The initial value problem for Schrödinger equations on the torus

HIROYUKI CHIHARA* (Tohoku University) e-mail chihara@math.tohoku.ac.jp

In this note, we are concerned with the well-posedness of the initial value problems for linear Schrödinger-type equations of the form

$$Lu \equiv \partial_t u - i\Delta u + b(x) \cdot \nabla u + c(x)u = f(t, x) \quad \text{in} \quad \mathbb{R} \times \mathbb{T}^n, \tag{1}$$

$$u(0,x) = u_0(x) \quad \text{in} \quad \mathbb{T}^n, \tag{2}$$

and for semilinear Schrödinger equations of the form

$$\partial_t u - i\Delta u = F(u, \nabla u, \bar{u}, \nabla \bar{u}) \quad \text{in} \quad \mathbb{R} \times \mathbb{T}^n, \tag{3}$$

$$u(0,x) = u_0(x) \qquad \text{in } \mathbb{T}^n, \tag{4}$$

where u(t, x) is a complex valued unknown function of $(t, x) = (t, x_1, \ldots, x_n) \in \mathbb{R} \times \mathbb{T}^n$, $\mathbb{T}^n = \mathbb{R}^n / 2\pi \mathbb{Z}^n$, $i = \sqrt{-1}$, $\partial_t = \partial/\partial t$, $\partial_j = \partial/\partial x_j$ $(j = 1, \ldots, n)$, $\nabla = (\partial_1, \cdots, \partial_n)$, $\Delta = \nabla \cdot \nabla$, and $\vec{b}(x) = (b_1(x), \ldots, b_n(x))$, c(x), f(t, x) and $u_0(x)$ are given functions. Suppose that $b_1(x), \ldots, b_n(x)$ and c(x) are smooth functions on \mathbb{T}^n , and that $F(u, v, \bar{u}, \bar{v})$ is a smooth function on \mathbb{R}^{2+2n} , and

$$F(u, v, \bar{u}, \bar{v}) = O(|u|^2 + |v|^2)$$
 near $(u, v) = 0.$

For the Euclidean case $x \in \mathbb{R}^n$, Mizohata proved in [8] that if the initial value problem (1)-(2) is L^2 -well-posed, then

$$\sup_{(t,x,\omega)\in\mathbb{R}^{1+n}\times S^{n-1}} \left| \int_0^t \operatorname{Im} \vec{b}(x-\omega s) \cdot \omega ds \right| < +\infty,$$
(5)

where S^{n-1} is a unit sphere in \mathbb{R}^n and $\vec{b} \cdot \xi = b_1 \xi_1 + \dots + b_n \xi_n$. Moreover, he gave sufficient condition for L^2 -well-posedness which is slightly stronger than (5). In particular, (5) is also sufficient condition for L^2 -well-posedness when n = 1. Roughly speaking, (5) gives an upper bound of the strength of the real vector field $(\operatorname{Im} \vec{b}(x)) \cdot \nabla$. In other words, if $(\operatorname{Im} \vec{b}(x)) \cdot \nabla$ can be dominated by so-called local smoothing effect of $e^{it\Delta}$, then (5) must holds. After his results, many authors discovered similar sufficient conditions. Unfortunately, however, the characterization of L^2 -well-posedness for (1)-(2) remains open except for one-dimensional case.

On the other hand, the periodic case is completely different from the Euclidean case. The local smoothing effect of $e^{it\Delta}$ fails because the flow of the hamiltonian vector field $2\xi \cdot \nabla$ is completely trapped. The purpose of this note is to present the necessary and sufficient condition of L^2 -well-posedness of (1)-(2), and apply this condition to (3)-(4). We here give the definition of L^2 -well-posedness.

^{*}Supported by JSPS Grant-in-Aid for Scientific Research #14740095.

Definition 1. The initial-boundary value problem (1)-(2) is said to be L^2 -well-posed if for any $u_0 \in L^2(\mathbb{T}^n)$ and $f \in L^1_{\text{loc}}(\mathbb{R}; L^2(\mathbb{T}^n))$, (1)-(2) has a unique solution $u \in C(\mathbb{R}; L^2(\mathbb{T}^n))$.

Firstly, we present L^2 -well-posedness results for linear equations.

