GLOBAL SOLVABILITY OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH DISTRIBUTION-VALUED INITIAL DATA

Toshihiro Abe and Noboru Okazawa
Science University of Tokyo

1. Introduction

We consider initial value problems for the complex Ginzburg-Landau equation over 1-dimensional torus $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$:
$(\mathrm{CGL}) \quad\left\{\begin{array}{l}\frac{\partial u}{\partial t}-(\lambda+i \alpha) \frac{\partial^{2} u}{\partial x^{2}}+(\kappa+i \beta)|u|^{q-2} u-\gamma u=0, \quad(x, t) \in \mathbb{T} \times \mathbb{R}_{+}, \\ u(x, 0)=u_{0}(x), \quad x \in \mathbb{T},\end{array}\right.$
where $q \geq 2, \lambda>0, \kappa>0, \alpha, \beta, \gamma \in \mathbb{R}$ are constants, $i=\sqrt{-1}$, and u is a complex-valued unknown function. \mathbb{T} is usually regarded as the interval $I:=[-\pi, \pi]$, identifying $-\pi$ and π. Then the initial value problem (CGL) is equivalent to the following initial-boundary value problem with periodic boundary condition:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-(\lambda+i \alpha) \frac{\partial^{2} u}{\partial x^{2}}+(\kappa+i \beta)|u|^{q-2} u-\gamma u=0, \quad(x, t) \in I \times \mathbb{R}_{+}, \\
u(-\pi, t)=u(\pi, t), \quad t \in \mathbb{R}_{+}, \\
u(x, 0)=u_{0}(x), \quad x \in I
\end{array}\right.
$$

The existence of unique global strong solutions to (CGL) is so far known only for initial values $u_{0} \in L^{2}(\mathbb{T})$ (cf. [2]). The purpose of this talk is to announce the strong solvability of (CGL) for wider class of initial values u_{0} in negative order Sobolev spaces $H^{s}(\mathbb{T})(s<0)$. That is, we consider distribution-valued initial data. Thus, the result means smoothing effect of the solution operator.

Our result is stated as follows:
Theorem 1.1. For $2 \leq q<6$ let $\kappa+i \beta$ be a complex number satisfying $\frac{|\beta|}{\kappa} \leq \frac{2 \sqrt{q-1}}{q-2}$. Assume that $s<0$ satisfies the constraint:

$$
s> \begin{cases}-\frac{2}{q-1} & \text { if } 2 \leq q \leq 3 \tag{1.1}\\ \frac{1}{2}-\frac{3}{q-1} & \text { if } 3 \leq q \leq 4 \\ \frac{1}{2}-\frac{2}{q-2} & \text { if } 4 \leq q<6\end{cases}
$$

Then for every $u_{0} \in H^{s}(\mathbb{T})$ there exists a unique global strong solution $u(\cdot)$ to (CGL).

Here $u(\cdot)$ is called the global strong solution if

$$
u(\cdot) \in C\left([0, \infty) ; H^{s}(\mathbb{T})\right) \cap C_{\mathrm{loc}}^{0,1}\left((0, \infty) ; L^{2}(\mathbb{T})\right)
$$

and furthermore, for a given $T>0, u(\cdot)$ satisfies the equation in (CGL) in $L^{2}\left(\delta, T ; L^{2}(\mathbb{T})\right)$ for any $\delta \in(0, T)$.

To prove the Theorem we proceed as follows. First we construct the local solution $u_{\mathrm{loc}}(\cdot)$ to (CGL) with $u_{0} \in H^{s}(\mathbb{T})$. The solution can be chosen so that $u_{\mathrm{loc}}(t) \in L^{p}(\mathbb{T})$ $(p \geq 2)$ a.a. t over the interval of its existence. This process has been established by Levermore-Oliver [1].

Next, we take $u_{\text {loc }}(\delta) \in L^{2}(\mathbb{T})$ as a new initial value for sufficiently small $\delta>0$ and apply the result of Okazawa-Yokota [2] to extend the solution globally.

2. Local Existence (Contraction Method)

We describe the result of [1] about the construction of local solutions to (CGL) by Contraction Methods. Since $\lambda>0$, the opeator $(\lambda+i \alpha)(d / d x)^{2}+\gamma$ is the infinitesimal generator of the C_{0}-semigroup

$$
U(t):=e^{\gamma t} \exp \left((\lambda+i \alpha) t(d / d x)^{2}\right)
$$

on $L^{2}(I)$ as well as on $H^{s}(I)$. Then (CGL) can be formally recast as an integral equation (mild formulation):

$$
\begin{equation*}
u(t)=U(t) u_{0}-(\kappa+i \beta) \int_{0}^{t} U(t-s)|u|^{q-2} u(s) d s \tag{IE}
\end{equation*}
$$

