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We consider the following nonlinear two-parameter problem

−u′′(x) + λu(x)q = µu(x)p, x ∈ I = (0, 1),

u(x) > 0, x ∈ I, (0.1)

u(0) = u(1) = 0,

where 1 < q < p and λ, µ > 0 are parameters.

The purpose of this talk is to establish the asymptotic formulas for the

eigencurve µ = µ(λ) with the exact second term as λ → ∞ by using a vari-

ational method. We also establish the critical relationship between p and q

from a point of view of the decaying rate of the second term of µ(λ).

The study of two-parameter eigenvalue problems began with the oscillation

theory and has been investigated by many authors. We refer to Atkinson [1],

Binding and Browne [2], Cantrell [3], Faierman [4], Faierman and Rauch [5],

Shibata [6, 7, 8], Sleeman [9], Turyn [10], Volkmer [11] and the references



therein. One of the main problems in this area is to analyze the structure of

the solution set {(λ, µ, u)} of (1.1) and the effective approach to this problem

is to study the structure of the set Sλ,µ := {(λ, µ, ‖u‖p+1)} ⊂ R3 for large

λ. In Shibata [8], by using a standard variational framework, the variational

eigencurve µ = µ(λ) was defined to analyze Sλ,µ and a simple asymptotic

formula for µ(λ) as λ → ∞ was established to understand the first term of µ(λ)

as λ → ∞. However, the remainder estimate of µ(λ) has not been obtained.

The purpose here is to obtain the exact second term of µ(λ) as λ → ∞. We

emphasize that the second term depends deeply on the relationship between p

and q. Finally, it should be mentioned that the asymptotic behavior of such

eigencurve is also effected by the variational framework (cf. [6, 7]).

Notations and Definitions

Let H1
0 (I) be the usual real Sobolev space. ‖u‖r denotes the usual Lr-norm.

For u ∈ H1
0 (I)

Eλ(u) :=
1

2
‖u′‖2

2 +
1

q + 1
λ‖u‖q+1

q+1,

Mγ := {u ∈ H1
0 (I) : ‖u‖p+1 = γ},

where γ > 0 is a fixed constant. For a given λ > 0, we call µ(λ) the variational

eigenvalue when the following conditions are satisfied:

(λ, µ(λ), uλ) ∈ R+ × R+ × Mγ satisfies (0.1).

Eλ(uλ) = inf
u∈Mγ

Eλ(u).

Then µ(λ) is obtained as a Lagrange multiplier and is represented explicitly

as follows:

µ(λ) =
‖u′

λ‖2
2 + λ‖uλ‖q+1

q+1

γp+1
.

We discuss the asymptotic behavior of µ(λ) as λ → ∞ precisely.
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