Theorem 2. The following conditions are mutually equivalent:

- 1. (1)-(2) is L^2 -well-posed.
- 2. For $x \in \mathbb{T}^n$ and $\alpha \in \mathbb{Z}^n$

$$\int_0^{2\pi} \operatorname{Im} \vec{b}(x - \alpha s) \cdot \alpha ds = 0.$$
(6)

3. There exists a scalar function $\phi(x) \in C^{\infty}(\mathbb{T}^n)$ such that $\nabla \phi(x) = \operatorname{Im} \vec{b}(x)$.

When n = 1, set $b(x) = b_1(x)$. The condition (6) is reduced to

$$\int_{0}^{2\pi} \operatorname{Im} b(x) dx = 0.$$
 (7)

The condition (6) is the natural torus version of (5). More precisely, (6) is a special case of Ichinose's necessary condition of L^2 -well-posedness discovered in [5]. On the other hand, the condition 3 corresponds to Ichinose's sufficient condition of L^2 -well-posedness discovered in [6]. Theorem 2 makes us expect analogous results for nonlinear equations. In fact, we have local existence and local ill-posedness results as follows.

Theorem 3. Let s > n/2 + 2. Suppose that there exists a smooth real-valued function $\Phi(u, \bar{u})$ on \mathbb{R}^2 such that for any $u \in C^1(\mathbb{T}^n)$

$$\nabla \Phi(u, \bar{u}) = \operatorname{Im} \nabla_v F(u, \nabla u, \bar{u}, \nabla \bar{u}).$$
(8)

Then for any $u_0 \in H^s(\mathbb{T}^n)$, there exists T > 0 depending on $||u_0||_s$ such that (3)-(4) possesses a unique solution $u \in C([-T,T]; H^s(\mathbb{T}^n))$. Furthermore, Let $\{u_{0,k}\}$ be a sequence of initial data belonging to $H^s(\mathbb{T}^n)$, and let $\{u_k\}$ be a sequence of corresponding solutions. If

$$u_{0,k} \longrightarrow u_0$$
 in $H^s(\mathbb{T}^n)$ as $k \to \infty$,

then for any m < s

$$u_k \longrightarrow u \quad in \quad C([0,T]; H^m(\mathbb{T}^n)) \quad as \quad k \to \infty.$$
 (9)

Theorem 4. Suppose that there exists a holomorphic n-vector function

$$\vec{G}(u) = (G_1(u), \cdots, G_n(u)), \quad u \in \mathbb{C}$$

such that $G(u) \not\equiv 0$, and

$$F(u, \nabla u, \bar{u}, \nabla \bar{u}) = \nabla \cdot \vec{G}(u) \tag{10}$$

for any $u \in C^1(\mathbb{T}^n)$. Then (3)-(4) is not locally well-posed in the sense of Theorem 3.

It seems to be hard to show the continuous dependence of the solution on the initial data because the gain of derivative of $e^{it\Delta}$ fails when $x \in \mathbb{T}^n$. To prove Theorem 4, we construct a sequence of solutions which are real-analytic in x by using the idea of the abstract Cauchy-Kowalewski theorem. Hence it is essential that G(u) is holomorphic.

References

- H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann. 315 (1999), 529–567.
- H. Chihara, The initial value problem for Schrödinger equations on the torus, Int. Math. Res. Not. 2002:15 (2002), 789–820.
- [3] S. Doi, *Remarks on the Cauchy problem for Schrödinger-type equations*, Comm. in Partial Differential Equations **21** (1996), 163–178.
- [4] S. Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J. 82 (1996), 679–706.
- [5] W. Ichinose, On L² well posedness of the Cauchy problem for Schrödinger type equations on the Riemannian manifold and Maslov theory, Duke Math. J. 56 (1988), 549–588.
- [6] W. Ichinose, A note on the Cauchy problem for Schrödinger type equations on the Riemannian manifold, Math. Japon. 35 (1990), 205–213.
- [7] C. E. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. math. 134 (1998), 489–545.
- [8] S. Mizohata, "On the Cauchy Problem" Academic Press, 1985.
- [9] C. Rolvung, Nonisotropic Schrödinger equations, Ph.D Thesis, The University of Chicago, 1998.