ON THE ASYMPTOTICS FOR CUBIC NONLINEAR SCHRÖDINGER EQUATIONS

林 仲夫

We consider the Cauchy problem for the cubic nonlinear Schrödinger equation

$$
\left\{\begin{array}{c}
\mathcal{L} u=\mathcal{N}(u), x \in \mathbf{R}, t>1 \tag{0.1}\\
u(1, x)=u_{1}(x), x \in \mathbf{R},
\end{array}\right.
$$

where $\mathcal{L}=i \partial_{t}+\frac{1}{2} \partial_{x}^{2}$ ，

$$
\mathcal{N}(u)=\lambda_{1} u^{3}+\lambda_{2} \bar{u}^{2} u+\lambda_{3} \bar{u}^{3},
$$

$\lambda_{j} \in \mathbf{C}, j=1,2,3$ ．For the coefficients λ_{j} we assume that there exists $\theta_{0}>0$ such that

$$
\begin{align*}
& \Re\left(\frac{\lambda_{1}}{\sqrt{3}} e^{2 i r}-i \lambda_{2} e^{-2 i r}+\frac{\lambda_{3}}{\sqrt{3}} e^{-4 i r}\right) \geq C>0, \tag{0.2}\\
& \Im\left(\frac{\lambda_{1}}{\sqrt{3}} e^{2 i r}-i \lambda_{2} e^{-2 i r}+\frac{\lambda_{3}}{\sqrt{3}} e^{-4 i r}\right) r \geq C r^{2}, \tag{0.3}
\end{align*}
$$

for all $|r|<\theta_{0}$ ，and also we suppose that the initial data $u_{1}(x)$ are such that

$$
\begin{equation*}
\left|\arg e^{-\frac{i}{2} \xi^{2} \widehat{u_{1}}}(\xi)\right|<\theta_{0}, \quad \inf _{|\xi| \leq 1}\left|\widehat{u_{1}}(\xi)\right| \geq C \varepsilon \tag{0.4}
\end{equation*}
$$

$\varepsilon>0$ is a small constant depending on the size of the initial function in a suitable norm defined later．Note that conditions（0．2）－（0．3）can be fulfilled，for example， if we choose $\lambda_{1}=-1, \lambda_{2}=\lambda_{3}=0$ and $\theta_{0}=\frac{\pi}{4}$ ．

We let

$$
\begin{equation*}
\chi(\xi)=\Re\left(\frac{\lambda_{1}}{\sqrt{3}} \exp \left(2 i r_{+}(\xi)\right)-i \lambda_{2} \exp \left(-2 i r_{+}(\xi)\right)+\frac{\lambda_{3}}{\sqrt{3}} \exp \left(-4 i r_{+}(\xi)\right)\right) \tag{0.5}
\end{equation*}
$$

and

$$
\left|r_{+}\left(\frac{x}{t}\right)\right| \leq|\theta|+\varepsilon^{\frac{1}{4}},\left|W_{+}\left(\frac{x}{t}\right)\right| \leq 2 \varepsilon .
$$

To state our result precisely we now give some notations．Denote the usual Lebesgue space $\mathbf{L}^{p}=\left\{\phi \in \mathbf{S}^{\prime} ;\|\phi\|_{p}<\infty\right\}$ ，where the norm $\|\phi\|_{p}=\left(\int_{\mathbf{R}}|\phi(x)|^{p} d x\right)^{1 / p}$ if $1 \leq p<\infty$ and $\|\phi\|_{\infty}=\operatorname{ess} . \sup _{x \in \mathbf{R}}|\phi(x)|$ if $p=\infty$ ．For simplicity we write $\|\cdot\|=\|\cdot\|_{2}$ ．Weighted Sobolev space is

$$
\mathbf{H}^{m, k}=\left\{\phi \in \mathbf{S}^{\prime}:\|\phi\|_{m, k} \equiv\left\|\langle x\rangle^{k}\langle i \partial\rangle^{m} \phi\right\|<\infty\right\}, m, k \in \mathbf{R},\langle x\rangle=\sqrt{1+x^{2}} .
$$

[^0]We let $\mathcal{K}=\mathcal{F} \mathcal{U}(-t)$ ，where $\mathcal{U}(t)$ is the free Schrödinger group．The analytic function space \mathbf{A} is defined

$$
\mathbf{A}=\left\{\phi \in \mathbf{L}^{2}:\|\phi\|_{\mathbf{A}} \equiv \sum_{n=0}^{\infty} \frac{\varepsilon^{n}}{n!}\left(\left\|\mathcal{I}^{n} \phi\right\|+\left\|\mathcal{K} \mathcal{I}^{n} \phi\right\|_{\infty}\right)<\infty\right\}
$$

Our main result is
Theorem 0．1．We suppose that conditions（0．2）－（0．4）are valid with sufficiently small $\varepsilon>0$ ．We assume that the initial data $u_{1} \in \mathbf{A}_{1}$ ．Then there exists an $\varepsilon_{0}>0$ such that if $\left\|u_{1}\right\|_{\mathbf{A}_{1}} \leq \varepsilon, 0<\varepsilon<\varepsilon_{0}$ ，then there exists a unique solution $u \in \mathbf{C}\left([1, \infty), \mathbf{L}^{\infty}\right)$ of the Cauchy problem（0．1）．Moreover there exist unique final state $W_{+}, r_{+} \in \mathbf{L}^{\infty}$ and $\gamma>0$ such that the following asymptotics for $t \rightarrow \infty$

$$
\begin{equation*}
u(t, x)=\frac{(i t)^{-\frac{1}{2}} W_{+}\left(\frac{x}{t}\right) e^{\frac{i x^{2}}{2 t}}}{\sqrt{1+\chi\left(\frac{x}{t}\right)\left|W_{+}\left(\frac{x}{t}\right)\right|^{2} \log \frac{t^{2}}{t+x^{2}}}}+O\left(t^{-\frac{1}{2}}\left(1+\log \frac{t^{2}}{t+x^{2}}\right)^{-\frac{1}{2}-\gamma}\right) \tag{0.6}
\end{equation*}
$$

is valid uniformly with respect to $x \in \mathbf{R}, \gamma>0$ ，where $\chi(\xi)$ is given by（0．5）．

大阪大学

E－mail address：nhayashi＠math．wani．osaka－u．ac．jp

[^0]: ${ }^{1}$ This is a joint work with P．I．Naumkin
 Date： 6 月 29 日， 2002.

