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We study the one dimensional nonlinear damped wave equation{
vtt + vt − vxx + v1+σ = 0, x ∈ R, t > 0,
v (0, x) = εv0 (x) , vt (0, x) = εv1 (x) , (1)

in the sub critical case σ ∈ (0, 2) , where ε > 0. Recently much attention was
drawn to nonlinear wave equations with dissipative terms. For general dimen-
sional case the problem is written{

vtt + vt − ∆v + v1+σ = 0, x ∈ Rn, t > 0,
v (0, x) = εv0 (x) , vt (0, x) = εv1 (x) . (2)

In paper [24], it was proved global existence and large time decay estimates of
solutions to the Cauchy problem for the damped wave equation with nonlinear-
ities ± |v|1+σ or ± |v|σ v, for the super critical case σ > 2

n
, if the initial data

are sufficiently small and have a compact support. If we restrict our attention
to low space dimensions we do not need to assume that the initial data have
compact support. Indeed in the super critical case σ > 2

n , the global existence
in time of small solutions can be obtained by the method of paper [19] for n = 1.
When n = 3 and ∂αu0 ∈ L1 ∩ L∞, |α| ≤ 1, u1 ∈ L1 ∩ L∞, problem (3) was
considered in [21], [22] by making use of the fundamental solution of the linear
problem and global existence of small solutions and large time decay estimates
‖u‖Lq ≤ Ct−

n
2 (1− 1

q ), 1 ≤ q ≤ ∞ was obtained for n = 3. Later these require-
ments on the initial data were relaxed in [23] as follows u0 ∈ L1, ∂αu0 ∈ L2,
|α| ≤ 1, u1 ∈ L1 ∩ L2, under the additional assumptions on σ and q such that
σ ≤ 5, q ≤ 6 for the space dimension n = 3 and q < ∞ for the two dimensional
case n = 2. For the case of higher dimensions n = 4, 5, global existence and Lq -
time decay estimates for σ ≤ q ≤ σ

σ−1 were obtained via Fourier analysis in pa-
per [20], when the power of the nonlinearity σ is such that 1+ 2

n < σ ≤ n+2
n−2 and

the initial data are small enough and satisfy u0, ∂
αu0 ∈ L1 ∩ L

σ
σ−1 , ∂βu0 ∈ L2,

u1 ∈ L1 ∩ L
σ

σ−1 , ∂αu1 ∈ L2, |α| ≤ 1, |β| ≤ 2. The blow-up results were proved
in [24] for the case of nonlinearity − |v|1+σ

, with σ < 2
n , when the initial data

are such that
∫
Rn v0 (x) dx > 0,

∫
Rn v1 (x) dx > 0. Blow-up results for the crit-

ical and sub critical cases σ ≤ 2
n were obtained in [17]. Via the energy type
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estimates obtained in papers [19] and [15] it was proved in [13] that solutions
of the nonlinear damped wave equation (1) in the case σ > 1 + 4

n
, n = 1, 2, 3

with arbitrary initial data u0 ∈ H1 ∩ L1, u1 ∈ L2 ∩ L1 (i.e. without smallness
assumption on the initial data) have the same large time asymptotics as that
for the linear heat equation ∂t − ∂2

x, that is

‖u (t) −MG0 (t)‖Lp = o
(
t−

1
2 (1− 1

p)
)

as t → ∞,where 2 ≤ p ≤ ∞ for n = 1, 2 ≤ p < ∞ for n = 2, 2 ≤ p < 6 for
n = 3, and G0 (t) is the heat kernel and M is a constant. If we do not assume
the smallness condition on the data, as far as we know there is no result of
asymptotic behavior of solutions to the problem for σ ≤ 1 + 4

n even if the order
of nonlinearity is the super critical case σ > 1 + n

4
. Recently the critical case

σ = 2
n
, n = 1, 2, 3 was considered in paper [11] under some assumptitons on the

data, where it was proved that small solutions of (2) have an additional time
decay

