GLOBAL SOLVABILITY OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH DISTRIBUTION-VALUED INITIAL DATA

Toshihiro Abe and Noboru Okazawa Science University of Tokyo

1. Introduction

We consider initial value problems for the complex Ginzburg-Landau equation over 1-dimensional torus $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$:

(CGL)
$$\begin{cases} \frac{\partial u}{\partial t} - (\lambda + i\alpha) \frac{\partial^2 u}{\partial x^2} + (\kappa + i\beta) |u|^{q-2} u - \gamma u = 0, \quad (x,t) \in \mathbb{T} \times \mathbb{R}_+, \\ u(x,0) = u_0(x), \quad x \in \mathbb{T}, \end{cases}$$

where $q \ge 2, \lambda > 0, \kappa > 0, \alpha, \beta, \gamma \in \mathbb{R}$ are constants, $i = \sqrt{-1}$, and u is a complex-valued unknown function. \mathbb{T} is usually regarded as the interval $I := [-\pi, \pi]$, identifying $-\pi$ and π . Then the initial value problem (CGL) is equivalent to the following initial-boundary value problem with periodic boundary condition:

$$\begin{cases} \frac{\partial u}{\partial t} - (\lambda + i\alpha) \frac{\partial^2 u}{\partial x^2} + (\kappa + i\beta) |u|^{q-2} u - \gamma u = 0, \quad (x,t) \in I \times \mathbb{R}_+, \\ u(-\pi,t) = u(\pi,t), \quad t \in \mathbb{R}_+, \\ u(x,0) = u_0(x), \quad x \in I. \end{cases}$$

The existence of unique **global strong** solutions to (CGL) is so far known only for initial values $u_0 \in L^2(\mathbb{T})$ (cf. [2]). The purpose of this talk is to announce the strong solvability of (CGL) for wider class of initial values u_0 in negative order Sobolev spaces $H^s(\mathbb{T})$ (s < 0). That is, we consider distribution-valued initial data. Thus, the result means smoothing effect of the solution operator.

Our result is stated as follows:

Theorem 1.1. For $2 \le q < 6$ let $\kappa + i\beta$ be a complex number satisfying $\frac{|\beta|}{\kappa} \le \frac{2\sqrt{q-1}}{q-2}$. Assume that s < 0 satisfies the constraint:

(1.1)
$$s > \begin{cases} -\frac{2}{q-1} & \text{if } 2 \le q \le 3, \\ \frac{1}{2} - \frac{3}{q-1} & \text{if } 3 \le q \le 4, \\ \frac{1}{2} - \frac{2}{q-2} & \text{if } 4 \le q < 6. \end{cases}$$

Then for every $u_0 \in H^s(\mathbb{T})$ there exists a unique global strong solution $u(\cdot)$ to (CGL).

Here $u(\cdot)$ is called the global strong solution if

 $u(\cdot) \in C([0,\infty); H^s(\mathbb{T})) \cap C^{0,1}_{\mathrm{loc}}((0,\infty); L^2(\mathbb{T}))$

and furthermore, for a given T > 0, $u(\cdot)$ satisfies the equation in (CGL) in $L^2(\delta, T; L^2(\mathbb{T}))$ for any $\delta \in (0, T)$.

To prove the Theorem we proceed as follows. First we construct the local solution $u_{\text{loc}}(\cdot)$ to (CGL) with $u_0 \in H^s(\mathbb{T})$. The solution can be chosen so that $u_{\text{loc}}(t) \in L^p(\mathbb{T})$ $(p \geq 2)$ a.a. t over the interval of its existence. This process has been established by Levermore-Oliver [1].

Next, we take $u_{\text{loc}}(\delta) \in L^2(\mathbb{T})$ as a new initial value for sufficiently small $\delta > 0$ and apply the result of Okazawa-Yokota [2] to extend the solution globally.

2. Local Existence (Contraction Method)

We describe the result of [1] about the construction of local solutions to (CGL) by Contraction Methods. Since $\lambda > 0$, the opeator $(\lambda + i\alpha)(d/dx)^2 + \gamma$ is the infinitesimal generator of the C_0 -semigroup

$$U(t) := e^{\gamma t} \exp((\lambda + i\alpha)t(d/dx)^2)$$

on $L^2(I)$ as well as on $H^s(I)$. Then (CGL) can be formally recast as an integral equation (mild formulation):

