that (n · ∇)(n× v)|Γ ∈ H
3/2
loc (Γ)3.

Theorem 7 The same conclusions as in Theorems 5 and 6 hold to system
(4) if ω = ∇×v ∈ L∞(Ω±)3 and n ·∇ω ∈ H1(Ω±)3 are imposed besides other
conditions.
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