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1. Introduction

We consider initial value problems for the complex Ginzburg-Landau equation over
1-dimensional torus T = R/2πZ:

(CGL)



∂u

∂t
− (λ + iα)

∂2u

∂x2
+ (κ + iβ)|u|q−2u− γu = 0, (x, t) ∈ T × R+,

u(x, 0) = u0(x), x ∈ T,

where q ≥ 2, λ > 0, κ > 0, α, β, γ ∈ R are constants, i =
√−1, and u is a complex-valued

unknown function. T is usually regarded as the interval I := [−π, π], identifying −π and
π. Then the initial value problem (CGL) is equivalent to the following initial-boundary
value problem with periodic boundary condition:




∂u

∂t
− (λ+ iα)

∂2u

∂x2
+ (κ + iβ)|u|q−2u− γu = 0, (x, t) ∈ I × R+,

u(−π, t) = u(π, t), t ∈ R+,

u(x, 0) = u0(x), x ∈ I.

The existence of unique global strong solutions to (CGL) is so far known only for
initial values u0 ∈ L2(T) (cf. [2]). The purpose of this talk is to announce the strong
solvability of (CGL) for wider class of initial values u0 in negative order Sobolev spaces
Hs(T) (s < 0). That is, we consider distribution-valued initial data. Thus, the result
means smoothing effect of the solution operator.

Our result is stated as follows:

Theorem 1.1. For 2 ≤ q < 6 let κ+ iβ be a complex number satisfying
|β|
κ

≤ 2
√
q − 1

q − 2
.

Assume that s < 0 satisfies the constraint:

(1.1) s >




− 2

q − 1
if 2 ≤ q ≤ 3,

1

2
− 3

q − 1
if 3 ≤ q ≤ 4,

1

2
− 2

q − 2
if 4 ≤ q < 6.

Then for every u0 ∈ Hs(T) there exists a unique global strong solution u(·) to (CGL).
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Here u(·) is called the global strong solution if

u(·) ∈ C([0,∞);H s(T)) ∩ C0,1
loc ((0,∞);L2(T))

and furthermore, for a given T > 0, u(·) satisfies the equation in (CGL) in L2(δ, T ;L2(T))
for any δ ∈ (0, T ).

To prove the Theorem we proceed as follows. First we construct the local solution
uloc(·) to (CGL) with u0 ∈ Hs(T). The solution can be chosen so that uloc(t) ∈ Lp(T)
(p ≥ 2) a.a. t over the interval of its existence. This process has been established by
Levermore-Oliver [1].

Next, we take uloc(δ) ∈ L2(T) as a new initial value for sufficiently small δ > 0 and
apply the result of Okazawa-Yokota [2] to extend the solution globally.

2. Local Existence (Contraction Method)

We describe the result of [1] about the construction of local solutions to (CGL) by
Contraction Methods. Since λ > 0, the opeator (λ + iα)(d/dx)2 + γ is the infinitesimal
generator of the C0-semigroup

U(t) := eγt exp((λ + iα)t(d/dx)2)

on L2(I) as well as on Hs(I). Then (CGL) can be formally recast as an integral equation
(mild formulation):

(IE) u(t) = U(t)u0 − (κ+ iβ)

∫ t

0

U(t− s)|u|q−2u(s) ds.

Here, for a given v0 ∈ L2(I) it is well known that {U(t); t ≥ 0} is given by the convolution

U(t)v0 = Ht ∗ v0, v0 ∈ L2(I),

where the integral kernel Ht = Ht(x) is given by

Ht(x) :=
∑

n∈2πZ

ht(x+ n), x ∈ I,

ht(x) :=
eγt

(4π(λ+ iα)t)
1
2

exp
(
− x2

4(λ+ iα)t

)
, x ∈ R

(cf. Taylor [3, Section 3.7] in which λ = 1, α = 0). Note that solutions of (IE) are mild
solutions of (CGL).

The following local existence theorem is due to Levermore-Oliver [1].

Theorem 2.1. For 2 ≤ q < 6 let s < 0 satisfy the constraint (1.1) in Theorem 1.1. Then
for every ρ > 0 there exists a time T = T (ρ) > 0 and 2 ≤ p < 10 such that for every
initial value u0 ∈ Hs(T) with ‖u0‖Hs ≤ ρ, (IE) admits a unique solution

u(·) ∈ C([0, T ];H s(T)) ∩ Eθ((0, T ];Lp(T)),

where θ :=
1

2

(1

2
− 1

p
− s

)
, and Eθ((0, T ];Lp(T)) is given by

Eθ((0, T ];Lp(T)) := {w(·) ∈ C((0, T ];Lp(T)); sup{tθ‖w(t)‖Lp; 0 < t ≤ T} <∞}
with norm

‖w(t)‖Eθ := sup{tθ‖w(t)‖Lp; 0 < t ≤ T}.
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To prove this theorem, we introduce the following operator

Nu := (κ+ iβ)|u|q−2u for u ∈ D(N) := L2(q−1)(T).