(IE)
$$u(t) = U(t)u_0 - (\kappa + i\beta) \int_0^t U(t-s)|u|^{q-2}u(s) \, ds.$$

Here, for a given $v_0 \in L^2(I)$ it is well known that $\{U(t); t \ge 0\}$ is given by the convolution

$$U(t)v_0 = H_t * v_0, \quad v_0 \in L^2(I),$$

where the integral kernel $H_t = H_t(x)$ is given by

$$H_t(x) := \sum_{n \in 2\pi\mathbb{Z}} h_t(x+n), \quad x \in I,$$

$$h_t(x) := \frac{e^{\gamma t}}{(4\pi(\lambda+i\alpha)t)^{\frac{1}{2}}} \exp\left(-\frac{x^2}{4(\lambda+i\alpha)t}\right), \quad x \in \mathbb{R}$$

(cf. Taylor [3, Section 3.7] in which $\lambda = 1$, $\alpha = 0$). Note that solutions of (IE) are mild solutions of (CGL).

The following local existence theorem is due to Levermore-Oliver [1].

Theorem 2.1. For $2 \le q < 6$ let s < 0 satisfy the constraint (1.1) in Theorem 1.1. Then for every $\rho > 0$ there exists a time $T = T(\rho) > 0$ and $2 \le p < 10$ such that for every initial value $u_0 \in H^s(\mathbb{T})$ with $||u_0||_{H^s} \le \rho$, (IE) admits a unique solution

$$u(\cdot) \in C([0,T]; H^{s}(\mathbb{T})) \cap E^{\theta}((0,T]; L^{p}(\mathbb{T})),$$

where $\theta := \frac{1}{2} \left(\frac{1}{2} - \frac{1}{p} - s \right)$, and $E^{\theta}((0,T]; L^{p}(\mathbb{T}))$ is given by
 $E^{\theta}((0,T]; L^{p}(\mathbb{T})) := \{w(\cdot) \in C((0,T]; L^{p}(\mathbb{T})); \sup\{t^{\theta} \| w(t) \|_{L^{p}}; 0 < t \leq T\} < \infty\}$

with norm

$$||w(t)||_{E^{\theta}} := \sup\{t^{\theta} ||w(t)||_{L^{p}}; 0 < t \le T\}.$$

To prove this theorem, we introduce the following operator

$$Nu := (\kappa + i\beta)|u|^{q-2}u$$
 for $u \in D(N) := L^{2(q-1)}(\mathbb{T}).$

Then (IE) is recast as an abstract integral equation:

(AIE)
$$u(t) = U(t)u_0 - \int_0^t U(t-s)(Nu)(s) \, ds.$$

Under the above settings, the following abstract theorem holds (see [1, Theorem 3]).

Theorem 2.2 (General Local Existence). Let $\{U(t); t \ge 0\}$ be a C_0 -semigroup on a Banach space X. Let Y be another Banach space continuously embedded in X and $N: Y \to X$ a nonlinear operator. Assume that $\{U(t)\}$ and N satisfy the following two conditions:

(I) $U(t)X \subset Y \ \forall t > 0$ and there exist two constants θ ($0 < \theta < 1$) and M (M > 0) such that

$$|U(t)w||_Y \le Mt^{-\theta} ||w||_X \quad \forall \ w \in X$$

(II) There exist two constants $q \ge 2$ and L > 0 such that

$$||Nu - Nv||_X \le L(||u||_Y + ||v||_Y)^{q-2} ||u - v||_Y \quad \forall \ u, v \in Y.$$

If $q < 1 + 1/\theta$, then for every $\rho > 0$ there exists $T = T(\rho) > 0$ such that for every initial value $u_0 \in X$ with $||u_0||_X \le \rho$ the integral equation (AIE) admits a unique solution

 $u(\cdot)\in C([0,T];X)\cap E^{\theta}((0,T];Y),$

where $E^{\theta}((0,T];Y)$ is given by

$$E^{\theta}((0,T];Y) := \{w(\cdot) \in C((0,T];Y); \sup\{t^{\theta} \| w(t) \|_{Y}; 0 < t \le T\} < \infty\}$$

with norm

$$||w(t)||_{E^{\theta}} := \sup\{t^{\theta} ||w(t)||_{Y}; 0 < t \le T\}.$$

By setting $X := H^s(\mathbb{T}), Y := L^p(\mathbb{T}) \ (p \ge 2)$ in Theorem 2.2, we can obtain Theorem 2.1.

3. Global Existence (Monotonicity Method)

We describe the result in [2] about the construction of the global solution by Monotonicity Methods.

