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1. Introduction

We consider initial value problems for the complex Ginzburg-Landau equation over
1-dimensional torus T = R/27Z:

ou . 0% , o
(CGL) o~ A Hia) o+ (k+iB)ulu—qu=0, (2,t) € Tx Ry,

u(maO)ZUO('I)? Z’GT,

where ¢ > 2,\ > 0,5 > 0,0, 3,7 € R are constants, i = v/—1, and u is a complex-valued
unknown function. T is usually regarded as the interval I := [—7, 7], identifying —7 and
7. Then the initial value problem (CGL) is equivalent to the following initial-boundary
value problem with periodic boundary condition:

0 0?
D= (O ia) oy + (e Bl u— =0, (w.6) €1 xRy,

u(_ﬂ'at) = U(ﬂ',t), te R—I—a
u(z,0) = up(x), xe€l.

The existence of unique global strong solutions to (CGL) is so far known only for
initial values ug € L*(T) (cf. [2]). The purpose of this talk is to announce the strong
solvability of (CGL) for wider class of initial values uo in negative order Sobolev spaces
H*(T) (s < 0). That is, we consider distribution-valued initial data. Thus, the result
means smoothing effect of the solution operator.

Our result is stated as follows:

ol o 2va—1

Theorem 1.1. For 2 < q < 6 let k4 i3 be a complex number satisfying

K q—2
Assume that s < 0 satisfies the constraint:
( 2
- if 2<q<3,
qg—1
1 3
1.1 ——— if3<g<4
L 2 if 4<¢g<6
———— if 4<q )
(2 q¢—2

Then for every ug € H*(T) there exists a unique global strong solution u(-) to (CGL).
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Here u(-) is called the global strong solution if

u(+) € C([0,00); H*(T)) N Cige ((0, 00); L*(T))

loc

and furthermore, for a given T' > 0, u(-) satisfies the equation in (CGL) in L?(§, T'; L*(T))
for any 6 € (0,7).

To prove the Theorem we proceed as follows. First we construct the local solution
Uloe(+) to (CGL) with uy € H*(T). The solution can be chosen so that w,.(t) € LP(T)
(p > 2) a.a. t over the interval of its existence. This process has been established by
Levermore-Oliver [1].

Next, we take upc(d) € L*(T) as a new initial value for sufficiently small § > 0 and
apply the result of Okazawa-Yokota [2] to extend the solution globally.

2. Local Existence (Contraction Method)

We describe the result of [1] about the construction of local solutions to (CGL) by
Contraction Methods. Since A > 0, the opeator (A + ia)(d/dz)? + 7 is the infinitesimal
generator of the Cy-semigroup

U(t) = e exp((A + ia)t(d/dx)?)

on L*(I) as well as on H*(I). Then (CGL) can be formally recast as an integral equation
(mild formulation):

(IE) u(t) =U(t)ug — (k + i) /o U(t — s)|ul"u(s) ds.

Here, for a given vy € L*(I) it is well known that {U(t);t > 0} is given by the convolution
U(t)vo = Hy v, vy € L*(I),
where the integral kernel H; = Hy(x) is given by

Hy(z) = Z hi(z+n), xel,
ne2n
he() < ( v ) cR
x) = rexpl ————), =
' (4 (A + i)t)? AN+ i)t
(cf. Taylor [3, Section 3.7] in which A = 1, @ = 0). Note that solutions of (IE) are mild
solutions of (CGL).
The following local existence theorem is due to Levermore-Oliver [1].

Theorem 2.1. For2 < q <6 let s < 0 satisfy the constraint (1.1) in Theorem 1.1. Then
for every p > 0 there exists a time T = T(p) > 0 and 2 < p < 10 such that for every
initial value ug € H*(T) with ||uo||gs < p, (IE) admits a unique solution

u(+) € C([0, T]; H*(T)) N E°((0, T; L*(T)),

t 2

1,1 1
where 0 = §<§ 5 s), and E°((0,T]; LP(T)) is given by

E"((0,T]; L(T)) == {w() € C((0, T1; L*(T) );sup{t’||w(t) ]| 2;0 < t < T} < o0}

with norm
[w ()] go == sup{t’[|w(t)]| ;0 < t < T}.



To prove this theorem, we introduce the following operator
Nu = (k +if)|u|?%u for u € D(N) := L*¢=I(T).