Then (IE) is recast as an abstract integral equation:

(AIE) u(t) = U(t)u0 −
∫ t

0

U(t− s)(Nu)(s) ds.

Under the above settings, the following abstract theorem holds (see [1, Theorem 3]).

Theorem 2.2 (General Local Existence). Let {U(t); t ≥ 0} be a C 0-semigroup on
a Banach space X. Let Y be another Banach space continuously embedded in X and
N : Y → X a nonlinear operator. Assume that {U(t)} and N satisfy the following two
conditions:

(I) U(t)X ⊂ Y ∀ t > 0 and there exist two constants θ (0 < θ < 1) and M (M > 0)
such that

‖U(t)w‖Y ≤Mt−θ‖w‖X ∀ w ∈ X.

(II) There exist two constants q ≥ 2 and L > 0 such that

‖Nu−Nv‖X ≤ L(‖u‖Y + ‖v‖Y )q−2‖u− v‖Y ∀ u, v ∈ Y.

If q < 1 + 1/θ, then for every ρ > 0 there exists T = T (ρ) > 0 such that for every initial
value u0 ∈ X with ‖u0‖X ≤ ρ the integral equation (AIE) admits a unique solution

u(·) ∈ C([0, T ];X) ∩ Eθ((0, T ];Y ),

where Eθ((0, T ];Y ) is given by

Eθ((0, T ];Y ) := {w(·) ∈ C((0, T ];Y ); sup{tθ‖w(t)‖Y ; 0 < t ≤ T} <∞}
with norm

‖w(t)‖Eθ := sup{tθ‖w(t)‖Y ; 0 < t ≤ T}.
By setting X := Hs(T), Y := Lp(T) (p ≥ 2) in Theorem 2.2, we can obtain Theorem

2.1.

3. Global Existence (Monotonicity Method)

We describe the result in [2] about the construction of the global solution by Mono-
tonicity Methods.

First we formulate the problem (CGL) in the complex Hilbert space X := L2(T). To
this end we introduce two m-accretive operators:

D(S) := H2(T) = {u ∈ H2(I);u(−π) = u(π), u ′(−π) = u′(π)},
(Su)(x) := −(d/dx)2u(x) for u ∈ D(S),

(Bu)(x) := |u|q−2u(x) for u ∈ D(B) := L2(q−1)(T).

Then (CGL) is regarded as the following abstract nonlinear evolution equation:

(DE)



du

dt
+ (λ+ iα)Su+ (κ+ iβ)Bu− γu = 0, t > 0,

u(0) = u0 ∈ X.

The following global existence theorem holds (see [2, Theorem 1.3])
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Theorem 3.1. Let κ + iβ be a complex number satisfying κ−1|β| ≤ (2
√
q − 1)/(q − 2).

Then for any u0 ∈ L2(T) there exists a “unique” strong solution to (CGL).

The proof of Theorem 3.1 is completed by regarding B as a subdifferential operator
in L2(T).

Let S be a nonnegative selfadjoint operator in a complex Hilbert space X and S1/2

its square root. Let ψ be a proper lower semi-continuous convex function on X. For
simplicity we assume that ψ ≥ 0 and ∂ψ is single-valued. Now we consider the abstract
Cauchy problem in X:

(ACP)



du

dt
+ (λ+ iα)Su+ (κ+ iβ)∂ψ(u)− γu = 0,

u(0) = u0.

For the convex function ψ and its subdifferential ∂ψ assume that the following three
conditions are satisfied:

(A1) ∃ q ∈ [2,∞); ψ(ζu) = |ζ|qψ(u), u ∈ D(ψ), Re ζ > 0.
(A2) ∃ ωq ∈ [0, π/2); for u, v ∈ D(∂ψ)

|Im(∂ψ(u)− ∂ψ(v), u− v)| ≤ (tanωq)Re(∂ψ(u)− ∂ψ(v), u− v).

(A3) |Im(Su, ∂ψε(u))| ≤ (tanωq)Re(Su, ∂ψε(u)) ∀ u ∈ D(S), where ∂ψε is the Yosida
approximation of ∂ψ.

Theorem 3.2 (General Global Existence). Let κ+iβ be a complex number satisfying
κ−1|β| ≤ (tanωq)

−1. Assume that conditions (A1)–(A3) are satisfied. Then for every

u0 ∈ D(S1/2) ∩D(ψ), (ACP) admits a unique global strong solution

u(·) ∈ C([0,∞);X) ∩ C0,1
loc ((0,∞);X).

Put X := L2(T) in the above Theorem 3.2 and take

ψ(u) :=




1

q
‖u‖q

Lq for u ∈ Lq(T),

+∞ otherwise.

Then we have that the L2-closure of D(S1/2) ∩D(ψ) = H1(T) ∩ Lq(T) is equal to L2(T)
and B = ∂ψ. Moreover, all the conditions (A1)–(A3) are satisfied with tanωq = (q −
2)/(2

√
q − 1). Consequently, we can obtain Theorem 3.1.
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