‖v (t)‖L∞ ≤ C 〈t〉−n
2 (1 + log 〈t〉)−n

2 ,

where 〈t〉 =
√

1 + t2. In the case of sub-critical case we need to study the sharp
asymptotics of solutions to linear problem in the weighted Sobolev space to
obtain the desired result. For n = 1, Lp − Lq asymptotics of the fundamental
solutions was studied in detail, where 1 ≤ q ≤ p ≤ ∞ in [18]. Note that similar
behavior first was discovered for the nonlinear heat equation vt−∆v−v1+σ = 0
in the critical case σ = 2

n , comparing with the linear heat equation, (see, e.g.,
[5]). For blow-up results we refer [4], [6], [16]. Large time behavior of solutions
to the nonlinear heat equations in the sub critical cases σ ∈ (0, 2

n

)
was obtained

in papers [2], [3], [7], [14], [25].
Taking v = u1 and (1 + ∂x)−1

vt = u2 we rewrite equation (1) in the form
of a system of nonlinear evolutionary equations

ut + N (u) + Lu = 0 (3)

for the vector u (t, x) =
(

u1 (t, x)
u2 (t, x)

)
, with the initial data

u (0, x) = ũ (x) ≡
(

εv0 (x)
ε (1 + ∂x)−1 v1 (x)

)
,

where the linear part of system (3) is a pseudodifferential operator defined by
the Fourier transformation as follows

Lu = Fξ→xL (ξ)Fx→ξu,

with a matrix - symbol

L (ξ) = {Ljk (ξ)}|j,k=1,2 =

(
0 − (1 + iξ)
ξ2

1+iξ 1

)
and the nonlinearity is defined dy

N (u) = (1 + ∂x)−1

(
0

u1+σ
1

)
,
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with

(1 + ∂x)−1 = Fξ→x (1 + iξ)−1 Fx→ξ = e−x

∫ x

−∞
dx′ex′

.

We define the direct Fourier transformation Fx→ξ by

û (ξ) ≡ Fx→ξu = (2π)−
1
2

∫
R

e−iξxu (x)dx,

then the inverse Fourier transformation Fξ→x is

ǔ (x) ≡ Fξ→xu = (2π)−
1
2

∫
R

eixξu (ξ) dξ.

Denote by

λ1 (ξ) =
1
2

+
1
2

√
1 − 4ξ2, λ2 (ξ) =

1
2
− 1

2

√
1 − 4ξ2

the eigenvalues of the matrix L (ξ). Note that the matrix

Q (ξ) =
(

Q11 (ξ) Q12 (ξ)
Q21 (ξ) Q22 (ξ)

)
=
(

1 + iξ 1 + iξ
−λ1 (ξ) −λ2 (ξ)

)
and

Q−1 (ξ) =
1

(1 + iξ) (λ1 (ξ) − λ2 (ξ))

( −λ2 (ξ) − (1 + iξ)
λ1 (ξ) 1 + iξ

)
diagonalize the matrix L (ξ), i.e.

Q−1 (ξ)L (ξ)Q (ξ) =
(
λ1 (ξ) 0

0 λ2 (ξ)

)
.

Consider the system of ordinary differential equations with constant coefficients
depending on the parameter ξ ∈ R

d

dt
û (t, ξ) + L (ξ) û (t, ξ) = 0. (4)

Multiplying system (4) byQ−1 (ξ) from the left and changing û (t, ξ) = Q (ξ)w (t, ξ)
we diagonalize system (4)

d

dt

(
w1 (t, ξ)
w2 (t, ξ)

)
= −

(
λ1 (ξ) 0

0 λ2 (ξ)

)(
w1 (t, ξ)
w2 (t, ξ)

)
,

whence integrating with respect to time t ≥ 0 we find(
w1 (t, ξ)
w2 (t, ξ)