Then (IE) is recast as an abstract integral equation:

(AIE) u(t) = U(t)ug — /o Ut —s)(Nu)(s)ds.

Under the above settings, the following abstract theorem holds (see [1, Theorem 3]).

Theorem 2.2 (General Local Existence). Let {U(t);t > 0} be a Co-semigroup on
a Banach space X. Let 'Y be another Banach space continuously embedded in X and
N Y — X a nonlinear operator. Assume that {U(t)} and N satisfy the following two
conditions:
(I) U(t)X C Y Yt >0 and there exist two constants 6 (0 < 6 < 1) and M (M > 0)
such that
U wl|ly < Mt |w||x Ywe X.

(II) There exist two constants ¢ > 2 and L > 0 such that
INu = Nvllx < L(llully + [vlly)**[lu = v]ly Yu,veY.

If g < 1+41/0, then for every p > 0 there ezists T = T(p) > 0 such that for every initial
value ug € X with ||upl|x < p the integral equation (AIE) admits a unique solution

u() € C([0,T]; X) N E°((0, T1;Y),
where E°((0,T];Y) is given by
E((0,T;Y) == {w(:) € C((0,T]; Y); sup{t’||w(t)||y;0 < t < T} < oo}
with norm
lw(t)l| go = sup{t’[w(t)lly; 0 < t < T}.

By setting X := H*(T), Y := L?(T) (p > 2) in Theorem 2.2, we can obtain Theorem
2.1.

3. Global Existence (Monotonicity Method)

We describe the result in [2] about the construction of the global solution by Mono-
tonicity Methods.
First we formulate the problem (CGL) in the complex Hilbert space X := L?(T). To
this end we introduce two m-accretive operators:
D(S) := H*(T) = {u € H*(I);u(—7) = u(n),u'(—7) = u'(m)},
(Su)(z) := —(d/dz)*u(x) for u € D(S),
(Bu)(z) := |u|"%u(z) for u € D(B) := L*9Y(T).
Then (CGL) is regarded as the following abstract nonlinear evolution equation:

(DE) % + (A +ia)Su+ (k +iB8)Bu—~yu=0, t>0,

u(0) = ug € X.

The following global existence theorem holds (see [2, Theorem 1.3])

3



Theorem 3.1. Let k + i3 be a complex number satisfying k13| < (2v/q—1)/(q — 2).
Then for any ug € L*(T) there exists a “unique” strong solution to (CGL).

The proof of Theorem 3.1 is completed by regarding B as a subdifferential operator
in L?(T).

Let S be a nonnegative selfadjoint operator in a complex Hilbert space X and S'/2
its square root. Let 1 be a proper lower semi-continuous convex function on X. For
simplicity we assume that ¢ > 0 and 0v is single-valued. Now we consider the abstract
Cauchy problem in X:

Mt ia)s 3)0 =0
(ACP) %—i—( +ia)Su+ (k+i8)0¢(u) — yu =0,
u(0) = wp.

For the convex function ¢ and its subdifferential 0y assume that the following three
conditions are satisfied:

(A1) 3 g € [2,00); 9(Cu) = [C|"(u), u € D(Y), Re > 0.
(A2) Jw, € [0,7/2); for u,v € D(0Y)

IIm(0y(u) — 0 (v),u —v)| < (tanwgy)Re(OY(u) — OY(v), u — v).

(A3) [Im(Su, 0v.(u))| < (tanw,)Re(Su, 0. (u)) V u € D(S), where 0. is the Yosida
approximation of 0.

Theorem 3.2 (General Global Existence). Let k+i(3 be a complex number satisfying
k7B < (tanw,)™t. Assume that conditions (A1)-(A3) are satisfied. Then for every
up € D(SY2) N D(v), (ACP) admits a unique global strong solution

u(+) € O([0,00); X) N Cige (0, 00); X).

loc

Put X := L?*(T) in the above Theorem 3.2 and take

1
) = QHUH%Q for u € LU(T),

400 otherwise.

Then we have that the L2-closure of D(SY2) N D(v) = H(T) N LY(T) is equal to L*(T)
and B = 0v¢. Moreover, all the conditions (Al)-(A3) are satisfied with tanw, = (¢ —
2)/(2v/q — 1). Consequently, we can obtain Theorem 3.1.
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