First we formulate the problem (CGL) in the complex Hilbert space $X := L^2(\mathbb{T})$. To this end we introduce two *m*-accretive operators:

$$D(S) := H^{2}(\mathbb{T}) = \{ u \in H^{2}(I); u(-\pi) = u(\pi), u'(-\pi) = u'(\pi) \}, (Su)(x) := -(d/dx)^{2}u(x) \text{ for } u \in D(S), (Bu)(x) := |u|^{q-2}u(x) \text{ for } u \in D(B) := L^{2(q-1)}(\mathbb{T}).$$

Then (CGL) is regarded as the following abstract nonlinear evolution equation:

(DE)
$$\begin{cases} \frac{du}{dt} + (\lambda + i\alpha)Su + (\kappa + i\beta)Bu - \gamma u = 0, \quad t > 0, \\ u(0) = u_0 \in X. \end{cases}$$

The following global existence theorem holds (see [2, Theorem 1.3])

Theorem 3.1. Let $\kappa + i\beta$ be a complex number satisfying $\kappa^{-1}|\beta| \leq (2\sqrt{q-1})/(q-2)$. Then for any $u_0 \in L^2(\mathbb{T})$ there exists a "unique" strong solution to (CGL).

The proof of Theorem 3.1 is completed by regarding B as a subdifferential operator in $L^2(\mathbb{T})$.

Let S be a nonnegative selfadjoint operator in a complex Hilbert space X and $S^{1/2}$ its square root. Let ψ be a proper lower semi-continuous convex function on X. For simplicity we assume that $\psi \geq 0$ and $\partial \psi$ is single-valued. Now we consider the abstract Cauchy problem in X:

(ACP)
$$\begin{cases} \frac{du}{dt} + (\lambda + i\alpha)Su + (\kappa + i\beta)\partial\psi(u) - \gamma u = 0, \\ u(0) = u_0. \end{cases}$$

For the convex function ψ and its subdifferential $\partial \psi$ assume that the following three conditions are satisfied:

(A1)
$$\exists q \in [2,\infty); \psi(\zeta u) = |\zeta|^q \psi(u), u \in D(\psi), \operatorname{Re} \zeta > 0.$$

(A2) $\exists \omega_q \in [0,\pi/2); \text{ for } u, v \in D(\partial \psi)$

$$|\mathrm{Im}(\partial \psi(u) - \partial \psi(v), u - v)| \le (\tan \omega_q) \mathrm{Re}(\partial \psi(u) - \partial \psi(v), u - v).$$

(A3) $|\text{Im}(Su, \partial \psi_{\varepsilon}(u))| \leq (\tan \omega_q) \text{Re}(Su, \partial \psi_{\varepsilon}(u)) \quad \forall u \in D(S)$, where $\partial \psi_{\varepsilon}$ is the Yosida approximation of $\partial \psi$.

Theorem 3.2 (General Global Existence). Let $\kappa + i\beta$ be a complex number satisfying $\kappa^{-1}|\beta| \leq (\tan \omega_q)^{-1}$. Assume that conditions (A1)–(A3) are satisfied. Then for every $u_0 \in \overline{D(S^{1/2}) \cap D(\psi)}$, (ACP) admits a unique global strong solution

$$u(\cdot) \in C([0,\infty);X) \cap C^{0,1}_{\text{loc}}((0,\infty);X)$$

Put $X := L^2(\mathbb{T})$ in the above Theorem 3.2 and take

$$\psi(u) := \begin{cases} \frac{1}{q} \|u\|_{L^q}^q & \text{for } u \in L^q(\mathbb{T}), \\ +\infty & \text{otherwise.} \end{cases}$$

Then we have that the L^2 -closure of $\overline{D(S^{1/2})} \cap D(\psi) = H^1(\mathbb{T}) \cap L^q(\mathbb{T})$ is equal to $L^2(\mathbb{T})$ and $B = \partial \psi$. Moreover, all the conditions (A1)–(A3) are satisfied with $\tan \omega_q = (q - 2)/(2\sqrt{q-1})$. Consequently, we can obtain Theorem 3.1.

References

- [1] C.D. Levermore and M. Oliver, *Distribution-valued initial data for the complex Ginzburg-Landau equation*, Comm. Partial Differential Equations **22** (1997), 39–48.
- [2] N. Okazawa and T. Yokota, Global existence and smoothing effect for the complex Ginzburg-Landau equation with p-Laplacian, J. Differential Equations 182 (2002), 541–576.
- [3] M.E. Taylor, *Partial Differential Equations* I: *Basic Theory*, Applied Math. Sciences 115, Springer-Verlag, New York and Berlin, 1996.