Here, for a given $v_{0} \in L^{2}(I)$ it is well known that $\{U(t) ; t \geq 0\}$ is given by the convolution

$$
U(t) v_{0}=H_{t} * v_{0}, \quad v_{0} \in L^{2}(I)
$$

where the integral kernel $H_{t}=H_{t}(x)$ is given by

$$
\begin{aligned}
H_{t}(x) & :=\sum_{n \in 2 \pi \mathbb{Z}} h_{t}(x+n), \quad x \in I, \\
h_{t}(x) & :=\frac{e^{\gamma t}}{(4 \pi(\lambda+i \alpha) t)^{\frac{1}{2}}} \exp \left(-\frac{x^{2}}{4(\lambda+i \alpha) t}\right), \quad x \in \mathbb{R}
\end{aligned}
$$

(cf. Taylor [3, Section 3.7] in which $\lambda=1, \alpha=0$). Note that solutions of (IE) are mild solutions of (CGL).

The following local existence theorem is due to Levermore-Oliver [1].
Theorem 2.1. For $2 \leq q<6$ let $s<0$ satisfy the constraint (1.1) in Theorem 1.1. Then for every $\rho>0$ there exists a time $T=T(\rho)>0$ and $2 \leq p<10$ such that for every initial value $u_{0} \in H^{s}(\mathbb{T})$ with $\left\|u_{0}\right\|_{H^{s}} \leq \rho$, (IE) admits a unique solution

$$
u(\cdot) \in C\left([0, T] ; H^{s}(\mathbb{T})\right) \cap E^{\theta}\left((0, T] ; L^{p}(\mathbb{T})\right)
$$

where $\theta:=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{p}-s\right)$, and $E^{\theta}\left((0, T] ; L^{p}(\mathbb{T})\right)$ is given by

$$
E^{\theta}\left((0, T] ; L^{p}(\mathbb{T})\right):=\left\{w(\cdot) \in C\left((0, T] ; L^{p}(\mathbb{T})\right) ; \sup \left\{t^{\theta}\|w(t)\|_{L^{p}} ; 0<t \leq T\right\}<\infty\right\}
$$

with norm

$$
\|w(t)\|_{E^{\theta}}:=\sup \left\{t^{\theta}\|w(t)\|_{L^{p}} ; 0<t \leq T\right\} .
$$

To prove this theorem, we introduce the following operator

$$
N u:=(\kappa+i \beta)|u|^{q-2} u \text { for } u \in D(N):=L^{2(q-1)}(\mathbb{T}) .
$$

Then (IE) is recast as an abstract integral equation:

$$
\begin{equation*}
u(t)=U(t) u_{0}-\int_{0}^{t} U(t-s)(N u)(s) d s \tag{AIE}
\end{equation*}
$$

Under the above settings, the following abstract theorem holds (see [1, Theorem 3]).
Theorem 2.2 (General Local Existence). Let $\{U(t) ; t \geq 0\}$ be a C_{0}-semigroup on a Banach space X. Let Y be another Banach space continuously embedded in X and $N: Y \rightarrow X$ a nonlinear operator. Assume that $\{U(t)\}$ and N satisfy the following two conditions:
(I) $U(t) X \subset Y \forall t>0$ and there exist two constants $\theta(0<\theta<1)$ and $M(M>0)$ such that

$$
\|U(t) w\|_{Y} \leq M t^{-\theta}\|w\|_{X} \quad \forall w \in X
$$

(II) There exist two constants $q \geq 2$ and $L>0$ such that

$$
\|N u-N v\|_{X} \leq L\left(\|u\|_{Y}+\|v\|_{Y}\right)^{q-2}\|u-v\|_{Y} \forall u, v \in Y .
$$

If $q<1+1 / \theta$, then for every $\rho>0$ there exists $T=T(\rho)>0$ such that for every initial value $u_{0} \in X$ with $\left\|u_{0}\right\|_{X} \leq \rho$ the integral equation (AIE) admits a unique solution

$$
u(\cdot) \in C([0, T] ; X) \cap E^{\theta}((0, T] ; Y)
$$

where $E^{\theta}((0, T] ; Y)$ is given by

$$
E^{\theta}((0, T] ; Y):=\left\{w(\cdot) \in C((0, T] ; Y) ; \sup \left\{t^{\theta}\|w(t)\|_{Y} ; 0<t \leq T\right\}<\infty\right\}
$$

with norm

$$
\|w(t)\|_{E^{\theta}}:=\sup \left\{t^{\theta}\|w(t)\|_{Y} ; 0<t \leq T\right\}
$$

By setting $X:=H^{s}(\mathbb{T}), Y:=L^{p}(\mathbb{T})(p \geq 2)$ in Theorem 2.2, we can obtain Theorem 2.1.

3. Global Existence (Monotonicity Method)

We describe the result in [2] about the construction of the global solution by Monotonicity Methods.