)
=
(
e−tλ1(ξ) 0

0 e−tλ2(ξ)

)(
w1 (0, ξ)
w2 (0, ξ)

)
Returning to the solution û (t, ξ) we get

û (t, ξ) =
(

û1 (t, x)
û2 (t, x)

)
= Q (ξ)

(
w1 (t, ξ)
w2 (t, ξ)

)
= Q (ξ)

(
e−tλ1(ξ) 0

0 e−tλ2(ξ)

)
Q−1 (ξ)

(
û0 (ξ)
û1 (ξ)

)
= e−tL(ξ)

(
û0 (ξ)
û1 (ξ)

)
,
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where the fundamental Cauchy matrix has the form

e−tL(ξ) = Q (ξ)
(
e−tλ1(ξ) 0

0 e−tλ2(ξ)

)
Q−1 (ξ)

=
1√

1 − 4ξ2

(
−λ2 (ξ) − (1 + iξ)

ξ2

1+iξ λ1 (ξ)

)
e−tλ1(ξ)

+
1√

1 − 4ξ2

(
λ1 (ξ) 1 + iξ

− ξ2

1+iξ −λ2 (ξ)

)
e−tλ2(ξ).

We rewrite the Cauchy problem (3) in the form of the integral equation

u (t) = G (t) ũ−
∫ t

0

G (t− τ )N (u) (τ ) dτ, (5)

where the Green operator G (t)ψ = Fξ→x

(
e−tL(ξ)ψ̂ (ξ)

)
. So by the solution of

the Cauchy problem (3) we always understand the solution u (t, x) of the corre-
sponding integral equation (5), belonging to C0 ([0,∞);X) with an appropriate
choice of a functional space X.

In the present paper we prove the following result. Denote

L1,a =
{
φ ∈ L1 : ‖φ‖L1,a = ‖〈·〉a φ‖L1 < ∞} .

Theorem 1. We assume that the initial data ũ ∈ (
L∞ ∩ L1,a

)2
, a ∈ (0, 1),

and the mean value

θ = ε

∫
R

(ũ1 (x) + ũ2 (x)) dx > 0.

Then there exists a positive ε such that the Cauchy problem for equation (3)
has a unique mild solution u (t, x) ∈ (

C
(
[0,∞) ;L∞ ∩ L1,a

))2 satisfying the
following time decay estimate

‖u (t)‖L∞ ≤ Cε 〈t〉− 1
σ

for large t > 0 and any σ ∈ (2 − ε3, 2
)
. Furthermore the asymptotic formula

u (t, x) = e1

(
(tη)−

1
σ V

(
x√
t

)
+ O

(
t−

1
σ −γ

))
,

is valid for t → ∞ uniformly with respect to x ∈ R, where γ = 1
2 min

(
a, 1− σ

2

)
,

e1 =
(

1
0

)
, V ∈ L1,a ∩L∞ is the solution of the integral equation

V (ξ) =
1

(4π)
1
2
e−

ξ2

4

− 1

η (4π)
1
2

∫ 1

0

dz

z (1 − z)
1
2

∫
R

e−
(ξ−y

√
z)2

4(1−z) F (y) dy, (6)

where

η =
σ

1 − σ
2

∫
R

V 1+σ (y) dy
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and

F (y) = V 1+σ (y) − V (y)
∫
R

V 1+σ (ξ) dξ.

Remark 1. As a consequence of Theorem 1 we have the following asymptotics
for the damped wave equation (1)

v (t, x) = (tη)−
1
σ V

(
x√
t

)
+O

(
t−

1
σ−γ

)
,

for t→ ∞ uniformly with respect to x ∈ R if the initial data v0, (1 + ∂x)−1
v1 ∈(

L∞ ∩ L1,a
)2
, a ∈ (0, 1), are such that the mean value∫

R

(v0 (x) + v1 (x)) dx > 0.
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