First we formulate the problem (CGL) in the complex Hilbert space $X:=L^{2}(\mathbb{T})$. To this end we introduce two m-accretive operators:

$$
\begin{aligned}
& D(S):=H^{2}(\mathbb{T})=\left\{u \in H^{2}(I) ; u(-\pi)=u(\pi), u^{\prime}(-\pi)=u^{\prime}(\pi)\right\} \\
& (S u)(x):=-(d / d x)^{2} u(x) \text { for } u \in D(S) \\
& (B u)(x):=|u|^{q-2} u(x) \text { for } u \in D(B):=L^{2(q-1)}(\mathbb{T})
\end{aligned}
$$

Then (CGL) is regarded as the following abstract nonlinear evolution equation:

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+(\lambda+i \alpha) S u+(\kappa+i \beta) B u-\gamma u=0, \quad t>0 \tag{DE}\\
u(0)=u_{0} \in X
\end{array}\right.
$$

The following global existence theorem holds (see [2, Theorem 1.3])

Theorem 3.1. Let $\kappa+i \beta$ be a complex number satisfying $\kappa^{-1}|\beta| \leq(2 \sqrt{q-1}) /(q-2)$. Then for any $u_{0} \in L^{2}(\mathbb{T})$ there exists a "unique" strong solution to (CGL).

The proof of Theorem 3.1 is completed by regarding B as a subdifferential operator in $L^{2}(\mathbb{T})$.

Let S be a nonnegative selfadjoint operator in a complex Hilbert space X and $S^{1 / 2}$ its square root. Let ψ be a proper lower semi-continuous convex function on X. For simplicity we assume that $\psi \geq 0$ and $\partial \psi$ is single-valued. Now we consider the abstract Cauchy problem in X :

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+(\lambda+i \alpha) S u+(\kappa+i \beta) \partial \psi(u)-\gamma u=0 \tag{ACP}\\
u(0)=u_{0}
\end{array}\right.
$$

For the convex function ψ and its subdifferential $\partial \psi$ assume that the following three conditions are satisfied:
(A1) $\exists q \in[2, \infty) ; \psi(\zeta u)=|\zeta|{ }^{q} \psi(u), u \in D(\psi), \operatorname{Re} \zeta>0$.
(A2) $\exists \omega_{q} \in[0, \pi / 2)$; for $u, v \in D(\partial \psi)$

$$
|\operatorname{Im}(\partial \psi(u)-\partial \psi(v), u-v)| \leq\left(\tan \omega_{q}\right) \operatorname{Re}(\partial \psi(u)-\partial \psi(v), u-v)
$$

(A3) $\left|\operatorname{Im}\left(S u, \partial \psi_{\varepsilon}(u)\right)\right| \leq\left(\tan \omega_{q}\right) \operatorname{Re}\left(S u, \partial \psi_{\varepsilon}(u)\right) \forall u \in D(S)$, where $\partial \psi_{\varepsilon}$ is the Yosida approximation of $\partial \psi$.
Theorem 3.2 (General Global Existence). Let $\kappa+i \beta$ be a complex number satisfying $\kappa^{-1}|\beta| \leq\left(\tan \omega_{q}\right)^{-1}$. Assume that conditions (A1)-(A3) are satisfied. Then for every $u_{0} \in \overline{D\left(S^{1 / 2}\right) \cap D(\psi)},(\mathrm{ACP})$ admits a unique global strong solution

$$
u(\cdot) \in C([0, \infty) ; X) \cap C_{\mathrm{loc}}^{0,1}((0, \infty) ; X)
$$

Put $X:=L^{2}(\mathbb{T})$ in the above Theorem 3.2 and take

$$
\psi(u):= \begin{cases}\frac{1}{q}\|u\|_{L^{q}}^{q} & \text { for } u \in L^{q}(\mathbb{T}) \\ +\infty & \text { otherwise }\end{cases}
$$

Then we have that the L^{2}-closure of $\overline{D\left(S^{1 / 2}\right) \cap D(\psi)}=H^{1}(\mathbb{T}) \cap L^{q}(\mathbb{T})$ is equal to $L^{2}(\mathbb{T})$ and $B=\partial \psi$. Moreover, all the conditions (A1)-(A3) are satisfied with $\tan \omega_{q}=(q-$ 2) $/(2 \sqrt{q-1})$. Consequently, we can obtain Theorem 3.1.

References

[1] C.D. Levermore and M. Oliver, Distribution-valued initial data for the complex Ginzburg-Landau equation, Comm. Partial Differential Equations 22 (1997), 39-48.
[2] N. Okazawa and T. Yokota, Global existence and smoothing effect for the complex Ginzburg-Landau equation with p-Laplacian, J. Differential Equations 182 (2002), 541-576.
[3] M.E. Taylor, Partial Differential Equations I: Basic Theory, Applied Math. Sciences 115, Springer-Verlag, New York and Berlin, 1996.

